Properties

Label 1764.2.l.d.961.1
Level $1764$
Weight $2$
Character 1764.961
Analytic conductor $14.086$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,2,Mod(949,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.949"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 961.1
Root \(0.500000 - 2.05195i\) of defining polynomial
Character \(\chi\) \(=\) 1764.961
Dual form 1764.2.l.d.949.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73025 + 0.0789082i) q^{3} +2.05408 q^{5} +(2.98755 - 0.273062i) q^{9} -5.05408 q^{11} +(0.500000 + 0.866025i) q^{13} +(-3.55408 + 0.162084i) q^{15} +(-0.136673 - 0.236725i) q^{17} +(2.69076 - 4.66053i) q^{19} -5.32743 q^{23} -0.780738 q^{25} +(-5.14766 + 0.708209i) q^{27} +(4.16372 - 7.21177i) q^{29} +(5.08113 - 8.80077i) q^{31} +(8.74484 - 0.398809i) q^{33} +(-4.08113 + 7.06872i) q^{37} +(-0.933463 - 1.45899i) q^{39} +(2.52704 + 4.37697i) q^{41} +(-2.30039 + 3.98439i) q^{43} +(6.13667 - 0.560893i) q^{45} +(-0.690757 - 1.19643i) q^{47} +(0.255158 + 0.398809i) q^{51} +(-1.71780 - 2.97532i) q^{53} -10.3815 q^{55} +(-4.28794 + 8.27621i) q^{57} +(-0.890369 + 1.54216i) q^{59} +(-0.390369 - 0.676139i) q^{61} +(1.02704 + 1.77889i) q^{65} +(4.19076 - 7.25860i) q^{67} +(9.21780 - 0.420378i) q^{69} -7.78074 q^{71} +(-4.69076 - 8.12463i) q^{73} +(1.35087 - 0.0616067i) q^{75} +(-6.47150 - 11.2090i) q^{79} +(8.85087 - 1.63157i) q^{81} +(2.86333 - 4.95943i) q^{83} +(-0.280738 - 0.486253i) q^{85} +(-6.63521 + 12.8067i) q^{87} +(6.90856 - 11.9660i) q^{89} +(-8.09718 + 15.6285i) q^{93} +(5.52704 - 9.57312i) q^{95} +(1.10963 - 1.92194i) q^{97} +(-15.0993 + 1.38008i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} - 6 q^{5} - 4 q^{9} - 12 q^{11} + 3 q^{13} - 3 q^{15} - 3 q^{19} - 12 q^{23} + 12 q^{25} - 7 q^{27} + 15 q^{29} + 3 q^{31} + 15 q^{33} + 3 q^{37} - 2 q^{39} + 6 q^{41} - 3 q^{43} + 36 q^{45}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.73025 + 0.0789082i −0.998962 + 0.0455577i
\(4\) 0 0
\(5\) 2.05408 0.918614 0.459307 0.888277i \(-0.348098\pi\)
0.459307 + 0.888277i \(0.348098\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 2.98755 0.273062i 0.995849 0.0910208i
\(10\) 0 0
\(11\) −5.05408 −1.52386 −0.761932 0.647657i \(-0.775749\pi\)
−0.761932 + 0.647657i \(0.775749\pi\)
\(12\) 0 0
\(13\) 0.500000 + 0.866025i 0.138675 + 0.240192i 0.926995 0.375073i \(-0.122382\pi\)
−0.788320 + 0.615265i \(0.789049\pi\)
\(14\) 0 0
\(15\) −3.55408 + 0.162084i −0.917661 + 0.0418500i
\(16\) 0 0
\(17\) −0.136673 0.236725i −0.0331481 0.0574142i 0.848975 0.528432i \(-0.177220\pi\)
−0.882124 + 0.471018i \(0.843887\pi\)
\(18\) 0 0
\(19\) 2.69076 4.66053i 0.617302 1.06920i −0.372674 0.927962i \(-0.621559\pi\)
0.989976 0.141236i \(-0.0451077\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.32743 −1.11085 −0.555423 0.831568i \(-0.687444\pi\)
−0.555423 + 0.831568i \(0.687444\pi\)
\(24\) 0 0
\(25\) −0.780738 −0.156148
\(26\) 0 0
\(27\) −5.14766 + 0.708209i −0.990668 + 0.136295i
\(28\) 0 0
\(29\) 4.16372 7.21177i 0.773183 1.33919i −0.162628 0.986687i \(-0.551997\pi\)
0.935810 0.352504i \(-0.114670\pi\)
\(30\) 0 0
\(31\) 5.08113 8.80077i 0.912597 1.58066i 0.102216 0.994762i \(-0.467407\pi\)
0.810382 0.585903i \(-0.199260\pi\)
\(32\) 0 0
\(33\) 8.74484 0.398809i 1.52228 0.0694237i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.08113 + 7.06872i −0.670933 + 1.16209i 0.306707 + 0.951804i \(0.400773\pi\)
−0.977640 + 0.210286i \(0.932560\pi\)
\(38\) 0 0
\(39\) −0.933463 1.45899i −0.149474 0.233625i
\(40\) 0 0
\(41\) 2.52704 + 4.37697i 0.394658 + 0.683567i 0.993057 0.117631i \(-0.0375299\pi\)
−0.598400 + 0.801198i \(0.704197\pi\)
\(42\) 0 0
\(43\) −2.30039 + 3.98439i −0.350806 + 0.607614i −0.986391 0.164417i \(-0.947426\pi\)
0.635585 + 0.772031i \(0.280759\pi\)
\(44\) 0 0
\(45\) 6.13667 0.560893i 0.914801 0.0836130i
\(46\) 0 0
\(47\) −0.690757 1.19643i −0.100757 0.174517i 0.811240 0.584714i \(-0.198793\pi\)
−0.911997 + 0.410197i \(0.865460\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0.255158 + 0.398809i 0.0357293 + 0.0558444i
\(52\) 0 0
\(53\) −1.71780 2.97532i −0.235958 0.408691i 0.723593 0.690227i \(-0.242489\pi\)
−0.959551 + 0.281536i \(0.909156\pi\)
\(54\) 0 0
\(55\) −10.3815 −1.39984
\(56\) 0 0
\(57\) −4.28794 + 8.27621i −0.567951 + 1.09621i
\(58\) 0 0
\(59\) −0.890369 + 1.54216i −0.115916 + 0.200773i −0.918146 0.396243i \(-0.870314\pi\)
0.802229 + 0.597016i \(0.203647\pi\)
\(60\) 0 0
\(61\) −0.390369 0.676139i −0.0499816 0.0865707i 0.839952 0.542660i \(-0.182583\pi\)
−0.889934 + 0.456090i \(0.849250\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.02704 + 1.77889i 0.127389 + 0.220644i
\(66\) 0 0
\(67\) 4.19076 7.25860i 0.511982 0.886780i −0.487921 0.872888i \(-0.662245\pi\)
0.999904 0.0138919i \(-0.00442207\pi\)
\(68\) 0 0
\(69\) 9.21780 0.420378i 1.10969 0.0506076i
\(70\) 0 0
\(71\) −7.78074 −0.923404 −0.461702 0.887035i \(-0.652761\pi\)
−0.461702 + 0.887035i \(0.652761\pi\)
\(72\) 0 0
\(73\) −4.69076 8.12463i −0.549012 0.950916i −0.998343 0.0575506i \(-0.981671\pi\)
0.449331 0.893365i \(-0.351662\pi\)
\(74\) 0 0
\(75\) 1.35087 0.0616067i 0.155985 0.00711373i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −6.47150 11.2090i −0.728100 1.26111i −0.957685 0.287818i \(-0.907070\pi\)
0.229585 0.973289i \(-0.426263\pi\)
\(80\) 0 0
\(81\) 8.85087 1.63157i 0.983430 0.181286i
\(82\) 0 0
\(83\) 2.86333 4.95943i 0.314291 0.544368i −0.664996 0.746847i \(-0.731567\pi\)
0.979287 + 0.202479i \(0.0648999\pi\)
\(84\) 0 0
\(85\) −0.280738 0.486253i −0.0304503 0.0527415i
\(86\) 0 0
\(87\) −6.63521 + 12.8067i −0.711369 + 1.37303i
\(88\) 0 0
\(89\) 6.90856 11.9660i 0.732306 1.26839i −0.223590 0.974683i \(-0.571778\pi\)
0.955895 0.293707i \(-0.0948890\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −8.09718 + 15.6285i −0.839638 + 1.62060i
\(94\) 0 0
\(95\) 5.52704 9.57312i 0.567063 0.982181i
\(96\) 0 0
\(97\) 1.10963 1.92194i 0.112666 0.195143i −0.804178 0.594388i \(-0.797394\pi\)
0.916844 + 0.399245i \(0.130728\pi\)
\(98\) 0 0
\(99\) −15.0993 + 1.38008i −1.51754 + 0.138703i
\(100\) 0 0
\(101\) 2.72665 0.271312 0.135656 0.990756i \(-0.456686\pi\)
0.135656 + 0.990756i \(0.456686\pi\)
\(102\) 0 0
\(103\) 17.9823 1.77185 0.885924 0.463831i \(-0.153525\pi\)
0.885924 + 0.463831i \(0.153525\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.554084 + 0.959702i −0.0535653 + 0.0927779i −0.891565 0.452893i \(-0.850392\pi\)
0.837999 + 0.545671i \(0.183725\pi\)
\(108\) 0 0
\(109\) −1.69076 2.92848i −0.161945 0.280497i 0.773621 0.633649i \(-0.218443\pi\)
−0.935566 + 0.353151i \(0.885110\pi\)
\(110\) 0 0
\(111\) 6.50360 12.5527i 0.617294 1.19145i
\(112\) 0 0
\(113\) −9.43560 16.3429i −0.887626 1.53741i −0.842673 0.538425i \(-0.819020\pi\)
−0.0449531 0.998989i \(-0.514314\pi\)
\(114\) 0 0
\(115\) −10.9430 −1.02044
\(116\) 0 0
\(117\) 1.73025 + 2.45076i 0.159962 + 0.226573i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 14.5438 1.32216
\(122\) 0 0
\(123\) −4.71780 7.37385i −0.425390 0.664878i
\(124\) 0 0
\(125\) −11.8741 −1.06205
\(126\) 0 0
\(127\) 17.1623 1.52290 0.761452 0.648221i \(-0.224487\pi\)
0.761452 + 0.648221i \(0.224487\pi\)
\(128\) 0 0
\(129\) 3.66585 7.07552i 0.322760 0.622965i
\(130\) 0 0
\(131\) −17.8889 −1.56296 −0.781481 0.623930i \(-0.785535\pi\)
−0.781481 + 0.623930i \(0.785535\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −10.5737 + 1.45472i −0.910042 + 0.125202i
\(136\) 0 0
\(137\) −4.49261 −0.383829 −0.191915 0.981412i \(-0.561470\pi\)
−0.191915 + 0.981412i \(0.561470\pi\)
\(138\) 0 0
\(139\) −9.07227 15.7136i −0.769500 1.33281i −0.937834 0.347083i \(-0.887172\pi\)
0.168334 0.985730i \(-0.446161\pi\)
\(140\) 0 0
\(141\) 1.28959 + 2.01561i 0.108603 + 0.169745i
\(142\) 0 0
\(143\) −2.52704 4.37697i −0.211322 0.366020i
\(144\) 0 0
\(145\) 8.55262 14.8136i 0.710257 1.23020i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.50739 −0.369260 −0.184630 0.982808i \(-0.559109\pi\)
−0.184630 + 0.982808i \(0.559109\pi\)
\(150\) 0 0
\(151\) −10.9823 −0.893726 −0.446863 0.894602i \(-0.647459\pi\)
−0.446863 + 0.894602i \(0.647459\pi\)
\(152\) 0 0
\(153\) −0.472958 0.669906i −0.0382364 0.0541587i
\(154\) 0 0
\(155\) 10.4371 18.0775i 0.838325 1.45202i
\(156\) 0 0
\(157\) −2.08998 + 3.61995i −0.166799 + 0.288904i −0.937293 0.348544i \(-0.886676\pi\)
0.770494 + 0.637447i \(0.220010\pi\)
\(158\) 0 0
\(159\) 3.20700 + 5.01250i 0.254332 + 0.397517i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2.80924 4.86575i 0.220037 0.381115i −0.734782 0.678303i \(-0.762716\pi\)
0.954819 + 0.297188i \(0.0960489\pi\)
\(164\) 0 0
\(165\) 17.9626 0.819187i 1.39839 0.0637736i
\(166\) 0 0
\(167\) 5.44592 + 9.43260i 0.421418 + 0.729917i 0.996078 0.0884750i \(-0.0281993\pi\)
−0.574661 + 0.818392i \(0.694866\pi\)
\(168\) 0 0
\(169\) 6.00000 10.3923i 0.461538 0.799408i
\(170\) 0 0
\(171\) 6.76615 14.6583i 0.517420 1.12095i
\(172\) 0 0
\(173\) −7.30039 12.6446i −0.555038 0.961354i −0.997901 0.0647648i \(-0.979370\pi\)
0.442862 0.896590i \(-0.353963\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.41887 2.73859i 0.106649 0.205845i
\(178\) 0 0
\(179\) 11.7448 + 20.3427i 0.877851 + 1.52048i 0.853695 + 0.520774i \(0.174356\pi\)
0.0241559 + 0.999708i \(0.492310\pi\)
\(180\) 0 0
\(181\) −1.39922 −0.104003 −0.0520017 0.998647i \(-0.516560\pi\)
−0.0520017 + 0.998647i \(0.516560\pi\)
\(182\) 0 0
\(183\) 0.728790 + 1.13909i 0.0538737 + 0.0842038i
\(184\) 0 0
\(185\) −8.38298 + 14.5197i −0.616329 + 1.06751i
\(186\) 0 0
\(187\) 0.690757 + 1.19643i 0.0505132 + 0.0874914i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −11.6819 20.2336i −0.845273 1.46406i −0.885384 0.464860i \(-0.846105\pi\)
0.0401112 0.999195i \(-0.487229\pi\)
\(192\) 0 0
\(193\) 7.27188 12.5953i 0.523442 0.906628i −0.476186 0.879345i \(-0.657981\pi\)
0.999628 0.0272830i \(-0.00868552\pi\)
\(194\) 0 0
\(195\) −1.91741 2.99689i −0.137309 0.214611i
\(196\) 0 0
\(197\) −17.3422 −1.23558 −0.617791 0.786343i \(-0.711972\pi\)
−0.617791 + 0.786343i \(0.711972\pi\)
\(198\) 0 0
\(199\) 5.77188 + 9.99720i 0.409158 + 0.708682i 0.994796 0.101891i \(-0.0324892\pi\)
−0.585638 + 0.810573i \(0.699156\pi\)
\(200\) 0 0
\(201\) −6.67830 + 12.8899i −0.471051 + 0.909184i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 5.19076 + 8.99066i 0.362538 + 0.627935i
\(206\) 0 0
\(207\) −15.9159 + 1.45472i −1.10623 + 0.101110i
\(208\) 0 0
\(209\) −13.5993 + 23.5547i −0.940684 + 1.62931i
\(210\) 0 0
\(211\) 12.2630 + 21.2402i 0.844222 + 1.46223i 0.886295 + 0.463120i \(0.153270\pi\)
−0.0420736 + 0.999115i \(0.513396\pi\)
\(212\) 0 0
\(213\) 13.4626 0.613964i 0.922445 0.0420681i
\(214\) 0 0
\(215\) −4.72519 + 8.18427i −0.322255 + 0.558163i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 8.75729 + 13.6875i 0.591763 + 0.924917i
\(220\) 0 0
\(221\) 0.136673 0.236725i 0.00919363 0.0159238i
\(222\) 0 0
\(223\) −4.28074 + 7.41446i −0.286659 + 0.496509i −0.973010 0.230762i \(-0.925878\pi\)
0.686351 + 0.727271i \(0.259211\pi\)
\(224\) 0 0
\(225\) −2.33249 + 0.213190i −0.155499 + 0.0142127i
\(226\) 0 0
\(227\) −21.1986 −1.40700 −0.703501 0.710694i \(-0.748381\pi\)
−0.703501 + 0.710694i \(0.748381\pi\)
\(228\) 0 0
\(229\) −4.56148 −0.301431 −0.150715 0.988577i \(-0.548158\pi\)
−0.150715 + 0.988577i \(0.548158\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.75370 + 11.6977i −0.442449 + 0.766345i −0.997871 0.0652244i \(-0.979224\pi\)
0.555421 + 0.831569i \(0.312557\pi\)
\(234\) 0 0
\(235\) −1.41887 2.45756i −0.0925571 0.160314i
\(236\) 0 0
\(237\) 12.0818 + 18.8837i 0.784797 + 1.22663i
\(238\) 0 0
\(239\) 6.82743 + 11.8255i 0.441630 + 0.764925i 0.997811 0.0661361i \(-0.0210672\pi\)
−0.556181 + 0.831061i \(0.687734\pi\)
\(240\) 0 0
\(241\) 3.21926 0.207371 0.103685 0.994610i \(-0.466936\pi\)
0.103685 + 0.994610i \(0.466936\pi\)
\(242\) 0 0
\(243\) −15.1855 + 3.52144i −0.974150 + 0.225901i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5.38151 0.342418
\(248\) 0 0
\(249\) −4.56294 + 8.80700i −0.289164 + 0.558121i
\(250\) 0 0
\(251\) 4.38151 0.276559 0.138279 0.990393i \(-0.455843\pi\)
0.138279 + 0.990393i \(0.455843\pi\)
\(252\) 0 0
\(253\) 26.9253 1.69278
\(254\) 0 0
\(255\) 0.524117 + 0.819187i 0.0328215 + 0.0512995i
\(256\) 0 0
\(257\) 11.4533 0.714438 0.357219 0.934021i \(-0.383725\pi\)
0.357219 + 0.934021i \(0.383725\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 10.4700 22.6824i 0.648079 1.40401i
\(262\) 0 0
\(263\) −6.83482 −0.421453 −0.210727 0.977545i \(-0.567583\pi\)
−0.210727 + 0.977545i \(0.567583\pi\)
\(264\) 0 0
\(265\) −3.52850 6.11155i −0.216754 0.375429i
\(266\) 0 0
\(267\) −11.0093 + 21.2493i −0.673760 + 1.30044i
\(268\) 0 0
\(269\) −4.83628 8.37669i −0.294873 0.510736i 0.680082 0.733136i \(-0.261944\pi\)
−0.974955 + 0.222400i \(0.928611\pi\)
\(270\) 0 0
\(271\) 6.41887 11.1178i 0.389919 0.675359i −0.602519 0.798104i \(-0.705836\pi\)
0.992438 + 0.122745i \(0.0391697\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.94592 0.237948
\(276\) 0 0
\(277\) 11.5831 0.695959 0.347980 0.937502i \(-0.386868\pi\)
0.347980 + 0.937502i \(0.386868\pi\)
\(278\) 0 0
\(279\) 12.7769 27.6802i 0.764936 1.65717i
\(280\) 0 0
\(281\) 2.46410 4.26795i 0.146996 0.254605i −0.783120 0.621871i \(-0.786373\pi\)
0.930116 + 0.367266i \(0.119706\pi\)
\(282\) 0 0
\(283\) 9.30039 16.1087i 0.552851 0.957565i −0.445217 0.895423i \(-0.646873\pi\)
0.998067 0.0621426i \(-0.0197934\pi\)
\(284\) 0 0
\(285\) −8.80778 + 17.0000i −0.521728 + 1.00700i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.46264 14.6577i 0.497802 0.862219i
\(290\) 0 0
\(291\) −1.76829 + 3.41300i −0.103659 + 0.200073i
\(292\) 0 0
\(293\) 12.3801 + 21.4429i 0.723250 + 1.25271i 0.959690 + 0.281060i \(0.0906861\pi\)
−0.236440 + 0.971646i \(0.575981\pi\)
\(294\) 0 0
\(295\) −1.82889 + 3.16774i −0.106482 + 0.184433i
\(296\) 0 0
\(297\) 26.0167 3.57935i 1.50964 0.207695i
\(298\) 0 0
\(299\) −2.66372 4.61369i −0.154047 0.266817i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −4.71780 + 0.215155i −0.271030 + 0.0123604i
\(304\) 0 0
\(305\) −0.801851 1.38885i −0.0459138 0.0795251i
\(306\) 0 0
\(307\) 21.9430 1.25235 0.626176 0.779681i \(-0.284619\pi\)
0.626176 + 0.779681i \(0.284619\pi\)
\(308\) 0 0
\(309\) −31.1139 + 1.41895i −1.77001 + 0.0807213i
\(310\) 0 0
\(311\) −13.5811 + 23.5232i −0.770115 + 1.33388i 0.167384 + 0.985892i \(0.446468\pi\)
−0.937499 + 0.347987i \(0.886865\pi\)
\(312\) 0 0
\(313\) 4.27188 + 7.39912i 0.241461 + 0.418223i 0.961131 0.276094i \(-0.0890400\pi\)
−0.719670 + 0.694317i \(0.755707\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.199612 0.345738i −0.0112113 0.0194186i 0.860365 0.509678i \(-0.170235\pi\)
−0.871577 + 0.490259i \(0.836902\pi\)
\(318\) 0 0
\(319\) −21.0438 + 36.4489i −1.17822 + 2.04075i
\(320\) 0 0
\(321\) 0.882977 1.70425i 0.0492830 0.0951219i
\(322\) 0 0
\(323\) −1.47102 −0.0818495
\(324\) 0 0
\(325\) −0.390369 0.676139i −0.0216538 0.0375054i
\(326\) 0 0
\(327\) 3.15652 + 4.93359i 0.174556 + 0.272828i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.80924 + 4.86575i 0.154410 + 0.267446i 0.932844 0.360281i \(-0.117319\pi\)
−0.778434 + 0.627726i \(0.783986\pi\)
\(332\) 0 0
\(333\) −10.2624 + 22.2325i −0.562374 + 1.21834i
\(334\) 0 0
\(335\) 8.60817 14.9098i 0.470314 0.814609i
\(336\) 0 0
\(337\) 14.4911 + 25.0994i 0.789383 + 1.36725i 0.926345 + 0.376675i \(0.122933\pi\)
−0.136962 + 0.990576i \(0.543734\pi\)
\(338\) 0 0
\(339\) 17.6156 + 27.5329i 0.956746 + 1.49538i
\(340\) 0 0
\(341\) −25.6804 + 44.4798i −1.39067 + 2.40872i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 18.9341 0.863492i 1.01938 0.0464889i
\(346\) 0 0
\(347\) −17.2345 + 29.8511i −0.925198 + 1.60249i −0.133955 + 0.990987i \(0.542768\pi\)
−0.791243 + 0.611502i \(0.790566\pi\)
\(348\) 0 0
\(349\) −8.78074 + 15.2087i −0.470022 + 0.814102i −0.999412 0.0342762i \(-0.989087\pi\)
0.529390 + 0.848378i \(0.322421\pi\)
\(350\) 0 0
\(351\) −3.18716 4.10390i −0.170118 0.219050i
\(352\) 0 0
\(353\) 32.8889 1.75050 0.875250 0.483671i \(-0.160697\pi\)
0.875250 + 0.483671i \(0.160697\pi\)
\(354\) 0 0
\(355\) −15.9823 −0.848252
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.48181 + 2.56657i −0.0782071 + 0.135459i −0.902476 0.430739i \(-0.858253\pi\)
0.824269 + 0.566198i \(0.191586\pi\)
\(360\) 0 0
\(361\) −4.98035 8.62622i −0.262124 0.454012i
\(362\) 0 0
\(363\) −25.1644 + 1.14762i −1.32079 + 0.0602346i
\(364\) 0 0
\(365\) −9.63521 16.6887i −0.504330 0.873525i
\(366\) 0 0
\(367\) 13.3638 0.697585 0.348792 0.937200i \(-0.386592\pi\)
0.348792 + 0.937200i \(0.386592\pi\)
\(368\) 0 0
\(369\) 8.74484 + 12.3863i 0.455238 + 0.644808i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4.60078 0.238219 0.119110 0.992881i \(-0.461996\pi\)
0.119110 + 0.992881i \(0.461996\pi\)
\(374\) 0 0
\(375\) 20.5452 0.936966i 1.06095 0.0483847i
\(376\) 0 0
\(377\) 8.32743 0.428884
\(378\) 0 0
\(379\) −2.21926 −0.113996 −0.0569979 0.998374i \(-0.518153\pi\)
−0.0569979 + 0.998374i \(0.518153\pi\)
\(380\) 0 0
\(381\) −29.6950 + 1.35424i −1.52132 + 0.0693800i
\(382\) 0 0
\(383\) −31.0335 −1.58574 −0.792868 0.609394i \(-0.791413\pi\)
−0.792868 + 0.609394i \(0.791413\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −5.78453 + 12.5317i −0.294044 + 0.637022i
\(388\) 0 0
\(389\) −24.8348 −1.25918 −0.629588 0.776929i \(-0.716776\pi\)
−0.629588 + 0.776929i \(0.716776\pi\)
\(390\) 0 0
\(391\) 0.728116 + 1.26113i 0.0368224 + 0.0637783i
\(392\) 0 0
\(393\) 30.9523 1.41158i 1.56134 0.0712049i
\(394\) 0 0
\(395\) −13.2930 23.0241i −0.668843 1.15847i
\(396\) 0 0
\(397\) −8.86186 + 15.3492i −0.444764 + 0.770354i −0.998036 0.0626467i \(-0.980046\pi\)
0.553272 + 0.833001i \(0.313379\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 30.1770 1.50697 0.753485 0.657466i \(-0.228371\pi\)
0.753485 + 0.657466i \(0.228371\pi\)
\(402\) 0 0
\(403\) 10.1623 0.506218
\(404\) 0 0
\(405\) 18.1804 3.35139i 0.903393 0.166532i
\(406\) 0 0
\(407\) 20.6264 35.7259i 1.02241 1.77087i
\(408\) 0 0
\(409\) −8.38151 + 14.5172i −0.414439 + 0.717830i −0.995369 0.0961236i \(-0.969356\pi\)
0.580930 + 0.813953i \(0.302689\pi\)
\(410\) 0 0
\(411\) 7.77335 0.354504i 0.383431 0.0174864i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 5.88151 10.1871i 0.288712 0.500064i
\(416\) 0 0
\(417\) 16.9373 + 26.4727i 0.829421 + 1.29637i
\(418\) 0 0
\(419\) −1.44445 2.50187i −0.0705662 0.122224i 0.828583 0.559866i \(-0.189147\pi\)
−0.899150 + 0.437641i \(0.855814\pi\)
\(420\) 0 0
\(421\) 0.0899807 0.155851i 0.00438539 0.00759572i −0.863824 0.503793i \(-0.831937\pi\)
0.868210 + 0.496197i \(0.165271\pi\)
\(422\) 0 0
\(423\) −2.39037 3.38576i −0.116224 0.164621i
\(424\) 0 0
\(425\) 0.106706 + 0.184820i 0.00517600 + 0.00896509i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 4.71780 + 7.37385i 0.227778 + 0.356013i
\(430\) 0 0
\(431\) 2.38298 + 4.12744i 0.114784 + 0.198812i 0.917693 0.397289i \(-0.130049\pi\)
−0.802909 + 0.596101i \(0.796716\pi\)
\(432\) 0 0
\(433\) −27.7630 −1.33421 −0.667103 0.744965i \(-0.732466\pi\)
−0.667103 + 0.744965i \(0.732466\pi\)
\(434\) 0 0
\(435\) −13.6293 + 26.3061i −0.653474 + 1.26128i
\(436\) 0 0
\(437\) −14.3348 + 24.8286i −0.685728 + 1.18771i
\(438\) 0 0
\(439\) 2.32889 + 4.03376i 0.111152 + 0.192521i 0.916235 0.400641i \(-0.131213\pi\)
−0.805083 + 0.593162i \(0.797879\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.38151 + 2.39285i 0.0656377 + 0.113688i 0.896977 0.442078i \(-0.145758\pi\)
−0.831339 + 0.555766i \(0.812425\pi\)
\(444\) 0 0
\(445\) 14.1908 24.5791i 0.672706 1.16516i
\(446\) 0 0
\(447\) 7.79893 0.355670i 0.368877 0.0168226i
\(448\) 0 0
\(449\) 19.9430 0.941168 0.470584 0.882355i \(-0.344043\pi\)
0.470584 + 0.882355i \(0.344043\pi\)
\(450\) 0 0
\(451\) −12.7719 22.1216i −0.601405 1.04166i
\(452\) 0 0
\(453\) 19.0021 0.866593i 0.892798 0.0407161i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −13.6908 23.7131i −0.640427 1.10925i −0.985338 0.170616i \(-0.945424\pi\)
0.344911 0.938635i \(-0.387909\pi\)
\(458\) 0 0
\(459\) 0.871198 + 1.12179i 0.0406640 + 0.0523605i
\(460\) 0 0
\(461\) 3.02558 5.24046i 0.140915 0.244072i −0.786926 0.617047i \(-0.788329\pi\)
0.927842 + 0.372975i \(0.121662\pi\)
\(462\) 0 0
\(463\) 8.77188 + 15.1933i 0.407664 + 0.706095i 0.994628 0.103519i \(-0.0330101\pi\)
−0.586964 + 0.809613i \(0.699677\pi\)
\(464\) 0 0
\(465\) −16.6323 + 32.1022i −0.771304 + 1.48871i
\(466\) 0 0
\(467\) 11.8078 20.4517i 0.546399 0.946391i −0.452119 0.891958i \(-0.649332\pi\)
0.998517 0.0544328i \(-0.0173351\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 3.33055 6.42835i 0.153464 0.296203i
\(472\) 0 0
\(473\) 11.6264 20.1374i 0.534580 0.925920i
\(474\) 0 0
\(475\) −2.10078 + 3.63865i −0.0963902 + 0.166953i
\(476\) 0 0
\(477\) −5.94445 8.41983i −0.272178 0.385518i
\(478\) 0 0
\(479\) 38.2527 1.74781 0.873906 0.486096i \(-0.161579\pi\)
0.873906 + 0.486096i \(0.161579\pi\)
\(480\) 0 0
\(481\) −8.16225 −0.372167
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.27928 3.94782i 0.103497 0.179261i
\(486\) 0 0
\(487\) 3.28959 + 5.69774i 0.149066 + 0.258189i 0.930882 0.365319i \(-0.119040\pi\)
−0.781817 + 0.623508i \(0.785707\pi\)
\(488\) 0 0
\(489\) −4.47675 + 8.64065i −0.202446 + 0.390744i
\(490\) 0 0
\(491\) 1.02704 + 1.77889i 0.0463498 + 0.0802801i 0.888270 0.459323i \(-0.151908\pi\)
−0.841920 + 0.539603i \(0.818574\pi\)
\(492\) 0 0
\(493\) −2.27627 −0.102518
\(494\) 0 0
\(495\) −31.0153 + 2.83480i −1.39403 + 0.127415i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −16.3245 −0.730785 −0.365393 0.930854i \(-0.619065\pi\)
−0.365393 + 0.930854i \(0.619065\pi\)
\(500\) 0 0
\(501\) −10.1671 15.8911i −0.454233 0.709960i
\(502\) 0 0
\(503\) −5.60078 −0.249726 −0.124863 0.992174i \(-0.539849\pi\)
−0.124863 + 0.992174i \(0.539849\pi\)
\(504\) 0 0
\(505\) 5.60078 0.249231
\(506\) 0 0
\(507\) −9.56148 + 18.4548i −0.424640 + 0.819605i
\(508\) 0 0
\(509\) 0.672570 0.0298111 0.0149056 0.999889i \(-0.495255\pi\)
0.0149056 + 0.999889i \(0.495255\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −10.5505 + 25.8965i −0.465815 + 1.14336i
\(514\) 0 0
\(515\) 36.9371 1.62764
\(516\) 0 0
\(517\) 3.49115 + 6.04684i 0.153540 + 0.265940i
\(518\) 0 0
\(519\) 13.6293 + 21.3024i 0.598259 + 0.935070i
\(520\) 0 0
\(521\) −13.2267 22.9092i −0.579470 1.00367i −0.995540 0.0943392i \(-0.969926\pi\)
0.416070 0.909333i \(-0.363407\pi\)
\(522\) 0 0
\(523\) −13.6534 + 23.6484i −0.597021 + 1.03407i 0.396237 + 0.918148i \(0.370316\pi\)
−0.993258 + 0.115923i \(0.963017\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.77781 −0.121003
\(528\) 0 0
\(529\) 5.38151 0.233979
\(530\) 0 0
\(531\) −2.23891 + 4.85041i −0.0971605 + 0.210490i
\(532\) 0 0
\(533\) −2.52704 + 4.37697i −0.109458 + 0.189587i
\(534\) 0 0
\(535\) −1.13814 + 1.97131i −0.0492059 + 0.0852271i
\(536\) 0 0
\(537\) −21.9267 34.2712i −0.946209 1.47891i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 9.66225 16.7355i 0.415413 0.719516i −0.580059 0.814574i \(-0.696971\pi\)
0.995472 + 0.0950586i \(0.0303038\pi\)
\(542\) 0 0
\(543\) 2.42101 0.110410i 0.103895 0.00473816i
\(544\) 0 0
\(545\) −3.47296 6.01534i −0.148765 0.257669i
\(546\) 0 0
\(547\) 9.17111 15.8848i 0.392128 0.679186i −0.600602 0.799548i \(-0.705072\pi\)
0.992730 + 0.120362i \(0.0384056\pi\)
\(548\) 0 0
\(549\) −1.35087 1.91340i −0.0576539 0.0816620i
\(550\) 0 0
\(551\) −22.4071 38.8102i −0.954574 1.65337i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 13.3589 25.7843i 0.567055 1.09448i
\(556\) 0 0
\(557\) −4.59931 7.96625i −0.194879 0.337541i 0.751982 0.659184i \(-0.229098\pi\)
−0.946861 + 0.321643i \(0.895765\pi\)
\(558\) 0 0
\(559\) −4.60078 −0.194592
\(560\) 0 0
\(561\) −1.28959 2.01561i −0.0544466 0.0850993i
\(562\) 0 0
\(563\) −16.5811 + 28.7194i −0.698811 + 1.21038i 0.270068 + 0.962841i \(0.412954\pi\)
−0.968879 + 0.247535i \(0.920379\pi\)
\(564\) 0 0
\(565\) −19.3815 33.5698i −0.815386 1.41229i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −13.1008 22.6912i −0.549213 0.951265i −0.998329 0.0577914i \(-0.981594\pi\)
0.449116 0.893474i \(-0.351739\pi\)
\(570\) 0 0
\(571\) −4.89037 + 8.47037i −0.204656 + 0.354474i −0.950023 0.312180i \(-0.898941\pi\)
0.745367 + 0.666654i \(0.232274\pi\)
\(572\) 0 0
\(573\) 21.8092 + 34.0875i 0.911094 + 1.42403i
\(574\) 0 0
\(575\) 4.15933 0.173456
\(576\) 0 0
\(577\) −18.1534 31.4426i −0.755736 1.30897i −0.945008 0.327048i \(-0.893946\pi\)
0.189272 0.981925i \(-0.439387\pi\)
\(578\) 0 0
\(579\) −11.5883 + 22.3668i −0.481594 + 0.929533i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 8.68190 + 15.0375i 0.359568 + 0.622789i
\(584\) 0 0
\(585\) 3.55408 + 5.03407i 0.146943 + 0.208133i
\(586\) 0 0
\(587\) 12.0737 20.9123i 0.498336 0.863144i −0.501662 0.865064i \(-0.667278\pi\)
0.999998 + 0.00191995i \(0.000611139\pi\)
\(588\) 0 0
\(589\) −27.3442 47.3615i −1.12670 1.95150i
\(590\) 0 0
\(591\) 30.0064 1.36844i 1.23430 0.0562903i
\(592\) 0 0
\(593\) −20.7448 + 35.9311i −0.851889 + 1.47551i 0.0276133 + 0.999619i \(0.491209\pi\)
−0.879502 + 0.475896i \(0.842124\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −10.7757 16.8422i −0.441019 0.689306i
\(598\) 0 0
\(599\) 11.3422 19.6453i 0.463430 0.802685i −0.535699 0.844409i \(-0.679952\pi\)
0.999129 + 0.0417243i \(0.0132851\pi\)
\(600\) 0 0
\(601\) 20.1249 34.8573i 0.820912 1.42186i −0.0840927 0.996458i \(-0.526799\pi\)
0.905004 0.425403i \(-0.139867\pi\)
\(602\) 0 0
\(603\) 10.5380 22.8298i 0.429142 0.929700i
\(604\) 0 0
\(605\) 29.8741 1.21456
\(606\) 0 0
\(607\) 17.3245 0.703180 0.351590 0.936154i \(-0.385641\pi\)
0.351590 + 0.936154i \(0.385641\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.690757 1.19643i 0.0279450 0.0484022i
\(612\) 0 0
\(613\) 16.4823 + 28.5482i 0.665713 + 1.15305i 0.979091 + 0.203421i \(0.0652060\pi\)
−0.313378 + 0.949629i \(0.601461\pi\)
\(614\) 0 0
\(615\) −9.69076 15.1465i −0.390769 0.610766i
\(616\) 0 0
\(617\) 13.4700 + 23.3308i 0.542283 + 0.939262i 0.998772 + 0.0495330i \(0.0157733\pi\)
−0.456489 + 0.889729i \(0.650893\pi\)
\(618\) 0 0
\(619\) −1.98229 −0.0796750 −0.0398375 0.999206i \(-0.512684\pi\)
−0.0398375 + 0.999206i \(0.512684\pi\)
\(620\) 0 0
\(621\) 27.4238 3.77293i 1.10048 0.151403i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −20.4868 −0.819470
\(626\) 0 0
\(627\) 21.6716 41.8287i 0.865480 1.67048i
\(628\) 0 0
\(629\) 2.23112 0.0889606
\(630\) 0 0
\(631\) −25.4868 −1.01461 −0.507306 0.861766i \(-0.669359\pi\)
−0.507306 + 0.861766i \(0.669359\pi\)
\(632\) 0 0
\(633\) −22.8942 35.7832i −0.909961 1.42226i
\(634\) 0 0
\(635\) 35.2527 1.39896
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −23.2453 + 2.12463i −0.919571 + 0.0840489i
\(640\) 0 0
\(641\) −40.0846 −1.58325 −0.791623 0.611009i \(-0.790764\pi\)
−0.791623 + 0.611009i \(0.790764\pi\)
\(642\) 0 0
\(643\) −3.50885 6.07751i −0.138376 0.239674i 0.788506 0.615027i \(-0.210855\pi\)
−0.926882 + 0.375353i \(0.877521\pi\)
\(644\) 0 0
\(645\) 7.52997 14.5337i 0.296492 0.572264i
\(646\) 0 0
\(647\) 5.90709 + 10.2314i 0.232232 + 0.402237i 0.958465 0.285212i \(-0.0920639\pi\)
−0.726233 + 0.687449i \(0.758731\pi\)
\(648\) 0 0
\(649\) 4.50000 7.79423i 0.176640 0.305950i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.273346 0.0106969 0.00534843 0.999986i \(-0.498298\pi\)
0.00534843 + 0.999986i \(0.498298\pi\)
\(654\) 0 0
\(655\) −36.7453 −1.43576
\(656\) 0 0
\(657\) −16.2324 22.9918i −0.633286 0.896997i
\(658\) 0 0
\(659\) −7.39970 + 12.8167i −0.288251 + 0.499266i −0.973392 0.229144i \(-0.926407\pi\)
0.685141 + 0.728410i \(0.259741\pi\)
\(660\) 0 0
\(661\) 4.50885 7.80956i 0.175374 0.303757i −0.764917 0.644129i \(-0.777220\pi\)
0.940291 + 0.340372i \(0.110553\pi\)
\(662\) 0 0
\(663\) −0.217799 + 0.420378i −0.00845863 + 0.0163261i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −22.1819 + 38.4202i −0.858887 + 1.48764i
\(668\) 0 0
\(669\) 6.82170 13.1667i 0.263742 0.509053i
\(670\) 0 0
\(671\) 1.97296 + 3.41726i 0.0761652 + 0.131922i
\(672\) 0 0
\(673\) −11.9803 + 20.7506i −0.461809 + 0.799876i −0.999051 0.0435519i \(-0.986133\pi\)
0.537243 + 0.843428i \(0.319466\pi\)
\(674\) 0 0
\(675\) 4.01898 0.552926i 0.154690 0.0212821i
\(676\) 0 0
\(677\) 3.32889 + 5.76581i 0.127940 + 0.221598i 0.922878 0.385092i \(-0.125830\pi\)
−0.794938 + 0.606690i \(0.792497\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 36.6790 1.67275i 1.40554 0.0640998i
\(682\) 0 0
\(683\) 15.0364 + 26.0438i 0.575351 + 0.996537i 0.996003 + 0.0893152i \(0.0284678\pi\)
−0.420652 + 0.907222i \(0.638199\pi\)
\(684\) 0 0
\(685\) −9.22820 −0.352591
\(686\) 0 0
\(687\) 7.89251 0.359938i 0.301118 0.0137325i
\(688\) 0 0
\(689\) 1.71780 2.97532i 0.0654429 0.113351i
\(690\) 0 0
\(691\) 1.63814 + 2.83733i 0.0623176 + 0.107937i 0.895501 0.445060i \(-0.146817\pi\)
−0.833183 + 0.552997i \(0.813484\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −18.6352 32.2771i −0.706874 1.22434i
\(696\) 0 0
\(697\) 0.690757 1.19643i 0.0261643 0.0453179i
\(698\) 0 0
\(699\) 10.7626 20.7730i 0.407077 0.785706i
\(700\) 0 0
\(701\) −32.2891 −1.21954 −0.609771 0.792578i \(-0.708739\pi\)
−0.609771 + 0.792578i \(0.708739\pi\)
\(702\) 0 0
\(703\) 21.9626 + 38.0404i 0.828337 + 1.43472i
\(704\) 0 0
\(705\) 2.64893 + 4.14024i 0.0997645 + 0.155930i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 24.5438 + 42.5111i 0.921761 + 1.59654i 0.796690 + 0.604388i \(0.206582\pi\)
0.125071 + 0.992148i \(0.460084\pi\)
\(710\) 0 0
\(711\) −22.3946 31.7202i −0.839865 1.18960i
\(712\) 0 0
\(713\) −27.0693 + 46.8855i −1.01376 + 1.75588i
\(714\) 0 0
\(715\) −5.19076 8.99066i −0.194123 0.336231i
\(716\) 0 0
\(717\) −12.7463 19.9223i −0.476019 0.744011i
\(718\) 0 0
\(719\) 20.9808 36.3399i 0.782453 1.35525i −0.148056 0.988979i \(-0.547302\pi\)
0.930509 0.366269i \(-0.119365\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −5.57014 + 0.254026i −0.207156 + 0.00944734i
\(724\) 0 0
\(725\) −3.25077 + 5.63050i −0.120731 + 0.209112i
\(726\) 0 0
\(727\) 14.2434 24.6703i 0.528258 0.914969i −0.471200 0.882027i \(-0.656179\pi\)
0.999457 0.0329425i \(-0.0104878\pi\)
\(728\) 0 0
\(729\) 25.9969 7.29124i 0.962847 0.270046i
\(730\) 0 0
\(731\) 1.25760 0.0465142
\(732\) 0 0
\(733\) 28.5261 1.05363 0.526817 0.849979i \(-0.323385\pi\)
0.526817 + 0.849979i \(0.323385\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −21.1804 + 36.6856i −0.780192 + 1.35133i
\(738\) 0 0
\(739\) −3.92967 6.80639i −0.144555 0.250377i 0.784652 0.619937i \(-0.212842\pi\)
−0.929207 + 0.369560i \(0.879508\pi\)
\(740\) 0 0
\(741\) −9.31138 + 0.424646i −0.342062 + 0.0155998i
\(742\) 0 0
\(743\) 3.37364 + 5.84332i 0.123767 + 0.214371i 0.921250 0.388970i \(-0.127169\pi\)
−0.797483 + 0.603341i \(0.793836\pi\)
\(744\) 0 0
\(745\) −9.25856 −0.339207
\(746\) 0 0
\(747\) 7.20009 15.5984i 0.263438 0.570715i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 22.1800 0.809358 0.404679 0.914459i \(-0.367383\pi\)
0.404679 + 0.914459i \(0.367383\pi\)
\(752\) 0 0
\(753\) −7.58113 + 0.345738i −0.276272 + 0.0125994i
\(754\) 0 0
\(755\) −22.5586 −0.820990
\(756\) 0 0
\(757\) −20.3815 −0.740779 −0.370389 0.928877i \(-0.620776\pi\)
−0.370389 + 0.928877i \(0.620776\pi\)
\(758\) 0 0
\(759\) −46.5875 + 2.12463i −1.69102 + 0.0771191i
\(760\) 0 0
\(761\) 40.6549 1.47374 0.736869 0.676036i \(-0.236304\pi\)
0.736869 + 0.676036i \(0.236304\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −0.971495 1.37604i −0.0351245 0.0497510i
\(766\) 0 0
\(767\) −1.78074 −0.0642987
\(768\) 0 0
\(769\) 16.9518 + 29.3615i 0.611299 + 1.05880i 0.991022 + 0.133701i \(0.0426861\pi\)
−0.379723 + 0.925100i \(0.623981\pi\)
\(770\) 0 0
\(771\) −19.8171 + 0.903760i −0.713696 + 0.0325481i
\(772\) 0 0
\(773\) 4.37412 + 7.57620i 0.157326 + 0.272497i 0.933904 0.357525i \(-0.116379\pi\)
−0.776577 + 0.630022i \(0.783046\pi\)
\(774\) 0 0
\(775\) −3.96703 + 6.87110i −0.142500 + 0.246817i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 27.1986 0.974492
\(780\) 0 0
\(781\) 39.3245 1.40714
\(782\) 0 0
\(783\) −16.3260 + 40.0725i −0.583442 + 1.43208i
\(784\) 0 0
\(785\) −4.29300 + 7.43569i −0.153224 + 0.265391i
\(786\) 0 0
\(787\) −4.64260 + 8.04122i −0.165491 + 0.286639i −0.936830 0.349786i \(-0.886254\pi\)
0.771339 + 0.636425i \(0.219588\pi\)
\(788\) 0 0
\(789\) 11.8260 0.539324i 0.421016 0.0192004i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0.390369 0.676139i 0.0138624 0.0240104i
\(794\) 0 0
\(795\) 6.58746 + 10.2961i 0.233633 + 0.365165i
\(796\) 0 0
\(797\) −11.2271 19.4460i −0.397685 0.688811i 0.595754 0.803167i \(-0.296853\pi\)
−0.993440 + 0.114355i \(0.963520\pi\)
\(798\) 0 0
\(799\) −0.188816 + 0.327039i −0.00667983 + 0.0115698i
\(800\) 0 0
\(801\) 17.3722 37.6354i 0.613816 1.32978i
\(802\) 0 0
\(803\) 23.7075 + 41.0626i 0.836619 + 1.44907i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 9.02898 + 14.1122i 0.317835 + 0.496772i
\(808\) 0 0
\(809\) 2.70107 + 4.67840i 0.0949647 + 0.164484i 0.909594 0.415498i \(-0.136393\pi\)
−0.814629 + 0.579982i \(0.803060\pi\)
\(810\) 0 0
\(811\) −0.0177088 −0.000621841 −0.000310920 1.00000i \(-0.500099\pi\)
−0.000310920 1.00000i \(0.500099\pi\)
\(812\) 0 0
\(813\) −10.2290 + 19.7431i −0.358746 + 0.692422i
\(814\) 0 0
\(815\) 5.77042 9.99466i 0.202129 0.350098i
\(816\) 0 0
\(817\) 12.3796 + 21.4420i 0.433106 + 0.750162i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0.528505 + 0.915397i 0.0184449 + 0.0319476i 0.875101 0.483941i \(-0.160795\pi\)
−0.856656 + 0.515889i \(0.827462\pi\)
\(822\) 0 0
\(823\) −6.76303 + 11.7139i −0.235744 + 0.408321i −0.959489 0.281747i \(-0.909086\pi\)
0.723744 + 0.690068i \(0.242419\pi\)
\(824\) 0 0
\(825\) −6.82743 + 0.311365i −0.237701 + 0.0108403i
\(826\) 0 0
\(827\) −49.3068 −1.71457 −0.857283 0.514846i \(-0.827849\pi\)
−0.857283 + 0.514846i \(0.827849\pi\)
\(828\) 0 0
\(829\) 26.8530 + 46.5108i 0.932644 + 1.61539i 0.778783 + 0.627294i \(0.215837\pi\)
0.153861 + 0.988093i \(0.450829\pi\)
\(830\) 0 0
\(831\) −20.0416 + 0.914000i −0.695236 + 0.0317063i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 11.1864 + 19.3754i 0.387120 + 0.670512i
\(836\) 0 0
\(837\) −19.9231 + 48.9019i −0.688645 + 1.69030i
\(838\) 0 0
\(839\) 18.7163 32.4176i 0.646160 1.11918i −0.337873 0.941192i \(-0.609707\pi\)
0.984032 0.177990i \(-0.0569593\pi\)
\(840\) 0 0
\(841\) −20.1730 34.9407i −0.695622 1.20485i
\(842\) 0 0
\(843\) −3.92674 + 7.57907i −0.135244 + 0.261037i
\(844\) 0 0
\(845\) 12.3245 21.3467i 0.423976 0.734348i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −14.8209 + 28.6061i −0.508652 + 0.981758i
\(850\) 0 0
\(851\) 21.7419 37.6581i 0.745303 1.29090i
\(852\) 0 0
\(853\) 10.3092 17.8561i 0.352982 0.611382i −0.633789 0.773506i \(-0.718501\pi\)
0.986770 + 0.162124i \(0.0518344\pi\)
\(854\) 0 0
\(855\) 13.8982 30.1094i 0.475310 1.02972i
\(856\) 0 0
\(857\) 20.8889 0.713551 0.356776 0.934190i \(-0.383876\pi\)
0.356776 + 0.934190i \(0.383876\pi\)
\(858\) 0 0
\(859\) 26.8860 0.917338 0.458669 0.888607i \(-0.348326\pi\)
0.458669 + 0.888607i \(0.348326\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −13.4071 + 23.2218i −0.456383 + 0.790478i −0.998767 0.0496527i \(-0.984189\pi\)
0.542384 + 0.840131i \(0.317522\pi\)
\(864\) 0 0
\(865\) −14.9956 25.9732i −0.509866 0.883114i
\(866\) 0 0
\(867\) −13.4859 + 26.0293i −0.458005 + 0.884003i
\(868\) 0 0
\(869\) 32.7075 + 56.6510i 1.10953 + 1.92175i
\(870\) 0 0
\(871\) 8.38151 0.283997
\(872\) 0 0
\(873\) 2.79027 6.04488i 0.0944362 0.204588i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −37.9076 −1.28005 −0.640024 0.768355i \(-0.721076\pi\)
−0.640024 + 0.768355i \(0.721076\pi\)
\(878\) 0 0
\(879\) −23.1126 36.1247i −0.779570 1.21846i
\(880\) 0 0
\(881\) 7.47782 0.251934 0.125967 0.992034i \(-0.459797\pi\)
0.125967 + 0.992034i \(0.459797\pi\)
\(882\) 0 0
\(883\) 5.07472 0.170778 0.0853889 0.996348i \(-0.472787\pi\)
0.0853889 + 0.996348i \(0.472787\pi\)
\(884\) 0 0
\(885\) 2.91449 5.62530i 0.0979694 0.189092i
\(886\) 0 0
\(887\) 18.5231 0.621946 0.310973 0.950419i \(-0.399345\pi\)
0.310973 + 0.950419i \(0.399345\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −44.7331 + 8.24611i −1.49861 + 0.276255i
\(892\) 0 0
\(893\) −7.43464 −0.248791
\(894\) 0 0
\(895\) 24.1249 + 41.7855i 0.806406 + 1.39674i
\(896\) 0 0
\(897\) 4.97296 + 7.77266i 0.166042 + 0.259522i
\(898\) 0 0
\(899\) −42.3127 73.2878i −1.41121 2.44428i
\(900\) 0 0
\(901\) −0.469554 + 0.813291i −0.0156431 + 0.0270947i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.87412 −0.0955391
\(906\) 0 0
\(907\) −49.6490 −1.64857 −0.824284 0.566176i \(-0.808422\pi\)
−0.824284 + 0.566176i \(0.808422\pi\)
\(908\) 0 0
\(909\) 8.14601 0.744547i 0.270186 0.0246951i
\(910\) 0 0
\(911\) −11.9808 + 20.7514i −0.396943 + 0.687525i −0.993347 0.115159i \(-0.963262\pi\)
0.596404 + 0.802684i \(0.296595\pi\)
\(912\) 0 0
\(913\) −14.4715 + 25.0654i −0.478937 + 0.829543i
\(914\) 0 0
\(915\) 1.49700 + 2.33978i 0.0494892 + 0.0773508i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 9.41887 16.3140i 0.310700 0.538148i −0.667814 0.744328i \(-0.732770\pi\)
0.978514 + 0.206180i \(0.0661032\pi\)
\(920\) 0 0
\(921\) −37.9669 + 1.73148i −1.25105 + 0.0570543i
\(922\) 0 0
\(923\) −3.89037 6.73832i −0.128053 0.221794i
\(924\) 0 0
\(925\) 3.18629 5.51882i 0.104765 0.181458i
\(926\) 0 0
\(927\) 53.7229 4.91029i 1.76449 0.161275i
\(928\) 0 0
\(929\) −7.45185 12.9070i −0.244487 0.423464i 0.717500 0.696558i \(-0.245286\pi\)
−0.961987 + 0.273094i \(0.911953\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 21.6426 41.7727i 0.708547 1.36758i
\(934\) 0 0
\(935\) 1.41887 + 2.45756i 0.0464021 + 0.0803708i
\(936\) 0 0
\(937\) 3.94299 0.128812 0.0644059 0.997924i \(-0.479485\pi\)
0.0644059 + 0.997924i \(0.479485\pi\)
\(938\) 0 0
\(939\) −7.97529 12.4653i −0.260264 0.406788i
\(940\) 0 0
\(941\) 21.4056 37.0756i 0.697804 1.20863i −0.271423 0.962460i \(-0.587494\pi\)
0.969226 0.246171i \(-0.0791725\pi\)
\(942\) 0 0
\(943\) −13.4626 23.3180i −0.438404 0.759338i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 13.5919 + 23.5419i 0.441678 + 0.765009i 0.997814 0.0660823i \(-0.0210500\pi\)
−0.556136 + 0.831091i \(0.687717\pi\)
\(948\) 0 0
\(949\) 4.69076 8.12463i 0.152268 0.263737i
\(950\) 0 0
\(951\) 0.372660 + 0.582462i 0.0120843 + 0.0188876i
\(952\) 0 0
\(953\) 1.12295 0.0363760 0.0181880 0.999835i \(-0.494210\pi\)
0.0181880 + 0.999835i \(0.494210\pi\)
\(954\) 0 0
\(955\) −23.9956 41.5616i −0.776480 1.34490i
\(956\) 0 0
\(957\) 33.5349 64.7263i 1.08403 2.09230i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −36.1357 62.5889i −1.16567 2.01900i
\(962\) 0 0
\(963\) −1.39329 + 3.01845i −0.0448983 + 0.0972683i
\(964\) 0 0
\(965\) 14.9371 25.8717i 0.480841 0.832841i
\(966\) 0 0
\(967\) 4.75223 + 8.23111i 0.152822 + 0.264695i 0.932264 0.361780i \(-0.117831\pi\)
−0.779442 + 0.626474i \(0.784497\pi\)
\(968\) 0 0
\(969\) 2.54523 0.116075i 0.0817646 0.00372888i
\(970\) 0 0
\(971\) 12.2989 21.3024i 0.394691 0.683625i −0.598370 0.801220i \(-0.704185\pi\)
0.993062 + 0.117594i \(0.0375182\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0.728790 + 1.13909i 0.0233400 + 0.0364800i
\(976\) 0 0
\(977\) 12.7016 21.9997i 0.406359 0.703834i −0.588120 0.808774i \(-0.700132\pi\)
0.994479 + 0.104940i \(0.0334650\pi\)
\(978\) 0 0
\(979\) −34.9164 + 60.4770i −1.11593 + 1.93285i
\(980\) 0 0
\(981\) −5.85087 8.28728i −0.186804 0.264593i
\(982\) 0 0
\(983\) 22.8535 0.728913 0.364457 0.931220i \(-0.381255\pi\)
0.364457 + 0.931220i \(0.381255\pi\)
\(984\) 0 0
\(985\) −35.6224 −1.13502
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 12.2552 21.2266i 0.389691 0.674965i
\(990\) 0 0
\(991\) −12.2345 21.1908i −0.388642 0.673149i 0.603625 0.797269i \(-0.293723\pi\)
−0.992267 + 0.124120i \(0.960389\pi\)
\(992\) 0 0
\(993\) −5.24465 8.19731i −0.166434 0.260134i
\(994\) 0 0
\(995\) 11.8559 + 20.5351i 0.375858 + 0.651006i
\(996\) 0 0
\(997\) 26.0000 0.823428 0.411714 0.911313i \(-0.364930\pi\)
0.411714 + 0.911313i \(0.364930\pi\)
\(998\) 0 0
\(999\) 16.0021 39.2777i 0.506285 1.24269i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.l.d.961.1 6
3.2 odd 2 5292.2.l.g.3313.1 6
7.2 even 3 252.2.j.b.169.2 yes 6
7.3 odd 6 1764.2.i.e.1537.2 6
7.4 even 3 1764.2.i.f.1537.2 6
7.5 odd 6 1764.2.j.d.1177.2 6
7.6 odd 2 1764.2.l.g.961.3 6
9.4 even 3 1764.2.i.f.373.2 6
9.5 odd 6 5292.2.i.d.1549.3 6
21.2 odd 6 756.2.j.a.505.3 6
21.5 even 6 5292.2.j.e.3529.1 6
21.11 odd 6 5292.2.i.d.2125.3 6
21.17 even 6 5292.2.i.g.2125.1 6
21.20 even 2 5292.2.l.d.3313.3 6
28.23 odd 6 1008.2.r.g.673.2 6
63.2 odd 6 2268.2.a.j.1.1 3
63.4 even 3 inner 1764.2.l.d.949.1 6
63.5 even 6 5292.2.j.e.1765.1 6
63.13 odd 6 1764.2.i.e.373.2 6
63.16 even 3 2268.2.a.g.1.3 3
63.23 odd 6 756.2.j.a.253.3 6
63.31 odd 6 1764.2.l.g.949.3 6
63.32 odd 6 5292.2.l.g.361.1 6
63.40 odd 6 1764.2.j.d.589.2 6
63.41 even 6 5292.2.i.g.1549.1 6
63.58 even 3 252.2.j.b.85.2 6
63.59 even 6 5292.2.l.d.361.3 6
84.23 even 6 3024.2.r.i.2017.3 6
252.23 even 6 3024.2.r.i.1009.3 6
252.79 odd 6 9072.2.a.bt.1.3 3
252.191 even 6 9072.2.a.bz.1.1 3
252.247 odd 6 1008.2.r.g.337.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.j.b.85.2 6 63.58 even 3
252.2.j.b.169.2 yes 6 7.2 even 3
756.2.j.a.253.3 6 63.23 odd 6
756.2.j.a.505.3 6 21.2 odd 6
1008.2.r.g.337.2 6 252.247 odd 6
1008.2.r.g.673.2 6 28.23 odd 6
1764.2.i.e.373.2 6 63.13 odd 6
1764.2.i.e.1537.2 6 7.3 odd 6
1764.2.i.f.373.2 6 9.4 even 3
1764.2.i.f.1537.2 6 7.4 even 3
1764.2.j.d.589.2 6 63.40 odd 6
1764.2.j.d.1177.2 6 7.5 odd 6
1764.2.l.d.949.1 6 63.4 even 3 inner
1764.2.l.d.961.1 6 1.1 even 1 trivial
1764.2.l.g.949.3 6 63.31 odd 6
1764.2.l.g.961.3 6 7.6 odd 2
2268.2.a.g.1.3 3 63.16 even 3
2268.2.a.j.1.1 3 63.2 odd 6
3024.2.r.i.1009.3 6 252.23 even 6
3024.2.r.i.2017.3 6 84.23 even 6
5292.2.i.d.1549.3 6 9.5 odd 6
5292.2.i.d.2125.3 6 21.11 odd 6
5292.2.i.g.1549.1 6 63.41 even 6
5292.2.i.g.2125.1 6 21.17 even 6
5292.2.j.e.1765.1 6 63.5 even 6
5292.2.j.e.3529.1 6 21.5 even 6
5292.2.l.d.361.3 6 63.59 even 6
5292.2.l.d.3313.3 6 21.20 even 2
5292.2.l.g.361.1 6 63.32 odd 6
5292.2.l.g.3313.1 6 3.2 odd 2
9072.2.a.bt.1.3 3 252.79 odd 6
9072.2.a.bz.1.1 3 252.191 even 6