Properties

Label 177.11.c
Level $177$
Weight $11$
Character orbit 177.c
Rep. character $\chi_{177}(58,\cdot)$
Character field $\Q$
Dimension $100$
Newform subspaces $1$
Sturm bound $220$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 177.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 59 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(220\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(177, [\chi])\).

Total New Old
Modular forms 202 100 102
Cusp forms 198 100 98
Eisenstein series 4 0 4

Trace form

\( 100q - 51200q^{4} + 18392q^{7} + 1968300q^{9} + O(q^{10}) \) \( 100q - 51200q^{4} + 18392q^{7} + 1968300q^{9} + 620136q^{12} + 662904q^{15} + 27925160q^{16} - 2053136q^{17} - 5169828q^{19} - 1076324q^{20} - 1829224q^{22} + 215378180q^{25} - 22082700q^{26} - 102921320q^{28} - 112503588q^{29} - 76491392q^{35} - 1007769600q^{36} + 473464516q^{41} + 1215405588q^{46} - 1676272320q^{48} + 1975297276q^{49} + 733970808q^{51} + 3267506728q^{53} + 591502824q^{57} + 508142200q^{59} + 1264196808q^{60} - 6538206968q^{62} + 362009736q^{63} - 10324137972q^{64} - 2764346616q^{66} + 9997685952q^{68} + 14908523204q^{71} + 4863508712q^{74} + 1890481680q^{75} + 2044437240q^{76} - 758396196q^{78} - 3599839500q^{79} - 23217941144q^{80} + 38742048900q^{81} - 13094894808q^{84} + 23360564412q^{85} + 12186923752q^{86} + 7965322272q^{87} + 32415437996q^{88} - 22098322280q^{94} + 7834510028q^{95} + O(q^{100}) \)

Decomposition of \(S_{11}^{\mathrm{new}}(177, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
177.11.c.a \(100\) \(112.458\) None \(0\) \(0\) \(0\) \(18392\)

Decomposition of \(S_{11}^{\mathrm{old}}(177, [\chi])\) into lower level spaces

\( S_{11}^{\mathrm{old}}(177, [\chi]) \cong \) \(S_{11}^{\mathrm{new}}(59, [\chi])\)\(^{\oplus 2}\)