Properties

Label 1764.4.k.d.1549.1
Level $1764$
Weight $4$
Character 1764.1549
Analytic conductor $104.079$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,4,Mod(361,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.361");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1764.k (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(104.079369250\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1549.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1764.1549
Dual form 1764.4.k.d.361.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.00000 + 6.92820i) q^{5} +(-20.0000 - 34.6410i) q^{11} -12.0000 q^{13} +(-29.0000 - 50.2295i) q^{17} +(-13.0000 + 22.5167i) q^{19} +(-32.0000 + 55.4256i) q^{23} +(30.5000 + 52.8275i) q^{25} +62.0000 q^{29} +(-126.000 - 218.238i) q^{31} +(-13.0000 + 22.5167i) q^{37} -6.00000 q^{41} +416.000 q^{43} +(-198.000 + 342.946i) q^{47} +(-225.000 - 389.711i) q^{53} +320.000 q^{55} +(137.000 + 237.291i) q^{59} +(288.000 - 498.831i) q^{61} +(48.0000 - 83.1384i) q^{65} +(238.000 + 412.228i) q^{67} +448.000 q^{71} +(79.0000 + 136.832i) q^{73} +(468.000 - 810.600i) q^{79} -530.000 q^{83} +464.000 q^{85} +(-195.000 + 337.750i) q^{89} +(-104.000 - 180.133i) q^{95} +214.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{5} - 40 q^{11} - 24 q^{13} - 58 q^{17} - 26 q^{19} - 64 q^{23} + 61 q^{25} + 124 q^{29} - 252 q^{31} - 26 q^{37} - 12 q^{41} + 832 q^{43} - 396 q^{47} - 450 q^{53} + 640 q^{55} + 274 q^{59} + 576 q^{61}+ \cdots + 428 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −4.00000 + 6.92820i −0.357771 + 0.619677i −0.987588 0.157066i \(-0.949796\pi\)
0.629817 + 0.776743i \(0.283130\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −20.0000 34.6410i −0.548202 0.949514i −0.998398 0.0565844i \(-0.981979\pi\)
0.450195 0.892930i \(-0.351354\pi\)
\(12\) 0 0
\(13\) −12.0000 −0.256015 −0.128008 0.991773i \(-0.540858\pi\)
−0.128008 + 0.991773i \(0.540858\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −29.0000 50.2295i −0.413737 0.716614i 0.581558 0.813505i \(-0.302443\pi\)
−0.995295 + 0.0968912i \(0.969110\pi\)
\(18\) 0 0
\(19\) −13.0000 + 22.5167i −0.156969 + 0.271878i −0.933774 0.357863i \(-0.883505\pi\)
0.776805 + 0.629741i \(0.216839\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −32.0000 + 55.4256i −0.290107 + 0.502480i −0.973835 0.227257i \(-0.927024\pi\)
0.683728 + 0.729737i \(0.260358\pi\)
\(24\) 0 0
\(25\) 30.5000 + 52.8275i 0.244000 + 0.422620i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 62.0000 0.397004 0.198502 0.980101i \(-0.436392\pi\)
0.198502 + 0.980101i \(0.436392\pi\)
\(30\) 0 0
\(31\) −126.000 218.238i −0.730009 1.26441i −0.956879 0.290487i \(-0.906183\pi\)
0.226870 0.973925i \(-0.427151\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −13.0000 + 22.5167i −0.0577618 + 0.100046i −0.893460 0.449142i \(-0.851730\pi\)
0.835699 + 0.549188i \(0.185063\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.00000 −0.0228547 −0.0114273 0.999935i \(-0.503638\pi\)
−0.0114273 + 0.999935i \(0.503638\pi\)
\(42\) 0 0
\(43\) 416.000 1.47534 0.737668 0.675164i \(-0.235927\pi\)
0.737668 + 0.675164i \(0.235927\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −198.000 + 342.946i −0.614495 + 1.06434i 0.375978 + 0.926629i \(0.377307\pi\)
−0.990473 + 0.137708i \(0.956026\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −225.000 389.711i −0.583134 1.01002i −0.995105 0.0988214i \(-0.968493\pi\)
0.411971 0.911197i \(-0.364841\pi\)
\(54\) 0 0
\(55\) 320.000 0.784523
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 137.000 + 237.291i 0.302303 + 0.523604i 0.976657 0.214804i \(-0.0689112\pi\)
−0.674354 + 0.738408i \(0.735578\pi\)
\(60\) 0 0
\(61\) 288.000 498.831i 0.604502 1.04703i −0.387628 0.921816i \(-0.626705\pi\)
0.992130 0.125212i \(-0.0399612\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 48.0000 83.1384i 0.0915949 0.158647i
\(66\) 0 0
\(67\) 238.000 + 412.228i 0.433975 + 0.751667i 0.997211 0.0746290i \(-0.0237773\pi\)
−0.563236 + 0.826296i \(0.690444\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 448.000 0.748843 0.374421 0.927259i \(-0.377841\pi\)
0.374421 + 0.927259i \(0.377841\pi\)
\(72\) 0 0
\(73\) 79.0000 + 136.832i 0.126661 + 0.219383i 0.922381 0.386281i \(-0.126241\pi\)
−0.795720 + 0.605665i \(0.792907\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 468.000 810.600i 0.666508 1.15443i −0.312366 0.949962i \(-0.601122\pi\)
0.978874 0.204464i \(-0.0655450\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −530.000 −0.700904 −0.350452 0.936581i \(-0.613972\pi\)
−0.350452 + 0.936581i \(0.613972\pi\)
\(84\) 0 0
\(85\) 464.000 0.592093
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −195.000 + 337.750i −0.232247 + 0.402263i −0.958469 0.285197i \(-0.907941\pi\)
0.726222 + 0.687460i \(0.241274\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −104.000 180.133i −0.112318 0.194540i
\(96\) 0 0
\(97\) 214.000 0.224004 0.112002 0.993708i \(-0.464274\pi\)
0.112002 + 0.993708i \(0.464274\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 716.000 + 1240.15i 0.705393 + 1.22178i 0.966550 + 0.256480i \(0.0825627\pi\)
−0.261157 + 0.965296i \(0.584104\pi\)
\(102\) 0 0
\(103\) −382.000 + 661.643i −0.365433 + 0.632948i −0.988846 0.148945i \(-0.952412\pi\)
0.623413 + 0.781893i \(0.285746\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 162.000 280.592i 0.146366 0.253513i −0.783516 0.621372i \(-0.786576\pi\)
0.929882 + 0.367859i \(0.119909\pi\)
\(108\) 0 0
\(109\) 667.000 + 1155.28i 0.586119 + 1.01519i 0.994735 + 0.102482i \(0.0326784\pi\)
−0.408615 + 0.912707i \(0.633988\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1798.00 −1.49683 −0.748414 0.663232i \(-0.769184\pi\)
−0.748414 + 0.663232i \(0.769184\pi\)
\(114\) 0 0
\(115\) −256.000 443.405i −0.207584 0.359545i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −134.500 + 232.961i −0.101052 + 0.175027i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1488.00 −1.06473
\(126\) 0 0
\(127\) −384.000 −0.268303 −0.134152 0.990961i \(-0.542831\pi\)
−0.134152 + 0.990961i \(0.542831\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −907.000 + 1570.97i −0.604923 + 1.04776i 0.387140 + 0.922021i \(0.373463\pi\)
−0.992064 + 0.125737i \(0.959870\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 833.000 + 1442.80i 0.519474 + 0.899756i 0.999744 + 0.0226350i \(0.00720557\pi\)
−0.480269 + 0.877121i \(0.659461\pi\)
\(138\) 0 0
\(139\) 1126.00 0.687094 0.343547 0.939135i \(-0.388372\pi\)
0.343547 + 0.939135i \(0.388372\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 240.000 + 415.692i 0.140348 + 0.243090i
\(144\) 0 0
\(145\) −248.000 + 429.549i −0.142036 + 0.246014i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1347.00 2333.07i 0.740608 1.28277i −0.211611 0.977354i \(-0.567871\pi\)
0.952219 0.305416i \(-0.0987956\pi\)
\(150\) 0 0
\(151\) 1324.00 + 2293.24i 0.713547 + 1.23590i 0.963517 + 0.267646i \(0.0862458\pi\)
−0.249970 + 0.968253i \(0.580421\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2016.00 1.04470
\(156\) 0 0
\(157\) 278.000 + 481.510i 0.141317 + 0.244769i 0.927993 0.372598i \(-0.121533\pi\)
−0.786676 + 0.617367i \(0.788200\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 164.000 284.056i 0.0788066 0.136497i −0.823929 0.566693i \(-0.808222\pi\)
0.902735 + 0.430196i \(0.141556\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4268.00 1.97765 0.988826 0.149077i \(-0.0476302\pi\)
0.988826 + 0.149077i \(0.0476302\pi\)
\(168\) 0 0
\(169\) −2053.00 −0.934456
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1738.00 + 3010.30i −0.763802 + 1.32294i 0.177076 + 0.984197i \(0.443336\pi\)
−0.940878 + 0.338746i \(0.889997\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1134.00 + 1964.15i 0.473515 + 0.820152i 0.999540 0.0303171i \(-0.00965173\pi\)
−0.526026 + 0.850469i \(0.676318\pi\)
\(180\) 0 0
\(181\) −276.000 −0.113342 −0.0566710 0.998393i \(-0.518049\pi\)
−0.0566710 + 0.998393i \(0.518049\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −104.000 180.133i −0.0413310 0.0715874i
\(186\) 0 0
\(187\) −1160.00 + 2009.18i −0.453624 + 0.785699i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1500.00 + 2598.08i −0.568252 + 0.984242i 0.428487 + 0.903548i \(0.359047\pi\)
−0.996739 + 0.0806937i \(0.974286\pi\)
\(192\) 0 0
\(193\) −1639.00 2838.83i −0.611284 1.05877i −0.991024 0.133682i \(-0.957320\pi\)
0.379740 0.925093i \(-0.376013\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2362.00 0.854241 0.427121 0.904195i \(-0.359528\pi\)
0.427121 + 0.904195i \(0.359528\pi\)
\(198\) 0 0
\(199\) 518.000 + 897.202i 0.184523 + 0.319603i 0.943416 0.331613i \(-0.107593\pi\)
−0.758893 + 0.651216i \(0.774259\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 24.0000 41.5692i 0.00817674 0.0141625i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1040.00 0.344202
\(210\) 0 0
\(211\) 3524.00 1.14977 0.574887 0.818233i \(-0.305046\pi\)
0.574887 + 0.818233i \(0.305046\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1664.00 + 2882.13i −0.527832 + 0.914232i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 348.000 + 602.754i 0.105923 + 0.183464i
\(222\) 0 0
\(223\) −1336.00 −0.401189 −0.200595 0.979674i \(-0.564287\pi\)
−0.200595 + 0.979674i \(0.564287\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 645.000 + 1117.17i 0.188591 + 0.326649i 0.944781 0.327703i \(-0.106275\pi\)
−0.756190 + 0.654352i \(0.772941\pi\)
\(228\) 0 0
\(229\) −2762.00 + 4783.92i −0.797022 + 1.38048i 0.124525 + 0.992216i \(0.460259\pi\)
−0.921547 + 0.388267i \(0.873074\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3157.00 5468.08i 0.887648 1.53745i 0.0449994 0.998987i \(-0.485671\pi\)
0.842648 0.538464i \(-0.180995\pi\)
\(234\) 0 0
\(235\) −1584.00 2743.57i −0.439697 0.761577i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3960.00 1.07176 0.535881 0.844294i \(-0.319980\pi\)
0.535881 + 0.844294i \(0.319980\pi\)
\(240\) 0 0
\(241\) 3509.00 + 6077.77i 0.937903 + 1.62450i 0.769374 + 0.638798i \(0.220568\pi\)
0.168529 + 0.985697i \(0.446098\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 156.000 270.200i 0.0401864 0.0696049i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2394.00 0.602024 0.301012 0.953620i \(-0.402676\pi\)
0.301012 + 0.953620i \(0.402676\pi\)
\(252\) 0 0
\(253\) 2560.00 0.636149
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1383.00 + 2395.43i −0.335678 + 0.581411i −0.983615 0.180283i \(-0.942299\pi\)
0.647937 + 0.761694i \(0.275632\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3984.00 + 6900.49i 0.934084 + 1.61788i 0.776260 + 0.630413i \(0.217114\pi\)
0.157823 + 0.987467i \(0.449552\pi\)
\(264\) 0 0
\(265\) 3600.00 0.834514
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1450.00 2511.47i −0.328654 0.569246i 0.653591 0.756848i \(-0.273262\pi\)
−0.982245 + 0.187602i \(0.939928\pi\)
\(270\) 0 0
\(271\) −1320.00 + 2286.31i −0.295883 + 0.512484i −0.975190 0.221370i \(-0.928947\pi\)
0.679307 + 0.733854i \(0.262281\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1220.00 2113.10i 0.267523 0.463363i
\(276\) 0 0
\(277\) 761.000 + 1318.09i 0.165069 + 0.285908i 0.936680 0.350187i \(-0.113882\pi\)
−0.771611 + 0.636095i \(0.780549\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4534.00 0.962547 0.481274 0.876570i \(-0.340174\pi\)
0.481274 + 0.876570i \(0.340174\pi\)
\(282\) 0 0
\(283\) −2417.00 4186.37i −0.507688 0.879342i −0.999960 0.00890034i \(-0.997167\pi\)
0.492272 0.870441i \(-0.336166\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 774.500 1341.47i 0.157643 0.273046i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4656.00 0.928350 0.464175 0.885744i \(-0.346351\pi\)
0.464175 + 0.885744i \(0.346351\pi\)
\(294\) 0 0
\(295\) −2192.00 −0.432621
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 384.000 665.108i 0.0742719 0.128643i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2304.00 + 3990.65i 0.432546 + 0.749192i
\(306\) 0 0
\(307\) −7238.00 −1.34558 −0.672792 0.739831i \(-0.734905\pi\)
−0.672792 + 0.739831i \(0.734905\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 548.000 + 949.164i 0.0999171 + 0.173062i 0.911650 0.410967i \(-0.134809\pi\)
−0.811733 + 0.584029i \(0.801476\pi\)
\(312\) 0 0
\(313\) 1909.00 3306.48i 0.344738 0.597104i −0.640568 0.767901i \(-0.721301\pi\)
0.985306 + 0.170797i \(0.0546344\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 999.000 1730.32i 0.177001 0.306575i −0.763851 0.645393i \(-0.776694\pi\)
0.940852 + 0.338818i \(0.110027\pi\)
\(318\) 0 0
\(319\) −1240.00 2147.74i −0.217638 0.376961i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1508.00 0.259775
\(324\) 0 0
\(325\) −366.000 633.931i −0.0624678 0.108197i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 3968.00 6872.78i 0.658915 1.14127i −0.321981 0.946746i \(-0.604349\pi\)
0.980897 0.194529i \(-0.0623178\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3808.00 −0.621055
\(336\) 0 0
\(337\) 2766.00 0.447103 0.223551 0.974692i \(-0.428235\pi\)
0.223551 + 0.974692i \(0.428235\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −5040.00 + 8729.54i −0.800385 + 1.38631i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4176.00 + 7233.04i 0.646050 + 1.11899i 0.984058 + 0.177848i \(0.0569137\pi\)
−0.338008 + 0.941143i \(0.609753\pi\)
\(348\) 0 0
\(349\) −5924.00 −0.908609 −0.454304 0.890847i \(-0.650112\pi\)
−0.454304 + 0.890847i \(0.650112\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1113.00 + 1927.77i 0.167816 + 0.290666i 0.937652 0.347576i \(-0.112995\pi\)
−0.769836 + 0.638242i \(0.779662\pi\)
\(354\) 0 0
\(355\) −1792.00 + 3103.84i −0.267914 + 0.464041i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1940.00 3360.18i 0.285207 0.493993i −0.687452 0.726229i \(-0.741271\pi\)
0.972659 + 0.232237i \(0.0746043\pi\)
\(360\) 0 0
\(361\) 3091.50 + 5354.64i 0.450722 + 0.780673i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1264.00 −0.181262
\(366\) 0 0
\(367\) 1292.00 + 2237.81i 0.183765 + 0.318291i 0.943160 0.332340i \(-0.107838\pi\)
−0.759394 + 0.650630i \(0.774505\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −5267.00 + 9122.71i −0.731139 + 1.26637i 0.225257 + 0.974299i \(0.427678\pi\)
−0.956397 + 0.292071i \(0.905656\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −744.000 −0.101639
\(378\) 0 0
\(379\) −4472.00 −0.606098 −0.303049 0.952975i \(-0.598005\pi\)
−0.303049 + 0.952975i \(0.598005\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1234.00 2137.35i 0.164633 0.285153i −0.771892 0.635754i \(-0.780689\pi\)
0.936525 + 0.350601i \(0.114023\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −523.000 905.863i −0.0681675 0.118070i 0.829927 0.557872i \(-0.188382\pi\)
−0.898095 + 0.439802i \(0.855049\pi\)
\(390\) 0 0
\(391\) 3712.00 0.480112
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3744.00 + 6484.80i 0.476914 + 0.826040i
\(396\) 0 0
\(397\) −1062.00 + 1839.44i −0.134258 + 0.232541i −0.925314 0.379203i \(-0.876198\pi\)
0.791056 + 0.611744i \(0.209532\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5799.00 10044.2i 0.722165 1.25083i −0.237965 0.971274i \(-0.576480\pi\)
0.960130 0.279553i \(-0.0901863\pi\)
\(402\) 0 0
\(403\) 1512.00 + 2618.86i 0.186894 + 0.323709i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1040.00 0.126661
\(408\) 0 0
\(409\) 1385.00 + 2398.89i 0.167442 + 0.290018i 0.937520 0.347932i \(-0.113116\pi\)
−0.770078 + 0.637950i \(0.779783\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 2120.00 3671.95i 0.250763 0.434335i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −9438.00 −1.10042 −0.550211 0.835026i \(-0.685453\pi\)
−0.550211 + 0.835026i \(0.685453\pi\)
\(420\) 0 0
\(421\) 5550.00 0.642495 0.321248 0.946995i \(-0.395898\pi\)
0.321248 + 0.946995i \(0.395898\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1769.00 3064.00i 0.201904 0.349708i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1500.00 2598.08i −0.167639 0.290359i 0.769950 0.638104i \(-0.220281\pi\)
−0.937589 + 0.347744i \(0.886948\pi\)
\(432\) 0 0
\(433\) 12926.0 1.43460 0.717302 0.696762i \(-0.245377\pi\)
0.717302 + 0.696762i \(0.245377\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −832.000 1441.07i −0.0910754 0.157747i
\(438\) 0 0
\(439\) 204.000 353.338i 0.0221786 0.0384144i −0.854723 0.519084i \(-0.826273\pi\)
0.876902 + 0.480670i \(0.159606\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −7226.00 + 12515.8i −0.774983 + 1.34231i 0.159821 + 0.987146i \(0.448908\pi\)
−0.934804 + 0.355164i \(0.884425\pi\)
\(444\) 0 0
\(445\) −1560.00 2702.00i −0.166182 0.287836i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −10258.0 −1.07818 −0.539092 0.842247i \(-0.681233\pi\)
−0.539092 + 0.842247i \(0.681233\pi\)
\(450\) 0 0
\(451\) 120.000 + 207.846i 0.0125290 + 0.0217009i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2749.00 4761.41i 0.281385 0.487373i −0.690341 0.723484i \(-0.742540\pi\)
0.971726 + 0.236111i \(0.0758730\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 16316.0 1.64840 0.824199 0.566300i \(-0.191625\pi\)
0.824199 + 0.566300i \(0.191625\pi\)
\(462\) 0 0
\(463\) 8944.00 0.897760 0.448880 0.893592i \(-0.351823\pi\)
0.448880 + 0.893592i \(0.351823\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4711.00 + 8159.69i −0.466807 + 0.808534i −0.999281 0.0379124i \(-0.987929\pi\)
0.532474 + 0.846447i \(0.321263\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −8320.00 14410.7i −0.808782 1.40085i
\(474\) 0 0
\(475\) −1586.00 −0.153201
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6910.00 + 11968.5i 0.659136 + 1.14166i 0.980840 + 0.194816i \(0.0624110\pi\)
−0.321704 + 0.946840i \(0.604256\pi\)
\(480\) 0 0
\(481\) 156.000 270.200i 0.0147879 0.0256134i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −856.000 + 1482.64i −0.0801422 + 0.138810i
\(486\) 0 0
\(487\) 6632.00 + 11487.0i 0.617094 + 1.06884i 0.990013 + 0.140974i \(0.0450234\pi\)
−0.372920 + 0.927864i \(0.621643\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 5940.00 0.545964 0.272982 0.962019i \(-0.411990\pi\)
0.272982 + 0.962019i \(0.411990\pi\)
\(492\) 0 0
\(493\) −1798.00 3114.23i −0.164255 0.284498i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4126.00 7146.44i 0.370151 0.641120i −0.619438 0.785046i \(-0.712639\pi\)
0.989588 + 0.143926i \(0.0459728\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −4704.00 −0.416980 −0.208490 0.978024i \(-0.566855\pi\)
−0.208490 + 0.978024i \(0.566855\pi\)
\(504\) 0 0
\(505\) −11456.0 −1.00948
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −5394.00 + 9342.68i −0.469715 + 0.813570i −0.999400 0.0346241i \(-0.988977\pi\)
0.529686 + 0.848194i \(0.322310\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3056.00 5293.15i −0.261482 0.452901i
\(516\) 0 0
\(517\) 15840.0 1.34747
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7293.00 12631.8i −0.613267 1.06221i −0.990686 0.136167i \(-0.956522\pi\)
0.377419 0.926043i \(-0.376812\pi\)
\(522\) 0 0
\(523\) −13.0000 + 22.5167i −0.00108690 + 0.00188257i −0.866568 0.499058i \(-0.833679\pi\)
0.865481 + 0.500941i \(0.167013\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7308.00 + 12657.8i −0.604064 + 1.04627i
\(528\) 0 0
\(529\) 4035.50 + 6989.69i 0.331676 + 0.574479i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 72.0000 0.00585116
\(534\) 0 0
\(535\) 1296.00 + 2244.74i 0.104731 + 0.181399i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −5607.00 + 9711.61i −0.445589 + 0.771783i −0.998093 0.0617272i \(-0.980339\pi\)
0.552504 + 0.833510i \(0.313672\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −10672.0 −0.838786
\(546\) 0 0
\(547\) −5424.00 −0.423973 −0.211987 0.977273i \(-0.567993\pi\)
−0.211987 + 0.977273i \(0.567993\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −806.000 + 1396.03i −0.0623172 + 0.107936i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8809.00 15257.6i −0.670106 1.16066i −0.977874 0.209197i \(-0.932915\pi\)
0.307767 0.951462i \(-0.400418\pi\)
\(558\) 0 0
\(559\) −4992.00 −0.377709
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1781.00 3084.78i −0.133322 0.230920i 0.791633 0.610997i \(-0.209231\pi\)
−0.924955 + 0.380076i \(0.875898\pi\)
\(564\) 0 0
\(565\) 7192.00 12456.9i 0.535522 0.927551i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1419.00 2457.78i 0.104548 0.181082i −0.809006 0.587801i \(-0.799994\pi\)
0.913553 + 0.406719i \(0.133327\pi\)
\(570\) 0 0
\(571\) 180.000 + 311.769i 0.0131922 + 0.0228496i 0.872546 0.488532i \(-0.162467\pi\)
−0.859354 + 0.511381i \(0.829134\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3904.00 −0.283144
\(576\) 0 0
\(577\) −11009.0 19068.1i −0.794299 1.37577i −0.923283 0.384120i \(-0.874505\pi\)
0.128984 0.991647i \(-0.458828\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −9000.00 + 15588.5i −0.639351 + 1.10739i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1454.00 −0.102237 −0.0511184 0.998693i \(-0.516279\pi\)
−0.0511184 + 0.998693i \(0.516279\pi\)
\(588\) 0 0
\(589\) 6552.00 0.458354
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6909.00 11966.7i 0.478446 0.828693i −0.521248 0.853405i \(-0.674533\pi\)
0.999695 + 0.0247118i \(0.00786682\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3348.00 + 5798.91i 0.228373 + 0.395554i 0.957326 0.289010i \(-0.0933260\pi\)
−0.728953 + 0.684564i \(0.759993\pi\)
\(600\) 0 0
\(601\) 10010.0 0.679395 0.339698 0.940535i \(-0.389675\pi\)
0.339698 + 0.940535i \(0.389675\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1076.00 1863.69i −0.0723068 0.125239i
\(606\) 0 0
\(607\) −1440.00 + 2494.15i −0.0962896 + 0.166779i −0.910146 0.414287i \(-0.864031\pi\)
0.813856 + 0.581066i \(0.197364\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2376.00 4115.35i 0.157320 0.272487i
\(612\) 0 0
\(613\) −3261.00 5648.22i −0.214862 0.372152i 0.738368 0.674398i \(-0.235597\pi\)
−0.953230 + 0.302246i \(0.902264\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6614.00 −0.431555 −0.215778 0.976443i \(-0.569229\pi\)
−0.215778 + 0.976443i \(0.569229\pi\)
\(618\) 0 0
\(619\) −2633.00 4560.49i −0.170968 0.296125i 0.767791 0.640701i \(-0.221356\pi\)
−0.938759 + 0.344576i \(0.888023\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 2139.50 3705.72i 0.136928 0.237166i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1508.00 0.0955928
\(630\) 0 0
\(631\) 3344.00 0.210971 0.105485 0.994421i \(-0.466360\pi\)
0.105485 + 0.994421i \(0.466360\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1536.00 2660.43i 0.0959910 0.166261i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2441.00 4227.94i −0.150411 0.260520i 0.780967 0.624572i \(-0.214726\pi\)
−0.931379 + 0.364052i \(0.881393\pi\)
\(642\) 0 0
\(643\) −15898.0 −0.975048 −0.487524 0.873110i \(-0.662100\pi\)
−0.487524 + 0.873110i \(0.662100\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3066.00 + 5310.47i 0.186301 + 0.322683i 0.944014 0.329905i \(-0.107017\pi\)
−0.757713 + 0.652588i \(0.773683\pi\)
\(648\) 0 0
\(649\) 5480.00 9491.64i 0.331447 0.574082i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12099.0 + 20956.1i −0.725070 + 1.25586i 0.233876 + 0.972266i \(0.424859\pi\)
−0.958945 + 0.283591i \(0.908474\pi\)
\(654\) 0 0
\(655\) −7256.00 12567.8i −0.432848 0.749715i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −17456.0 −1.03185 −0.515925 0.856634i \(-0.672552\pi\)
−0.515925 + 0.856634i \(0.672552\pi\)
\(660\) 0 0
\(661\) 328.000 + 568.113i 0.0193006 + 0.0334297i 0.875514 0.483192i \(-0.160523\pi\)
−0.856214 + 0.516622i \(0.827189\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1984.00 + 3436.39i −0.115174 + 0.199487i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −23040.0 −1.32556
\(672\) 0 0
\(673\) −18214.0 −1.04324 −0.521618 0.853179i \(-0.674671\pi\)
−0.521618 + 0.853179i \(0.674671\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 15126.0 26199.0i 0.858699 1.48731i −0.0144709 0.999895i \(-0.504606\pi\)
0.873170 0.487415i \(-0.162060\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −5418.00 9384.25i −0.303534 0.525737i 0.673400 0.739279i \(-0.264833\pi\)
−0.976934 + 0.213542i \(0.931500\pi\)
\(684\) 0 0
\(685\) −13328.0 −0.743411
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2700.00 + 4676.54i 0.149291 + 0.258580i
\(690\) 0 0
\(691\) −4789.00 + 8294.79i −0.263650 + 0.456655i −0.967209 0.253982i \(-0.918260\pi\)
0.703559 + 0.710637i \(0.251593\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4504.00 + 7801.16i −0.245822 + 0.425777i
\(696\) 0 0
\(697\) 174.000 + 301.377i 0.00945584 + 0.0163780i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −12442.0 −0.670368 −0.335184 0.942153i \(-0.608798\pi\)
−0.335184 + 0.942153i \(0.608798\pi\)
\(702\) 0 0
\(703\) −338.000 585.433i −0.0181336 0.0314083i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 12587.0 21801.3i 0.666734 1.15482i −0.312078 0.950057i \(-0.601025\pi\)
0.978812 0.204761i \(-0.0656418\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 16128.0 0.847123
\(714\) 0 0
\(715\) −3840.00 −0.200850
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 17094.0 29607.7i 0.886646 1.53572i 0.0428311 0.999082i \(-0.486362\pi\)
0.843815 0.536634i \(-0.180304\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1891.00 + 3275.31i 0.0968689 + 0.167782i
\(726\) 0 0
\(727\) −5204.00 −0.265482 −0.132741 0.991151i \(-0.542378\pi\)
−0.132741 + 0.991151i \(0.542378\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −12064.0 20895.5i −0.610401 1.05725i
\(732\) 0 0
\(733\) 16440.0 28474.9i 0.828411 1.43485i −0.0708733 0.997485i \(-0.522579\pi\)
0.899284 0.437365i \(-0.144088\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9520.00 16489.1i 0.475812 0.824131i
\(738\) 0 0
\(739\) 1956.00 + 3387.89i 0.0973648 + 0.168641i 0.910593 0.413304i \(-0.135625\pi\)
−0.813228 + 0.581945i \(0.802292\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 16008.0 0.790413 0.395206 0.918592i \(-0.370673\pi\)
0.395206 + 0.918592i \(0.370673\pi\)
\(744\) 0 0
\(745\) 10776.0 + 18664.6i 0.529936 + 0.917876i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −4980.00 + 8625.61i −0.241974 + 0.419112i −0.961277 0.275585i \(-0.911128\pi\)
0.719302 + 0.694697i \(0.244462\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −21184.0 −1.02115
\(756\) 0 0
\(757\) 12378.0 0.594301 0.297151 0.954831i \(-0.403964\pi\)
0.297151 + 0.954831i \(0.403964\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 17335.0 30025.1i 0.825747 1.43024i −0.0756005 0.997138i \(-0.524087\pi\)
0.901347 0.433097i \(-0.142579\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1644.00 2847.49i −0.0773943 0.134051i
\(768\) 0 0
\(769\) −10898.0 −0.511043 −0.255521 0.966803i \(-0.582247\pi\)
−0.255521 + 0.966803i \(0.582247\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −12904.0 22350.4i −0.600420 1.03996i −0.992757 0.120136i \(-0.961667\pi\)
0.392337 0.919821i \(-0.371667\pi\)
\(774\) 0 0
\(775\) 7686.00 13312.5i 0.356244 0.617033i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 78.0000 135.100i 0.00358747 0.00621368i
\(780\) 0 0
\(781\) −8960.00 15519.2i −0.410517 0.711037i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4448.00 −0.202237
\(786\) 0 0
\(787\) 10527.0 + 18233.3i 0.476807 + 0.825854i 0.999647 0.0265772i \(-0.00846077\pi\)
−0.522840 + 0.852431i \(0.675127\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −3456.00 + 5985.97i −0.154762 + 0.268055i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 24276.0