# Properties

 Label 1764.2.t.c.1097.5 Level $1764$ Weight $2$ Character 1764.1097 Analytic conductor $14.086$ Analytic rank $0$ Dimension $16$ CM no Inner twists $8$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1764 = 2^{2} \cdot 3^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1764.t (of order $$6$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$14.0856109166$$ Analytic rank: $$0$$ Dimension: $$16$$ Relative dimension: $$8$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\zeta_{48})$$ Defining polynomial: $$x^{16} - x^{8} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{25}]$$ Coefficient ring index: $$2^{8}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 1097.5 Root $$0.793353 - 0.608761i$$ of defining polynomial Character $$\chi$$ $$=$$ 1764.1097 Dual form 1764.2.t.c.521.5

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.382683 - 0.662827i) q^{5} +O(q^{10})$$ $$q+(0.382683 - 0.662827i) q^{5} +(-1.73205 + 1.00000i) q^{11} -0.317025i q^{13} +(2.77164 + 4.80062i) q^{17} +(-3.20041 - 1.84776i) q^{19} +(2.74666 + 1.58579i) q^{23} +(2.20711 + 3.82282i) q^{25} +6.82843i q^{29} +(5.85172 - 3.37849i) q^{31} +(0.121320 - 0.210133i) q^{37} +2.74444 q^{41} +6.82843 q^{43} +(5.99162 - 10.3778i) q^{47} +(-10.6024 + 6.12132i) q^{53} +1.53073i q^{55} +(6.62567 + 11.4760i) q^{59} +(-3.08669 - 1.78210i) q^{61} +(-0.210133 - 0.121320i) q^{65} +(2.24264 + 3.88437i) q^{67} +9.31371i q^{71} +(10.2641 - 5.92596i) q^{73} +(5.65685 - 9.79796i) q^{79} -4.32957 q^{83} +4.24264 q^{85} +(0.831025 - 1.43938i) q^{89} +(-2.44949 + 1.41421i) q^{95} -11.8519i q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$16 q + O(q^{10})$$ $$16 q + 24 q^{25} - 32 q^{37} + 64 q^{43} - 32 q^{67} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times$$.

 $$n$$ $$785$$ $$883$$ $$1081$$ $$\chi(n)$$ $$-1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ 0.382683 0.662827i 0.171141 0.296425i −0.767678 0.640836i $$-0.778588\pi$$
0.938819 + 0.344411i $$0.111921\pi$$
$$6$$ 0 0
$$7$$ 0 0
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ −1.73205 + 1.00000i −0.522233 + 0.301511i −0.737848 0.674967i $$-0.764158\pi$$
0.215615 + 0.976478i $$0.430824\pi$$
$$12$$ 0 0
$$13$$ 0.317025i 0.0879270i −0.999033 0.0439635i $$-0.986001\pi$$
0.999033 0.0439635i $$-0.0139985\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 2.77164 + 4.80062i 0.672221 + 1.16432i 0.977273 + 0.211985i $$0.0679929\pi$$
−0.305052 + 0.952336i $$0.598674\pi$$
$$18$$ 0 0
$$19$$ −3.20041 1.84776i −0.734225 0.423905i 0.0857408 0.996317i $$-0.472674\pi$$
−0.819966 + 0.572412i $$0.806008\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 2.74666 + 1.58579i 0.572719 + 0.330659i 0.758234 0.651982i $$-0.226062\pi$$
−0.185516 + 0.982641i $$0.559396\pi$$
$$24$$ 0 0
$$25$$ 2.20711 + 3.82282i 0.441421 + 0.764564i
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ 6.82843i 1.26801i 0.773330 + 0.634004i $$0.218590\pi$$
−0.773330 + 0.634004i $$0.781410\pi$$
$$30$$ 0 0
$$31$$ 5.85172 3.37849i 1.05100 0.606795i 0.128071 0.991765i $$-0.459121\pi$$
0.922929 + 0.384970i $$0.125788\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 0.121320 0.210133i 0.0199449 0.0345457i −0.855881 0.517173i $$-0.826984\pi$$
0.875826 + 0.482628i $$0.160318\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ 2.74444 0.428610 0.214305 0.976767i $$-0.431251\pi$$
0.214305 + 0.976767i $$0.431251\pi$$
$$42$$ 0 0
$$43$$ 6.82843 1.04133 0.520663 0.853762i $$-0.325685\pi$$
0.520663 + 0.853762i $$0.325685\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 5.99162 10.3778i 0.873967 1.51376i 0.0161088 0.999870i $$-0.494872\pi$$
0.857859 0.513886i $$-0.171794\pi$$
$$48$$ 0 0
$$49$$ 0 0
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ −10.6024 + 6.12132i −1.45636 + 0.840828i −0.998830 0.0483676i $$-0.984598\pi$$
−0.457527 + 0.889196i $$0.651265\pi$$
$$54$$ 0 0
$$55$$ 1.53073i 0.206404i
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ 6.62567 + 11.4760i 0.862589 + 1.49405i 0.869422 + 0.494071i $$0.164492\pi$$
−0.00683301 + 0.999977i $$0.502175\pi$$
$$60$$ 0 0
$$61$$ −3.08669 1.78210i −0.395210 0.228175i 0.289205 0.957267i $$-0.406609\pi$$
−0.684415 + 0.729093i $$0.739942\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ −0.210133 0.121320i −0.0260638 0.0150479i
$$66$$ 0 0
$$67$$ 2.24264 + 3.88437i 0.273982 + 0.474551i 0.969878 0.243592i $$-0.0783257\pi$$
−0.695896 + 0.718143i $$0.744992\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 9.31371i 1.10533i 0.833402 + 0.552667i $$0.186390\pi$$
−0.833402 + 0.552667i $$0.813610\pi$$
$$72$$ 0 0
$$73$$ 10.2641 5.92596i 1.20132 0.693581i 0.240470 0.970657i $$-0.422699\pi$$
0.960848 + 0.277075i $$0.0893652\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 5.65685 9.79796i 0.636446 1.10236i −0.349761 0.936839i $$-0.613737\pi$$
0.986207 0.165518i $$-0.0529295\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ −4.32957 −0.475232 −0.237616 0.971359i $$-0.576366\pi$$
−0.237616 + 0.971359i $$0.576366\pi$$
$$84$$ 0 0
$$85$$ 4.24264 0.460179
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 0.831025 1.43938i 0.0880885 0.152574i −0.818615 0.574343i $$-0.805258\pi$$
0.906703 + 0.421769i $$0.138591\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ −2.44949 + 1.41421i −0.251312 + 0.145095i
$$96$$ 0 0
$$97$$ 11.8519i 1.20338i −0.798730 0.601690i $$-0.794494\pi$$
0.798730 0.601690i $$-0.205506\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ 5.92596 + 10.2641i 0.589655 + 1.02131i 0.994277 + 0.106829i $$0.0340697\pi$$
−0.404622 + 0.914484i $$0.632597\pi$$
$$102$$ 0 0
$$103$$ −7.72648 4.46088i −0.761313 0.439544i 0.0684542 0.997654i $$-0.478193\pi$$
−0.829767 + 0.558110i $$0.811527\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 6.21076 + 3.58579i 0.600417 + 0.346651i 0.769206 0.639001i $$-0.220652\pi$$
−0.168788 + 0.985652i $$0.553985\pi$$
$$108$$ 0 0
$$109$$ 5.53553 + 9.58783i 0.530208 + 0.918347i 0.999379 + 0.0352398i $$0.0112195\pi$$
−0.469171 + 0.883107i $$0.655447\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ 10.5858i 0.995827i 0.867227 + 0.497914i $$0.165900\pi$$
−0.867227 + 0.497914i $$0.834100\pi$$
$$114$$ 0 0
$$115$$ 2.10220 1.21371i 0.196032 0.113179i
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ −3.50000 + 6.06218i −0.318182 + 0.551107i
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 7.20533 0.644464
$$126$$ 0 0
$$127$$ 1.17157 0.103960 0.0519801 0.998648i $$-0.483447\pi$$
0.0519801 + 0.998648i $$0.483447\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ 8.47343 14.6764i 0.740327 1.28228i −0.212020 0.977265i $$-0.568004\pi$$
0.952346 0.305018i $$-0.0986626\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ −9.37769 + 5.41421i −0.801190 + 0.462567i −0.843887 0.536521i $$-0.819738\pi$$
0.0426968 + 0.999088i $$0.486405\pi$$
$$138$$ 0 0
$$139$$ 15.6788i 1.32985i 0.746908 + 0.664927i $$0.231538\pi$$
−0.746908 + 0.664927i $$0.768462\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 0.317025 + 0.549104i 0.0265110 + 0.0459184i
$$144$$ 0 0
$$145$$ 4.52607 + 2.61313i 0.375869 + 0.217008i
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ −6.12372 3.53553i −0.501675 0.289642i 0.227730 0.973724i $$-0.426870\pi$$
−0.729405 + 0.684082i $$0.760203\pi$$
$$150$$ 0 0
$$151$$ −5.07107 8.78335i −0.412678 0.714779i 0.582504 0.812828i $$-0.302073\pi$$
−0.995182 + 0.0980492i $$0.968740\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 5.17157i 0.415391i
$$156$$ 0 0
$$157$$ 5.34972 3.08866i 0.426954 0.246502i −0.271094 0.962553i $$-0.587385\pi$$
0.698048 + 0.716051i $$0.254052\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ −1.41421 + 2.44949i −0.110770 + 0.191859i −0.916081 0.400994i $$-0.868665\pi$$
0.805311 + 0.592852i $$0.201998\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ −2.42742 −0.187839 −0.0939196 0.995580i $$-0.529940\pi$$
−0.0939196 + 0.995580i $$0.529940\pi$$
$$168$$ 0 0
$$169$$ 12.8995 0.992269
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ −9.39731 + 16.2766i −0.714464 + 1.23749i 0.248702 + 0.968580i $$0.419996\pi$$
−0.963166 + 0.268908i $$0.913337\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 8.06591 4.65685i 0.602874 0.348070i −0.167297 0.985907i $$-0.553504\pi$$
0.770171 + 0.637837i $$0.220171\pi$$
$$180$$ 0 0
$$181$$ 1.66205i 0.123539i 0.998090 + 0.0617696i $$0.0196744\pi$$
−0.998090 + 0.0617696i $$0.980326\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ −0.0928546 0.160829i −0.00682680 0.0118244i
$$186$$ 0 0
$$187$$ −9.60124 5.54328i −0.702112 0.405365i
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 14.9941 + 8.65685i 1.08494 + 0.626388i 0.932224 0.361883i $$-0.117866\pi$$
0.152712 + 0.988271i $$0.451199\pi$$
$$192$$ 0 0
$$193$$ 4.82843 + 8.36308i 0.347558 + 0.601988i 0.985815 0.167835i $$-0.0536777\pi$$
−0.638257 + 0.769823i $$0.720344\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 3.07107i 0.218805i −0.993998 0.109402i $$-0.965106\pi$$
0.993998 0.109402i $$-0.0348937\pi$$
$$198$$ 0 0
$$199$$ −6.40083 + 3.69552i −0.453742 + 0.261968i −0.709409 0.704797i $$-0.751038\pi$$
0.255667 + 0.966765i $$0.417705\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 1.05025 1.81909i 0.0733528 0.127051i
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 7.39104 0.511249
$$210$$ 0 0
$$211$$ −18.6274 −1.28236 −0.641182 0.767389i $$-0.721556\pi$$
−0.641182 + 0.767389i $$0.721556\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 2.61313 4.52607i 0.178214 0.308675i
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 1.52192 0.878680i 0.102375 0.0591064i
$$222$$ 0 0
$$223$$ 21.8017i 1.45995i −0.683474 0.729975i $$-0.739532\pi$$
0.683474 0.729975i $$-0.260468\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ −3.37849 5.85172i −0.224238 0.388392i 0.731852 0.681463i $$-0.238656\pi$$
−0.956091 + 0.293071i $$0.905323\pi$$
$$228$$ 0 0
$$229$$ 14.0136 + 8.09075i 0.926044 + 0.534651i 0.885558 0.464529i $$-0.153776\pi$$
0.0404854 + 0.999180i $$0.487110\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −13.1390 7.58579i −0.860762 0.496961i 0.00350513 0.999994i $$-0.498884\pi$$
−0.864268 + 0.503032i $$0.832218\pi$$
$$234$$ 0 0
$$235$$ −4.58579 7.94282i −0.299144 0.518132i
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 8.82843i 0.571063i −0.958369 0.285532i $$-0.907830\pi$$
0.958369 0.285532i $$-0.0921702\pi$$
$$240$$ 0 0
$$241$$ −22.1283 + 12.7758i −1.42541 + 0.822962i −0.996754 0.0805055i $$-0.974347\pi$$
−0.428657 + 0.903467i $$0.641013\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ −0.585786 + 1.01461i −0.0372727 + 0.0645582i
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ −25.4972 −1.60937 −0.804685 0.593702i $$-0.797666\pi$$
−0.804685 + 0.593702i $$0.797666\pi$$
$$252$$ 0 0
$$253$$ −6.34315 −0.398790
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ −10.2940 + 17.8297i −0.642122 + 1.11219i 0.342837 + 0.939395i $$0.388612\pi$$
−0.984958 + 0.172792i $$0.944721\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ 17.0233 9.82843i 1.04970 0.606047i 0.127137 0.991885i $$-0.459421\pi$$
0.922566 + 0.385838i $$0.126088\pi$$
$$264$$ 0 0
$$265$$ 9.37011i 0.575601i
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ −8.94897 15.5001i −0.545628 0.945056i −0.998567 0.0535141i $$-0.982958\pi$$
0.452939 0.891542i $$-0.350376\pi$$
$$270$$ 0 0
$$271$$ −4.75351 2.74444i −0.288755 0.166713i 0.348625 0.937262i $$-0.386649\pi$$
−0.637380 + 0.770549i $$0.719982\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ −7.64564 4.41421i −0.461050 0.266187i
$$276$$ 0 0
$$277$$ −6.48528 11.2328i −0.389663 0.674916i 0.602741 0.797937i $$-0.294075\pi$$
−0.992404 + 0.123021i $$0.960742\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 10.4853i 0.625499i −0.949836 0.312750i $$-0.898750\pi$$
0.949836 0.312750i $$-0.101250\pi$$
$$282$$ 0 0
$$283$$ 3.52207 2.03347i 0.209365 0.120877i −0.391651 0.920114i $$-0.628096\pi$$
0.601016 + 0.799237i $$0.294763\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ −6.86396 + 11.8887i −0.403762 + 0.699337i
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ 16.4441 0.960676 0.480338 0.877083i $$-0.340514\pi$$
0.480338 + 0.877083i $$0.340514\pi$$
$$294$$ 0 0
$$295$$ 10.1421 0.590498
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 0.502734 0.870762i 0.0290739 0.0503574i
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ −2.36245 + 1.36396i −0.135273 + 0.0781002i
$$306$$ 0 0
$$307$$ 27.1367i 1.54877i 0.632712 + 0.774387i $$0.281942\pi$$
−0.632712 + 0.774387i $$0.718058\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ −15.3617 26.6073i −0.871084 1.50876i −0.860877 0.508814i $$-0.830084\pi$$
−0.0102070 0.999948i $$-0.503249\pi$$
$$312$$ 0 0
$$313$$ 25.0071 + 14.4379i 1.41348 + 0.816076i 0.995715 0.0924774i $$-0.0294786\pi$$
0.417770 + 0.908553i $$0.362812\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −13.6463 7.87868i −0.766451 0.442511i 0.0651561 0.997875i $$-0.479245\pi$$
−0.831607 + 0.555364i $$0.812579\pi$$
$$318$$ 0 0
$$319$$ −6.82843 11.8272i −0.382319 0.662195i
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 20.4853i 1.13983i
$$324$$ 0 0
$$325$$ 1.21193 0.699709i 0.0672258 0.0388129i
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ 13.6569 23.6544i 0.750649 1.30016i −0.196860 0.980432i $$-0.563074\pi$$
0.947509 0.319730i $$-0.103592\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 3.43289 0.187559
$$336$$ 0 0
$$337$$ −27.0711 −1.47466 −0.737328 0.675535i $$-0.763913\pi$$
−0.737328 + 0.675535i $$0.763913\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ −6.75699 + 11.7034i −0.365911 + 0.633777i
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 25.8067 14.8995i 1.38538 0.799847i 0.392586 0.919715i $$-0.371581\pi$$
0.992790 + 0.119869i $$0.0382474\pi$$
$$348$$ 0 0
$$349$$ 31.9372i 1.70956i −0.518993 0.854779i $$-0.673693\pi$$
0.518993 0.854779i $$-0.326307\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ −10.5726 18.3122i −0.562720 0.974660i −0.997258 0.0740064i $$-0.976421\pi$$
0.434537 0.900654i $$-0.356912\pi$$
$$354$$ 0 0
$$355$$ 6.17338 + 3.56420i 0.327649 + 0.189168i
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 16.8493 + 9.72792i 0.889270 + 0.513420i 0.873704 0.486459i $$-0.161712\pi$$
0.0155661 + 0.999879i $$0.495045\pi$$
$$360$$ 0 0
$$361$$ −2.67157 4.62730i −0.140609 0.243542i
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ 9.07107i 0.474801i
$$366$$ 0 0
$$367$$ −31.2276 + 18.0292i −1.63007 + 0.941119i −0.645996 + 0.763341i $$0.723558\pi$$
−0.984071 + 0.177778i $$0.943109\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ −15.3137 + 26.5241i −0.792914 + 1.37337i 0.131242 + 0.991350i $$0.458104\pi$$
−0.924155 + 0.382017i $$0.875230\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 2.16478 0.111492
$$378$$ 0 0
$$379$$ −36.2843 −1.86380 −0.931899 0.362718i $$-0.881849\pi$$
−0.931899 + 0.362718i $$0.881849\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ −7.39104 + 12.8017i −0.377664 + 0.654134i −0.990722 0.135904i $$-0.956606\pi$$
0.613058 + 0.790038i $$0.289939\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ 1.01461 0.585786i 0.0514429 0.0297006i −0.474058 0.880494i $$-0.657211\pi$$
0.525501 + 0.850793i $$0.323878\pi$$
$$390$$ 0 0
$$391$$ 17.5809i 0.889105i
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ −4.32957 7.49903i −0.217844 0.377317i
$$396$$ 0 0
$$397$$ 12.1388 + 7.00835i 0.609230 + 0.351739i 0.772664 0.634815i $$-0.218924\pi$$
−0.163434 + 0.986554i $$0.552257\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −4.77589 2.75736i −0.238496 0.137696i 0.375989 0.926624i $$-0.377303\pi$$
−0.614485 + 0.788928i $$0.710636\pi$$
$$402$$ 0 0
$$403$$ −1.07107 1.85514i −0.0533537 0.0924113i
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 0.485281i 0.0240545i
$$408$$ 0 0
$$409$$ 0.984485 0.568393i 0.0486796 0.0281052i −0.475463 0.879736i $$-0.657719\pi$$
0.524142 + 0.851631i $$0.324386\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ −1.65685 + 2.86976i −0.0813318 + 0.140871i
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ −27.6620 −1.35138 −0.675688 0.737187i $$-0.736154\pi$$
−0.675688 + 0.737187i $$0.736154\pi$$
$$420$$ 0 0
$$421$$ 15.3137 0.746344 0.373172 0.927762i $$-0.378270\pi$$
0.373172 + 0.927762i $$0.378270\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ −12.2346 + 21.1910i −0.593465 + 1.02791i
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 28.8505 16.6569i 1.38968 0.802332i 0.396402 0.918077i $$-0.370259\pi$$
0.993279 + 0.115745i $$0.0369255\pi$$
$$432$$ 0 0
$$433$$ 0.502734i 0.0241599i −0.999927 0.0120799i $$-0.996155\pi$$
0.999927 0.0120799i $$-0.00384526\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ −5.86030 10.1503i −0.280336 0.485557i
$$438$$ 0 0
$$439$$ −12.0251 6.94269i −0.573927 0.331357i 0.184789 0.982778i $$-0.440840\pi$$
−0.758716 + 0.651421i $$0.774173\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ −25.3864 14.6569i −1.20615 0.696368i −0.244230 0.969717i $$-0.578535\pi$$
−0.961915 + 0.273349i $$0.911869\pi$$
$$444$$ 0 0
$$445$$ −0.636039 1.10165i −0.0301511 0.0522233i
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 11.5563i 0.545378i −0.962102 0.272689i $$-0.912087\pi$$
0.962102 0.272689i $$-0.0879130\pi$$
$$450$$ 0 0
$$451$$ −4.75351 + 2.74444i −0.223834 + 0.129231i
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 11.0000 19.0526i 0.514558 0.891241i −0.485299 0.874348i $$-0.661289\pi$$
0.999857 0.0168929i $$-0.00537742\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ −5.17186 −0.240877 −0.120439 0.992721i $$-0.538430\pi$$
−0.120439 + 0.992721i $$0.538430\pi$$
$$462$$ 0 0
$$463$$ −2.82843 −0.131448 −0.0657241 0.997838i $$-0.520936\pi$$
−0.0657241 + 0.997838i $$0.520936\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 3.11586 5.39683i 0.144185 0.249735i −0.784884 0.619643i $$-0.787277\pi$$
0.929069 + 0.369908i $$0.120611\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ −11.8272 + 6.82843i −0.543814 + 0.313971i
$$474$$ 0 0
$$475$$ 16.3128i 0.748483i
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ −11.6662 20.2065i −0.533043 0.923257i −0.999255 0.0385845i $$-0.987715\pi$$
0.466213 0.884673i $$-0.345618\pi$$
$$480$$ 0 0
$$481$$ −0.0666175 0.0384616i −0.00303750 0.00175370i
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ −7.85578 4.53553i −0.356712 0.205948i
$$486$$ 0 0
$$487$$ −9.89949 17.1464i −0.448589 0.776979i 0.549706 0.835359i $$-0.314740\pi$$
−0.998294 + 0.0583797i $$0.981407\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ 34.4853i 1.55630i −0.628079 0.778149i $$-0.716159\pi$$
0.628079 0.778149i $$-0.283841\pi$$
$$492$$ 0 0
$$493$$ −32.7807 + 18.9259i −1.47637 + 0.852381i
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ −13.0711 + 22.6398i −0.585141 + 1.01349i 0.409716 + 0.912213i $$0.365628\pi$$
−0.994858 + 0.101282i $$0.967706\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 29.5641 1.31820 0.659100 0.752055i $$-0.270937\pi$$
0.659100 + 0.752055i $$0.270937\pi$$
$$504$$ 0 0
$$505$$ 9.07107 0.403657
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ −6.46716 + 11.2014i −0.286652 + 0.496495i −0.973008 0.230770i $$-0.925876\pi$$
0.686357 + 0.727265i $$0.259209\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ −5.91359 + 3.41421i −0.260584 + 0.150448i
$$516$$ 0 0
$$517$$ 23.9665i 1.05404i
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 1.01673 + 1.76104i 0.0445439 + 0.0771523i 0.887438 0.460928i $$-0.152483\pi$$
−0.842894 + 0.538080i $$0.819150\pi$$
$$522$$ 0 0
$$523$$ 15.7746 + 9.10748i 0.689776 + 0.398242i 0.803528 0.595267i $$-0.202954\pi$$
−0.113752 + 0.993509i $$0.536287\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 32.4377 + 18.7279i 1.41301 + 0.815801i
$$528$$ 0 0
$$529$$ −6.47056 11.2073i −0.281329 0.487276i
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 0.870058i 0.0376864i
$$534$$ 0 0
$$535$$ 4.75351 2.74444i 0.205512 0.118653i
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ −4.17157 + 7.22538i −0.179350 + 0.310643i −0.941658 0.336571i $$-0.890733\pi$$
0.762308 + 0.647214i $$0.224066\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 8.47343 0.362962
$$546$$ 0 0
$$547$$ 16.0000 0.684111 0.342055 0.939680i $$-0.388877\pi$$
0.342055 + 0.939680i $$0.388877\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ 12.6173 21.8538i 0.537515 0.931003i
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 14.4868 8.36396i 0.613826 0.354392i −0.160636 0.987014i $$-0.551354\pi$$
0.774461 + 0.632621i $$0.218021\pi$$
$$558$$ 0 0
$$559$$ 2.16478i 0.0915606i
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 11.0322 + 19.1083i 0.464950 + 0.805317i 0.999199 0.0400098i $$-0.0127389\pi$$
−0.534249 + 0.845327i $$0.679406\pi$$
$$564$$ 0 0
$$565$$ 7.01655 + 4.05101i 0.295188 + 0.170427i
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −0.420266 0.242641i −0.0176185 0.0101720i 0.491165 0.871067i $$-0.336571\pi$$
−0.508783 + 0.860895i $$0.669905\pi$$
$$570$$ 0 0
$$571$$ 1.31371 + 2.27541i 0.0549770 + 0.0952229i 0.892204 0.451632i $$-0.149158\pi$$
−0.837227 + 0.546855i $$0.815825\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 14.0000i 0.583840i
$$576$$ 0 0
$$577$$ 17.2140 9.93850i 0.716628 0.413745i −0.0968824 0.995296i $$-0.530887\pi$$
0.813510 + 0.581551i $$0.197554\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 12.2426 21.2049i 0.507038 0.878216i
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ −28.0334 −1.15706 −0.578531 0.815660i $$-0.696374\pi$$
−0.578531 + 0.815660i $$0.696374\pi$$
$$588$$ 0 0
$$589$$ −24.9706 −1.02889
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ −15.3889 + 26.6544i −0.631947 + 1.09457i 0.355206 + 0.934788i $$0.384411\pi$$
−0.987153 + 0.159777i $$0.948922\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ −8.06591 + 4.65685i −0.329564 + 0.190274i −0.655648 0.755067i $$-0.727604\pi$$
0.326083 + 0.945341i $$0.394271\pi$$
$$600$$ 0 0
$$601$$ 23.9121i 0.975394i −0.873013 0.487697i $$-0.837837\pi$$
0.873013 0.487697i $$-0.162163\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ 2.67878 + 4.63979i 0.108908 + 0.188634i
$$606$$ 0 0
$$607$$ −10.9269 6.30864i −0.443509 0.256060i 0.261576 0.965183i $$-0.415758\pi$$
−0.705085 + 0.709123i $$0.749091\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ −3.29002 1.89949i −0.133100 0.0768453i
$$612$$ 0 0
$$613$$ 22.6066 + 39.1558i 0.913072 + 1.58149i 0.809700 + 0.586844i $$0.199630\pi$$
0.103372 + 0.994643i $$0.467037\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 17.4558i 0.702746i 0.936236 + 0.351373i $$0.114285\pi$$
−0.936236 + 0.351373i $$0.885715\pi$$
$$618$$ 0 0
$$619$$ 1.55310 0.896683i 0.0624244 0.0360407i −0.468463 0.883483i $$-0.655192\pi$$
0.530887 + 0.847442i $$0.321859\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ −8.27817 + 14.3382i −0.331127 + 0.573529i
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 1.34502 0.0536296
$$630$$ 0 0
$$631$$ −12.4853 −0.497031 −0.248516 0.968628i $$-0.579943\pi$$
−0.248516 + 0.968628i $$0.579943\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ 0.448342 0.776550i 0.0177919 0.0308165i
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 20.3134 11.7279i 0.802329 0.463225i −0.0419557 0.999119i $$-0.513359\pi$$
0.844285 + 0.535894i $$0.180025\pi$$
$$642$$ 0 0
$$643$$ 32.5168i 1.28234i 0.767400 + 0.641169i $$0.221550\pi$$
−0.767400 + 0.641169i $$0.778450\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ −3.19278 5.53006i −0.125521 0.217409i 0.796415 0.604750i $$-0.206727\pi$$
−0.921937 + 0.387341i $$0.873394\pi$$
$$648$$ 0 0
$$649$$ −22.9520 13.2513i −0.900944 0.520161i
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ −5.07306 2.92893i −0.198524 0.114618i 0.397443 0.917627i $$-0.369898\pi$$
−0.595967 + 0.803009i $$0.703231\pi$$
$$654$$ 0 0
$$655$$ −6.48528 11.2328i −0.253401 0.438903i
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 2.97056i 0.115717i 0.998325 + 0.0578583i $$0.0184272\pi$$
−0.998325 + 0.0578583i $$0.981573\pi$$
$$660$$ 0 0
$$661$$ 20.2536 11.6934i 0.787773 0.454821i −0.0514050 0.998678i $$-0.516370\pi$$
0.839178 + 0.543857i $$0.183037\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ −10.8284 + 18.7554i −0.419278 + 0.726211i
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 7.12840 0.275189
$$672$$ 0 0
$$673$$ 20.0416 0.772548 0.386274 0.922384i $$-0.373762\pi$$
0.386274 + 0.922384i $$0.373762\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ 13.9895 24.2305i 0.537661 0.931255i −0.461369 0.887208i $$-0.652642\pi$$
0.999029 0.0440470i $$-0.0140251\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ −40.6777 + 23.4853i −1.55649 + 0.898639i −0.558900 + 0.829235i $$0.688777\pi$$
−0.997589 + 0.0694045i $$0.977890\pi$$
$$684$$ 0 0
$$685$$ 8.28772i 0.316657i
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 1.94061 + 3.36124i 0.0739315 + 0.128053i
$$690$$ 0 0
$$691$$ −22.1754 12.8030i −0.843594 0.487049i 0.0148906 0.999889i $$-0.495260\pi$$
−0.858484 + 0.512840i $$0.828593\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 10.3923 + 6.00000i 0.394203 + 0.227593i
$$696$$ 0 0
$$697$$ 7.60660 + 13.1750i 0.288121 + 0.499039i
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 15.4558i 0.583759i 0.956455 + 0.291880i $$0.0942807\pi$$
−0.956455 + 0.291880i $$0.905719\pi$$
$$702$$ 0 0
$$703$$ −0.776550 + 0.448342i −0.0292881 + 0.0169095i
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ 15.4350 26.7343i 0.579675 1.00403i −0.415842 0.909437i $$-0.636513\pi$$
0.995516 0.0945890i $$-0.0301537\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 21.4303 0.802570
$$714$$ 0 0
$$715$$ 0.485281 0.0181485
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 9.81845 17.0061i 0.366167 0.634219i −0.622796 0.782384i $$-0.714003\pi$$
0.988963 + 0.148165i $$0.0473367\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ −26.1039 + 15.0711i −0.969473 + 0.559725i
$$726$$ 0 0
$$727$$ 53.7933i 1.99508i −0.0700903 0.997541i $$-0.522329\pi$$
0.0700903 0.997541i $$-0.477671\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ 18.9259 + 32.7807i 0.700001 + 1.21244i
$$732$$ 0 0
$$733$$ 19.3162 + 11.1522i 0.713460 + 0.411916i 0.812341 0.583183i $$-0.198193\pi$$
−0.0988808 + 0.995099i $$0.531526\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ −7.76874 4.48528i −0.286165 0.165217i
$$738$$ 0 0
$$739$$ −1.27208 2.20330i −0.0467941 0.0810498i 0.841680 0.539977i $$-0.181567\pi$$
−0.888474 + 0.458927i $$0.848234\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 43.6569i 1.60161i 0.598922 + 0.800807i $$0.295596\pi$$
−0.598922 + 0.800807i $$0.704404\pi$$
$$744$$ 0 0
$$745$$ −4.68690 + 2.70598i −0.171715 + 0.0991395i
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 18.1421 31.4231i 0.662016 1.14665i −0.318069 0.948067i $$-0.603034\pi$$
0.980085 0.198578i $$-0.0636322\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ −7.76245 −0.282505
$$756$$ 0 0
$$757$$ 18.1005 0.657874 0.328937 0.944352i $$-0.393310\pi$$
0.328937 + 0.944352i $$0.393310\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 26.8310 46.4726i 0.972622 1.68463i 0.285052 0.958512i $$-0.407989\pi$$
0.687570 0.726118i $$-0.258678\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 3.63818 2.10051i 0.131367 0.0758448i
$$768$$ 0 0
$$769$$ 14.2793i 0.514926i 0.966288 + 0.257463i $$0.0828866\pi$$
−0.966288 + 0.257463i $$0.917113\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ 16.7883 + 29.0783i 0.603835 + 1.04587i 0.992234 + 0.124381i $$0.0396947\pi$$
−0.388400 + 0.921491i $$0.626972\pi$$
$$774$$ 0 0
$$775$$ 25.8307 + 14.9134i 0.927868 + 0.535705i
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ −8.78335 5.07107i −0.314696 0.181690i
$$780$$ 0 0
$$781$$ −9.31371 16.1318i −0.333271 0.577242i
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 4.72792i 0.168747i
$$786$$ 0 0
$$787$$ 43.7076 25.2346i 1.55801 0.899515i 0.560559 0.828115i $$-0.310586\pi$$
0.997448 0.0714009i $$-0.0227470\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ −0.564971 + 0.978559i −0.0200627 + 0.0347496i
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ −26.3714 −0.934122 −0.467061 0.884225i $$-0.654687\pi$$
−0.467061 + 0.884225i $$0.654687\pi$$
$$798$$ 0 0
$$799$$ 66.4264 2.35000
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ −11.8519 + 20.5281i −0.418245 + 0.724422i
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$