Defining parameters
Level: | \( N \) | \(=\) | \( 177 = 3 \cdot 59 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 177.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(200\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(177))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 182 | 86 | 96 |
Cusp forms | 178 | 86 | 92 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(59\) | Fricke | Dim. |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(21\) |
\(+\) | \(-\) | \(-\) | \(22\) |
\(-\) | \(+\) | \(-\) | \(22\) |
\(-\) | \(-\) | \(+\) | \(21\) |
Plus space | \(+\) | \(42\) | |
Minus space | \(-\) | \(44\) |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(177))\) into newform subspaces
Label | Dim. | \(A\) | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | 3 | 59 | |||||||
177.10.a.a | \(21\) | \(91.161\) | None | \(-66\) | \(1701\) | \(-2964\) | \(-30775\) | \(-\) | \(-\) | |||
177.10.a.b | \(21\) | \(91.161\) | None | \(20\) | \(-1701\) | \(2058\) | \(-17167\) | \(+\) | \(+\) | |||
177.10.a.c | \(22\) | \(91.161\) | None | \(36\) | \(-1782\) | \(808\) | \(21249\) | \(+\) | \(-\) | |||
177.10.a.d | \(22\) | \(91.161\) | None | \(46\) | \(1782\) | \(5786\) | \(7641\) | \(-\) | \(+\) |
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(177))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(177)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(59))\)\(^{\oplus 2}\)