Properties

Label 1764.3.d.h
Level $1764$
Weight $3$
Character orbit 1764.d
Analytic conductor $48.066$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1764.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(48.0655186332\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.339738624.1
Defining polynomial: \(x^{8} - 4 x^{6} + 14 x^{4} - 8 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 588)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( \beta_{2} + \beta_{3} ) q^{5} +O(q^{10})\) \( q + ( \beta_{2} + \beta_{3} ) q^{5} + ( -\beta_{1} + \beta_{4} ) q^{11} + ( \beta_{2} + 4 \beta_{3} - 2 \beta_{5} ) q^{13} + ( 3 \beta_{2} - 3 \beta_{3} - 2 \beta_{6} ) q^{17} + ( -2 \beta_{2} - 2 \beta_{3} - \beta_{5} + 4 \beta_{6} ) q^{19} + ( 2 + 9 \beta_{1} - \beta_{4} + \beta_{7} ) q^{23} + ( 9 - \beta_{1} - 2 \beta_{4} ) q^{25} + ( -10 + 5 \beta_{1} + \beta_{4} + 3 \beta_{7} ) q^{29} + ( 4 \beta_{2} + 14 \beta_{3} + 3 \beta_{5} + 2 \beta_{6} ) q^{31} + ( 16 + 9 \beta_{1} + 6 \beta_{4} - 2 \beta_{7} ) q^{37} + ( 7 \beta_{2} - 13 \beta_{3} - 5 \beta_{5} + 7 \beta_{6} ) q^{41} + ( -14 + 8 \beta_{1} - 2 \beta_{4} - 4 \beta_{7} ) q^{43} + ( -8 \beta_{2} + 2 \beta_{3} + 7 \beta_{5} - 11 \beta_{6} ) q^{47} + ( 18 + 26 \beta_{1} + 6 \beta_{4} - 2 \beta_{7} ) q^{53} + ( 6 \beta_{2} + 10 \beta_{3} - \beta_{5} ) q^{55} + ( 12 \beta_{2} - 22 \beta_{3} + 5 \beta_{5} - 7 \beta_{6} ) q^{59} + ( 5 \beta_{2} - 14 \beta_{3} + 8 \beta_{5} + 6 \beta_{6} ) q^{61} + ( -30 + 19 \beta_{1} - 5 \beta_{4} + 2 \beta_{7} ) q^{65} + ( -8 + 12 \beta_{1} - 6 \beta_{4} - 2 \beta_{7} ) q^{67} + ( -28 - 43 \beta_{1} - \beta_{4} + 4 \beta_{7} ) q^{71} + ( 15 \beta_{2} + 6 \beta_{3} - 8 \beta_{5} + 14 \beta_{6} ) q^{73} + ( -54 + 28 \beta_{1} - 4 \beta_{4} ) q^{79} + ( 6 \beta_{2} - 6 \beta_{3} - 14 \beta_{5} - 8 \beta_{6} ) q^{83} + ( -12 - 15 \beta_{1} - 2 \beta_{7} ) q^{85} + ( 11 \beta_{2} + 23 \beta_{3} + 16 \beta_{5} + 4 \beta_{6} ) q^{89} + ( 34 + 36 \beta_{1} + 4 \beta_{4} + 5 \beta_{7} ) q^{95} + ( -3 \beta_{2} + 10 \beta_{3} - 4 \beta_{5} - 14 \beta_{6} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + O(q^{10}) \) \( 8q + 16q^{23} + 72q^{25} - 80q^{29} + 128q^{37} - 112q^{43} + 144q^{53} - 240q^{65} - 64q^{67} - 224q^{71} - 432q^{79} - 96q^{85} + 272q^{95} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} - 4 x^{6} + 14 x^{4} - 8 x^{2} + 4\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{6} + 20 \)\()/14\)
\(\beta_{2}\)\(=\)\((\)\( 10 \nu^{7} - 35 \nu^{5} + 126 \nu^{3} - 10 \nu \)\()/14\)
\(\beta_{3}\)\(=\)\((\)\( -\nu^{6} + 4 \nu^{4} - 12 \nu^{2} + 4 \)\()/2\)
\(\beta_{4}\)\(=\)\((\)\( 5 \nu^{7} - 28 \nu^{5} + 91 \nu^{3} - 96 \nu \)\()/7\)
\(\beta_{5}\)\(=\)\((\)\( 8 \nu^{7} - 28 \nu^{5} + 91 \nu^{3} - 8 \nu \)\()/7\)
\(\beta_{6}\)\(=\)\((\)\( 4 \nu^{6} - 14 \nu^{4} + 56 \nu^{2} - 18 \)\()/7\)
\(\beta_{7}\)\(=\)\((\)\( 8 \nu^{7} - 35 \nu^{5} + 126 \nu^{3} - 134 \nu \)\()/7\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(-3 \beta_{7} - 2 \beta_{5} + 2 \beta_{4} + 6 \beta_{2}\)\()/28\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{6} + \beta_{3} - \beta_{1} + 2\)\()/2\)
\(\nu^{3}\)\(=\)\((\)\(-5 \beta_{5} + 8 \beta_{2}\)\()/7\)
\(\nu^{4}\)\(=\)\((\)\(3 \beta_{6} + 4 \beta_{3} + 4 \beta_{1} - 6\)\()/2\)
\(\nu^{5}\)\(=\)\((\)\(13 \beta_{7} - 18 \beta_{5} - 18 \beta_{4} + 26 \beta_{2}\)\()/14\)
\(\nu^{6}\)\(=\)\(14 \beta_{1} - 20\)
\(\nu^{7}\)\(=\)\((\)\(22 \beta_{7} + 31 \beta_{5} - 31 \beta_{4} - 44 \beta_{2}\)\()/7\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
685.1
−0.662827 0.382683i
1.60021 0.923880i
0.662827 0.382683i
−1.60021 0.923880i
−1.60021 + 0.923880i
0.662827 + 0.382683i
1.60021 + 0.923880i
−0.662827 + 0.382683i
0 0 0 5.82798i 0 0 0 0 0
685.2 0 0 0 5.37964i 0 0 0 0 0
685.3 0 0 0 0.929003i 0 0 0 0 0
685.4 0 0 0 0.480662i 0 0 0 0 0
685.5 0 0 0 0.480662i 0 0 0 0 0
685.6 0 0 0 0.929003i 0 0 0 0 0
685.7 0 0 0 5.37964i 0 0 0 0 0
685.8 0 0 0 5.82798i 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 685.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1764.3.d.h 8
3.b odd 2 1 588.3.d.c 8
7.b odd 2 1 inner 1764.3.d.h 8
7.c even 3 1 1764.3.z.l 8
7.c even 3 1 1764.3.z.m 8
7.d odd 6 1 1764.3.z.l 8
7.d odd 6 1 1764.3.z.m 8
12.b even 2 1 2352.3.f.j 8
21.c even 2 1 588.3.d.c 8
21.g even 6 1 588.3.m.e 8
21.g even 6 1 588.3.m.f 8
21.h odd 6 1 588.3.m.e 8
21.h odd 6 1 588.3.m.f 8
84.h odd 2 1 2352.3.f.j 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
588.3.d.c 8 3.b odd 2 1
588.3.d.c 8 21.c even 2 1
588.3.m.e 8 21.g even 6 1
588.3.m.e 8 21.h odd 6 1
588.3.m.f 8 21.g even 6 1
588.3.m.f 8 21.h odd 6 1
1764.3.d.h 8 1.a even 1 1 trivial
1764.3.d.h 8 7.b odd 2 1 inner
1764.3.z.l 8 7.c even 3 1
1764.3.z.l 8 7.d odd 6 1
1764.3.z.m 8 7.c even 3 1
1764.3.z.m 8 7.d odd 6 1
2352.3.f.j 8 12.b even 2 1
2352.3.f.j 8 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1764, [\chi])\):

\( T_{5}^{8} + 64 T_{5}^{6} + 1052 T_{5}^{4} + 1088 T_{5}^{2} + 196 \)
\( T_{11}^{4} - 124 T_{11}^{2} + 48 T_{11} + 3292 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \)
$3$ \( T^{8} \)
$5$ \( 196 + 1088 T^{2} + 1052 T^{4} + 64 T^{6} + T^{8} \)
$7$ \( T^{8} \)
$11$ \( ( 3292 + 48 T - 124 T^{2} + T^{4} )^{2} \)
$13$ \( 2979076 + 1723280 T^{2} + 123284 T^{4} + 712 T^{6} + T^{8} \)
$17$ \( 168428484 + 9208512 T^{2} + 142236 T^{4} + 768 T^{6} + T^{8} \)
$19$ \( 285745216 + 13750144 T^{2} + 215120 T^{4} + 1136 T^{6} + T^{8} \)
$23$ \( ( -37988 + 9856 T - 612 T^{2} - 8 T^{3} + T^{4} )^{2} \)
$29$ \( ( 468892 - 65440 T - 1924 T^{2} + 40 T^{3} + T^{4} )^{2} \)
$31$ \( 2052452416 + 8799202688 T^{2} + 13249616 T^{4} + 6448 T^{6} + T^{8} \)
$37$ \( ( -546236 + 229184 T - 3492 T^{2} - 64 T^{3} + T^{4} )^{2} \)
$41$ \( 26697826996036 + 51769047200 T^{2} + 34716572 T^{4} + 9808 T^{6} + T^{8} \)
$43$ \( ( 192784 - 203168 T - 3784 T^{2} + 56 T^{3} + T^{4} )^{2} \)
$47$ \( 8881401308224 + 35468743424 T^{2} + 35126384 T^{4} + 11488 T^{6} + T^{8} \)
$53$ \( ( -8464112 + 487968 T - 5464 T^{2} - 72 T^{3} + T^{4} )^{2} \)
$59$ \( 372481662446656 + 485083751680 T^{2} + 172522352 T^{4} + 22688 T^{6} + T^{8} \)
$61$ \( 454276 + 310020368 T^{2} + 12768596 T^{4} + 13192 T^{6} + T^{8} \)
$67$ \( ( -553856 - 264448 T - 6048 T^{2} + 32 T^{3} + T^{4} )^{2} \)
$71$ \( ( -7722596 - 634384 T - 6460 T^{2} + 112 T^{3} + T^{4} )^{2} \)
$73$ \( 3712242251524 + 29259770512 T^{2} + 56366228 T^{4} + 22472 T^{6} + T^{8} \)
$79$ \( ( -7050224 + 62304 T + 12440 T^{2} + 216 T^{3} + T^{4} )^{2} \)
$83$ \( 61585579131904 + 132200402944 T^{2} + 89759168 T^{4} + 19712 T^{6} + T^{8} \)
$89$ \( 1748734585879876 + 1918328929216 T^{2} + 495721436 T^{4} + 41600 T^{6} + T^{8} \)
$97$ \( 5315948141956 + 28759544464 T^{2} + 36017108 T^{4} + 13640 T^{6} + T^{8} \)
show more
show less