# Properties

 Label 1764.2.k.b.361.1 Level $1764$ Weight $2$ Character 1764.361 Analytic conductor $14.086$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1764 = 2^{2} \cdot 3^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1764.k (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$14.0856109166$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{19}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 28) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 361.1 Root $$0.500000 + 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 1764.361 Dual form 1764.2.k.b.1549.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-1.50000 - 2.59808i) q^{5} +O(q^{10})$$ $$q+(-1.50000 - 2.59808i) q^{5} +(-1.50000 + 2.59808i) q^{11} -2.00000 q^{13} +(-1.50000 + 2.59808i) q^{17} +(-0.500000 - 0.866025i) q^{19} +(1.50000 + 2.59808i) q^{23} +(-2.00000 + 3.46410i) q^{25} +6.00000 q^{29} +(-3.50000 + 6.06218i) q^{31} +(0.500000 + 0.866025i) q^{37} +6.00000 q^{41} -4.00000 q^{43} +(4.50000 + 7.79423i) q^{47} +(1.50000 - 2.59808i) q^{53} +9.00000 q^{55} +(-4.50000 + 7.79423i) q^{59} +(-0.500000 - 0.866025i) q^{61} +(3.00000 + 5.19615i) q^{65} +(3.50000 - 6.06218i) q^{67} +(-0.500000 + 0.866025i) q^{73} +(6.50000 + 11.2583i) q^{79} +12.0000 q^{83} +9.00000 q^{85} +(-7.50000 - 12.9904i) q^{89} +(-1.50000 + 2.59808i) q^{95} +10.0000 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 3q^{5} + O(q^{10})$$ $$2q - 3q^{5} - 3q^{11} - 4q^{13} - 3q^{17} - q^{19} + 3q^{23} - 4q^{25} + 12q^{29} - 7q^{31} + q^{37} + 12q^{41} - 8q^{43} + 9q^{47} + 3q^{53} + 18q^{55} - 9q^{59} - q^{61} + 6q^{65} + 7q^{67} - q^{73} + 13q^{79} + 24q^{83} + 18q^{85} - 15q^{89} - 3q^{95} + 20q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times$$.

 $$n$$ $$785$$ $$883$$ $$1081$$ $$\chi(n)$$ $$1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ −1.50000 2.59808i −0.670820 1.16190i −0.977672 0.210138i $$-0.932609\pi$$
0.306851 0.951757i $$-0.400725\pi$$
$$6$$ 0 0
$$7$$ 0 0
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ −1.50000 + 2.59808i −0.452267 + 0.783349i −0.998526 0.0542666i $$-0.982718\pi$$
0.546259 + 0.837616i $$0.316051\pi$$
$$12$$ 0 0
$$13$$ −2.00000 −0.554700 −0.277350 0.960769i $$-0.589456\pi$$
−0.277350 + 0.960769i $$0.589456\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ −1.50000 + 2.59808i −0.363803 + 0.630126i −0.988583 0.150675i $$-0.951855\pi$$
0.624780 + 0.780801i $$0.285189\pi$$
$$18$$ 0 0
$$19$$ −0.500000 0.866025i −0.114708 0.198680i 0.802955 0.596040i $$-0.203260\pi$$
−0.917663 + 0.397360i $$0.869927\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 1.50000 + 2.59808i 0.312772 + 0.541736i 0.978961 0.204046i $$-0.0654092\pi$$
−0.666190 + 0.745782i $$0.732076\pi$$
$$24$$ 0 0
$$25$$ −2.00000 + 3.46410i −0.400000 + 0.692820i
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ 6.00000 1.11417 0.557086 0.830455i $$-0.311919\pi$$
0.557086 + 0.830455i $$0.311919\pi$$
$$30$$ 0 0
$$31$$ −3.50000 + 6.06218i −0.628619 + 1.08880i 0.359211 + 0.933257i $$0.383046\pi$$
−0.987829 + 0.155543i $$0.950287\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 0.500000 + 0.866025i 0.0821995 + 0.142374i 0.904194 0.427121i $$-0.140472\pi$$
−0.821995 + 0.569495i $$0.807139\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ 6.00000 0.937043 0.468521 0.883452i $$-0.344787\pi$$
0.468521 + 0.883452i $$0.344787\pi$$
$$42$$ 0 0
$$43$$ −4.00000 −0.609994 −0.304997 0.952353i $$-0.598656\pi$$
−0.304997 + 0.952353i $$0.598656\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 4.50000 + 7.79423i 0.656392 + 1.13691i 0.981543 + 0.191243i $$0.0612518\pi$$
−0.325150 + 0.945662i $$0.605415\pi$$
$$48$$ 0 0
$$49$$ 0 0
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 1.50000 2.59808i 0.206041 0.356873i −0.744423 0.667708i $$-0.767275\pi$$
0.950464 + 0.310835i $$0.100609\pi$$
$$54$$ 0 0
$$55$$ 9.00000 1.21356
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ −4.50000 + 7.79423i −0.585850 + 1.01472i 0.408919 + 0.912571i $$0.365906\pi$$
−0.994769 + 0.102151i $$0.967427\pi$$
$$60$$ 0 0
$$61$$ −0.500000 0.866025i −0.0640184 0.110883i 0.832240 0.554416i $$-0.187058\pi$$
−0.896258 + 0.443533i $$0.853725\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 3.00000 + 5.19615i 0.372104 + 0.644503i
$$66$$ 0 0
$$67$$ 3.50000 6.06218i 0.427593 0.740613i −0.569066 0.822292i $$-0.692695\pi$$
0.996659 + 0.0816792i $$0.0260283\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$72$$ 0 0
$$73$$ −0.500000 + 0.866025i −0.0585206 + 0.101361i −0.893801 0.448463i $$-0.851972\pi$$
0.835281 + 0.549823i $$0.185305\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 6.50000 + 11.2583i 0.731307 + 1.26666i 0.956325 + 0.292306i $$0.0944227\pi$$
−0.225018 + 0.974355i $$0.572244\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ 12.0000 1.31717 0.658586 0.752506i $$-0.271155\pi$$
0.658586 + 0.752506i $$0.271155\pi$$
$$84$$ 0 0
$$85$$ 9.00000 0.976187
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ −7.50000 12.9904i −0.794998 1.37698i −0.922840 0.385183i $$-0.874138\pi$$
0.127842 0.991795i $$-0.459195\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ −1.50000 + 2.59808i −0.153897 + 0.266557i
$$96$$ 0 0
$$97$$ 10.0000 1.01535 0.507673 0.861550i $$-0.330506\pi$$
0.507673 + 0.861550i $$0.330506\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ −7.50000 + 12.9904i −0.746278 + 1.29259i 0.203317 + 0.979113i $$0.434828\pi$$
−0.949595 + 0.313478i $$0.898506\pi$$
$$102$$ 0 0
$$103$$ 5.50000 + 9.52628i 0.541931 + 0.938652i 0.998793 + 0.0491146i $$0.0156400\pi$$
−0.456862 + 0.889538i $$0.651027\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 7.50000 + 12.9904i 0.725052 + 1.25583i 0.958952 + 0.283567i $$0.0915178\pi$$
−0.233900 + 0.972261i $$0.575149\pi$$
$$108$$ 0 0
$$109$$ 0.500000 0.866025i 0.0478913 0.0829502i −0.841086 0.540901i $$-0.818083\pi$$
0.888977 + 0.457951i $$0.151417\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ −6.00000 −0.564433 −0.282216 0.959351i $$-0.591070\pi$$
−0.282216 + 0.959351i $$0.591070\pi$$
$$114$$ 0 0
$$115$$ 4.50000 7.79423i 0.419627 0.726816i
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ 1.00000 + 1.73205i 0.0909091 + 0.157459i
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ −3.00000 −0.268328
$$126$$ 0 0
$$127$$ 8.00000 0.709885 0.354943 0.934888i $$-0.384500\pi$$
0.354943 + 0.934888i $$0.384500\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ −1.50000 2.59808i −0.131056 0.226995i 0.793028 0.609185i $$-0.208503\pi$$
−0.924084 + 0.382190i $$0.875170\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ −10.5000 + 18.1865i −0.897076 + 1.55378i −0.0658609 + 0.997829i $$0.520979\pi$$
−0.831215 + 0.555952i $$0.812354\pi$$
$$138$$ 0 0
$$139$$ −20.0000 −1.69638 −0.848189 0.529694i $$-0.822307\pi$$
−0.848189 + 0.529694i $$0.822307\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 3.00000 5.19615i 0.250873 0.434524i
$$144$$ 0 0
$$145$$ −9.00000 15.5885i −0.747409 1.29455i
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ 1.50000 + 2.59808i 0.122885 + 0.212843i 0.920904 0.389789i $$-0.127452\pi$$
−0.798019 + 0.602632i $$0.794119\pi$$
$$150$$ 0 0
$$151$$ −8.50000 + 14.7224i −0.691720 + 1.19809i 0.279554 + 0.960130i $$0.409814\pi$$
−0.971274 + 0.237964i $$0.923520\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 21.0000 1.68676
$$156$$ 0 0
$$157$$ −6.50000 + 11.2583i −0.518756 + 0.898513i 0.481006 + 0.876717i $$0.340272\pi$$
−0.999762 + 0.0217953i $$0.993062\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ −5.50000 9.52628i −0.430793 0.746156i 0.566149 0.824303i $$-0.308433\pi$$
−0.996942 + 0.0781474i $$0.975100\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ −12.0000 −0.928588 −0.464294 0.885681i $$-0.653692\pi$$
−0.464294 + 0.885681i $$0.653692\pi$$
$$168$$ 0 0
$$169$$ −9.00000 −0.692308
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ 4.50000 + 7.79423i 0.342129 + 0.592584i 0.984828 0.173534i $$-0.0555188\pi$$
−0.642699 + 0.766119i $$0.722185\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 10.5000 18.1865i 0.784807 1.35933i −0.144308 0.989533i $$-0.546095\pi$$
0.929114 0.369792i $$-0.120571\pi$$
$$180$$ 0 0
$$181$$ 10.0000 0.743294 0.371647 0.928374i $$-0.378793\pi$$
0.371647 + 0.928374i $$0.378793\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 1.50000 2.59808i 0.110282 0.191014i
$$186$$ 0 0
$$187$$ −4.50000 7.79423i −0.329073 0.569970i
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −4.50000 7.79423i −0.325609 0.563971i 0.656027 0.754738i $$-0.272236\pi$$
−0.981635 + 0.190767i $$0.938902\pi$$
$$192$$ 0 0
$$193$$ −5.50000 + 9.52628i −0.395899 + 0.685717i −0.993215 0.116289i $$-0.962900\pi$$
0.597317 + 0.802005i $$0.296234\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ −18.0000 −1.28245 −0.641223 0.767354i $$-0.721573\pi$$
−0.641223 + 0.767354i $$0.721573\pi$$
$$198$$ 0 0
$$199$$ −3.50000 + 6.06218i −0.248108 + 0.429736i −0.963001 0.269498i $$-0.913142\pi$$
0.714893 + 0.699234i $$0.246476\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ −9.00000 15.5885i −0.628587 1.08875i
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 3.00000 0.207514
$$210$$ 0 0
$$211$$ −4.00000 −0.275371 −0.137686 0.990476i $$-0.543966\pi$$
−0.137686 + 0.990476i $$0.543966\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 6.00000 + 10.3923i 0.409197 + 0.708749i
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 3.00000 5.19615i 0.201802 0.349531i
$$222$$ 0 0
$$223$$ −8.00000 −0.535720 −0.267860 0.963458i $$-0.586316\pi$$
−0.267860 + 0.963458i $$0.586316\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 1.50000 2.59808i 0.0995585 0.172440i −0.811943 0.583736i $$-0.801590\pi$$
0.911502 + 0.411296i $$0.134924\pi$$
$$228$$ 0 0
$$229$$ 5.50000 + 9.52628i 0.363450 + 0.629514i 0.988526 0.151050i $$-0.0482653\pi$$
−0.625076 + 0.780564i $$0.714932\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −10.5000 18.1865i −0.687878 1.19144i −0.972523 0.232806i $$-0.925209\pi$$
0.284645 0.958633i $$-0.408124\pi$$
$$234$$ 0 0
$$235$$ 13.5000 23.3827i 0.880643 1.52532i
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 12.0000 0.776215 0.388108 0.921614i $$-0.373129\pi$$
0.388108 + 0.921614i $$0.373129\pi$$
$$240$$ 0 0
$$241$$ −0.500000 + 0.866025i −0.0322078 + 0.0557856i −0.881680 0.471848i $$-0.843587\pi$$
0.849472 + 0.527633i $$0.176921\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 1.00000 + 1.73205i 0.0636285 + 0.110208i
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$252$$ 0 0
$$253$$ −9.00000 −0.565825
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ −1.50000 2.59808i −0.0935674 0.162064i 0.815442 0.578838i $$-0.196494\pi$$
−0.909010 + 0.416775i $$0.863160\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ −1.50000 + 2.59808i −0.0924940 + 0.160204i −0.908560 0.417755i $$-0.862817\pi$$
0.816066 + 0.577959i $$0.196151\pi$$
$$264$$ 0 0
$$265$$ −9.00000 −0.552866
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ −1.50000 + 2.59808i −0.0914566 + 0.158408i −0.908124 0.418701i $$-0.862486\pi$$
0.816668 + 0.577108i $$0.195819\pi$$
$$270$$ 0 0
$$271$$ 5.50000 + 9.52628i 0.334101 + 0.578680i 0.983312 0.181928i $$-0.0582339\pi$$
−0.649211 + 0.760609i $$0.724901\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ −6.00000 10.3923i −0.361814 0.626680i
$$276$$ 0 0
$$277$$ 6.50000 11.2583i 0.390547 0.676448i −0.601975 0.798515i $$-0.705619\pi$$
0.992522 + 0.122068i $$0.0389525\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ −30.0000 −1.78965 −0.894825 0.446417i $$-0.852700\pi$$
−0.894825 + 0.446417i $$0.852700\pi$$
$$282$$ 0 0
$$283$$ 14.5000 25.1147i 0.861936 1.49292i −0.00812260 0.999967i $$-0.502586\pi$$
0.870058 0.492949i $$-0.164081\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ 4.00000 + 6.92820i 0.235294 + 0.407541i
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ 6.00000 0.350524 0.175262 0.984522i $$-0.443923\pi$$
0.175262 + 0.984522i $$0.443923\pi$$
$$294$$ 0 0
$$295$$ 27.0000 1.57200
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ −3.00000 5.19615i −0.173494 0.300501i
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ −1.50000 + 2.59808i −0.0858898 + 0.148765i
$$306$$ 0 0
$$307$$ 28.0000 1.59804 0.799022 0.601302i $$-0.205351\pi$$
0.799022 + 0.601302i $$0.205351\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ 13.5000 23.3827i 0.765515 1.32591i −0.174459 0.984664i $$-0.555818\pi$$
0.939974 0.341246i $$-0.110849\pi$$
$$312$$ 0 0
$$313$$ 11.5000 + 19.9186i 0.650018 + 1.12586i 0.983118 + 0.182973i $$0.0585722\pi$$
−0.333099 + 0.942892i $$0.608094\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −4.50000 7.79423i −0.252745 0.437767i 0.711535 0.702650i $$-0.248000\pi$$
−0.964281 + 0.264883i $$0.914667\pi$$
$$318$$ 0 0
$$319$$ −9.00000 + 15.5885i −0.503903 + 0.872786i
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 3.00000 0.166924
$$324$$ 0 0
$$325$$ 4.00000 6.92820i 0.221880 0.384308i
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ 6.50000 + 11.2583i 0.357272 + 0.618814i 0.987504 0.157593i $$-0.0503735\pi$$
−0.630232 + 0.776407i $$0.717040\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ −21.0000 −1.14735
$$336$$ 0 0
$$337$$ −34.0000 −1.85210 −0.926049 0.377403i $$-0.876817\pi$$
−0.926049 + 0.377403i $$0.876817\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ −10.5000 18.1865i −0.568607 0.984856i
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 4.50000 7.79423i 0.241573 0.418416i −0.719590 0.694399i $$-0.755670\pi$$
0.961162 + 0.275983i $$0.0890035\pi$$
$$348$$ 0 0
$$349$$ −26.0000 −1.39175 −0.695874 0.718164i $$-0.744983\pi$$
−0.695874 + 0.718164i $$0.744983\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 10.5000 18.1865i 0.558859 0.967972i −0.438733 0.898617i $$-0.644573\pi$$
0.997592 0.0693543i $$-0.0220939\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 7.50000 + 12.9904i 0.395835 + 0.685606i 0.993207 0.116358i $$-0.0371219\pi$$
−0.597372 + 0.801964i $$0.703789\pi$$
$$360$$ 0 0
$$361$$ 9.00000 15.5885i 0.473684 0.820445i
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ 3.00000 0.157027
$$366$$ 0 0
$$367$$ 2.50000 4.33013i 0.130499 0.226031i −0.793370 0.608740i $$-0.791675\pi$$
0.923869 + 0.382709i $$0.125009\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ 12.5000 + 21.6506i 0.647225 + 1.12103i 0.983783 + 0.179364i $$0.0574041\pi$$
−0.336557 + 0.941663i $$0.609263\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ −12.0000 −0.618031
$$378$$ 0 0
$$379$$ 8.00000 0.410932 0.205466 0.978664i $$-0.434129\pi$$
0.205466 + 0.978664i $$0.434129\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 16.5000 + 28.5788i 0.843111 + 1.46031i 0.887252 + 0.461285i $$0.152611\pi$$
−0.0441413 + 0.999025i $$0.514055\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ 7.50000 12.9904i 0.380265 0.658638i −0.610835 0.791758i $$-0.709166\pi$$
0.991100 + 0.133120i $$0.0424994\pi$$
$$390$$ 0 0
$$391$$ −9.00000 −0.455150
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 19.5000 33.7750i 0.981151 1.69940i
$$396$$ 0 0
$$397$$ −18.5000 32.0429i −0.928488 1.60819i −0.785853 0.618414i $$-0.787776\pi$$
−0.142636 0.989775i $$-0.545558\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 1.50000 + 2.59808i 0.0749064 + 0.129742i 0.901046 0.433724i $$-0.142801\pi$$
−0.826139 + 0.563466i $$0.809468\pi$$
$$402$$ 0 0
$$403$$ 7.00000 12.1244i 0.348695 0.603957i
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ −3.00000 −0.148704
$$408$$ 0 0
$$409$$ 5.50000 9.52628i 0.271957 0.471044i −0.697406 0.716677i $$-0.745662\pi$$
0.969363 + 0.245633i $$0.0789957\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ −18.0000 31.1769i −0.883585 1.53041i
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ −12.0000 −0.586238 −0.293119 0.956076i $$-0.594693\pi$$
−0.293119 + 0.956076i $$0.594693\pi$$
$$420$$ 0 0
$$421$$ −22.0000 −1.07221 −0.536107 0.844150i $$-0.680106\pi$$
−0.536107 + 0.844150i $$0.680106\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ −6.00000 10.3923i −0.291043 0.504101i
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ −7.50000 + 12.9904i −0.361262 + 0.625725i −0.988169 0.153370i $$-0.950987\pi$$
0.626907 + 0.779094i $$0.284321\pi$$
$$432$$ 0 0
$$433$$ 10.0000 0.480569 0.240285 0.970702i $$-0.422759\pi$$
0.240285 + 0.970702i $$0.422759\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 1.50000 2.59808i 0.0717547 0.124283i
$$438$$ 0 0
$$439$$ −0.500000 0.866025i −0.0238637 0.0413331i 0.853847 0.520524i $$-0.174263\pi$$
−0.877711 + 0.479191i $$0.840930\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ −4.50000 7.79423i −0.213801 0.370315i 0.739100 0.673596i $$-0.235251\pi$$
−0.952901 + 0.303281i $$0.901918\pi$$
$$444$$ 0 0
$$445$$ −22.5000 + 38.9711i −1.06660 + 1.84741i
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 18.0000 0.849473 0.424736 0.905317i $$-0.360367\pi$$
0.424736 + 0.905317i $$0.360367\pi$$
$$450$$ 0 0
$$451$$ −9.00000 + 15.5885i −0.423793 + 0.734032i
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −11.5000 19.9186i −0.537947 0.931752i −0.999014 0.0443868i $$-0.985867\pi$$
0.461067 0.887365i $$-0.347467\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ −6.00000 −0.279448 −0.139724 0.990190i $$-0.544622\pi$$
−0.139724 + 0.990190i $$0.544622\pi$$
$$462$$ 0 0
$$463$$ −16.0000 −0.743583 −0.371792 0.928316i $$-0.621256\pi$$
−0.371792 + 0.928316i $$0.621256\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 10.5000 + 18.1865i 0.485882 + 0.841572i 0.999868 0.0162260i $$-0.00516512\pi$$
−0.513986 + 0.857798i $$0.671832\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ 6.00000 10.3923i 0.275880 0.477839i
$$474$$ 0 0
$$475$$ 4.00000 0.183533
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ 1.50000 2.59808i 0.0685367 0.118709i −0.829721 0.558179i $$-0.811500\pi$$
0.898257 + 0.439470i $$0.144834\pi$$
$$480$$ 0 0
$$481$$ −1.00000 1.73205i −0.0455961 0.0789747i
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ −15.0000 25.9808i −0.681115 1.17973i
$$486$$ 0 0
$$487$$ 9.50000 16.4545i 0.430486 0.745624i −0.566429 0.824110i $$-0.691675\pi$$
0.996915 + 0.0784867i $$0.0250088\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ −24.0000 −1.08310 −0.541552 0.840667i $$-0.682163\pi$$
−0.541552 + 0.840667i $$0.682163\pi$$
$$492$$ 0 0
$$493$$ −9.00000 + 15.5885i −0.405340 + 0.702069i
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ −5.50000 9.52628i −0.246214 0.426455i 0.716258 0.697835i $$-0.245853\pi$$
−0.962472 + 0.271380i $$0.912520\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$504$$ 0 0
$$505$$ 45.0000 2.00247
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ −1.50000 2.59808i −0.0664863 0.115158i 0.830866 0.556473i $$-0.187846\pi$$
−0.897352 + 0.441315i $$0.854512\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 16.5000 28.5788i 0.727077 1.25933i
$$516$$ 0 0
$$517$$ −27.0000 −1.18746
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ −19.5000 + 33.7750i −0.854311 + 1.47971i 0.0229727 + 0.999736i $$0.492687\pi$$
−0.877283 + 0.479973i $$0.840646\pi$$
$$522$$ 0 0
$$523$$ −0.500000 0.866025i −0.0218635 0.0378686i 0.854887 0.518815i $$-0.173627\pi$$
−0.876750 + 0.480946i $$0.840293\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ −10.5000 18.1865i −0.457387 0.792218i
$$528$$ 0 0
$$529$$ 7.00000 12.1244i 0.304348 0.527146i
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ −12.0000 −0.519778
$$534$$ 0 0
$$535$$ 22.5000 38.9711i 0.972760 1.68487i
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ −17.5000 30.3109i −0.752384 1.30317i −0.946664 0.322221i $$-0.895571\pi$$
0.194281 0.980946i $$-0.437763\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ −3.00000 −0.128506
$$546$$ 0 0
$$547$$ 8.00000 0.342055 0.171028 0.985266i $$-0.445291\pi$$
0.171028 + 0.985266i $$0.445291\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ −3.00000 5.19615i −0.127804 0.221364i
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ −16.5000 + 28.5788i −0.699127 + 1.21092i 0.269642 + 0.962961i $$0.413095\pi$$
−0.968769 + 0.247964i $$0.920239\pi$$
$$558$$ 0 0
$$559$$ 8.00000 0.338364
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ −4.50000 + 7.79423i −0.189652 + 0.328488i −0.945134 0.326682i $$-0.894069\pi$$
0.755482 + 0.655169i $$0.227403\pi$$
$$564$$ 0 0
$$565$$ 9.00000 + 15.5885i 0.378633 + 0.655811i
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −4.50000 7.79423i −0.188650 0.326751i 0.756151 0.654398i $$-0.227078\pi$$
−0.944800 + 0.327647i $$0.893744\pi$$
$$570$$ 0 0
$$571$$ −14.5000 + 25.1147i −0.606806 + 1.05102i 0.384957 + 0.922934i $$0.374216\pi$$
−0.991763 + 0.128085i $$0.959117\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ −12.0000 −0.500435
$$576$$ 0 0
$$577$$ −0.500000 + 0.866025i −0.0208153 + 0.0360531i −0.876245 0.481865i $$-0.839960\pi$$
0.855430 + 0.517918i $$0.173293\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 4.50000 + 7.79423i 0.186371 + 0.322804i
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 12.0000 0.495293 0.247647 0.968850i $$-0.420343\pi$$
0.247647 + 0.968850i $$0.420343\pi$$
$$588$$ 0 0
$$589$$ 7.00000 0.288430
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 10.5000 + 18.1865i 0.431183 + 0.746831i 0.996976 0.0777165i $$-0.0247629\pi$$
−0.565792 + 0.824548i $$0.691430\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ −13.5000 + 23.3827i −0.551595 + 0.955391i 0.446565 + 0.894751i $$0.352647\pi$$
−0.998160 + 0.0606393i $$0.980686\pi$$
$$600$$ 0 0
$$601$$ −14.0000 −0.571072 −0.285536 0.958368i $$-0.592172\pi$$
−0.285536 + 0.958368i $$0.592172\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ 3.00000 5.19615i 0.121967 0.211254i
$$606$$ 0 0
$$607$$ 23.5000 + 40.7032i 0.953836 + 1.65209i 0.737011 + 0.675881i $$0.236237\pi$$
0.216825 + 0.976210i $$0.430430\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ −9.00000 15.5885i −0.364101 0.630641i
$$612$$ 0 0
$$613$$ 12.5000 21.6506i 0.504870 0.874461i −0.495114 0.868828i $$-0.664874\pi$$
0.999984 0.00563283i $$-0.00179300\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −6.00000 −0.241551 −0.120775 0.992680i $$-0.538538\pi$$
−0.120775 + 0.992680i $$0.538538\pi$$
$$618$$ 0 0
$$619$$ −15.5000 + 26.8468i −0.622998 + 1.07906i 0.365927 + 0.930644i $$0.380752\pi$$
−0.988924 + 0.148420i $$0.952581\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ 14.5000 + 25.1147i 0.580000 + 1.00459i
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ −3.00000 −0.119618
$$630$$ 0 0
$$631$$ −16.0000 −0.636950 −0.318475 0.947931i $$-0.603171\pi$$
−0.318475 + 0.947931i $$0.603171\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ −12.0000 20.7846i −0.476205 0.824812i
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 7.50000 12.9904i 0.296232 0.513089i −0.679039 0.734103i $$-0.737603\pi$$
0.975271 + 0.221013i $$0.0709364\pi$$
$$642$$ 0 0
$$643$$ −20.0000 −0.788723 −0.394362 0.918955i $$-0.629034\pi$$
−0.394362 + 0.918955i $$0.629034\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ −10.5000 + 18.1865i −0.412798 + 0.714986i −0.995194 0.0979182i $$-0.968782\pi$$
0.582397 + 0.812905i $$0.302115\pi$$
$$648$$ 0 0
$$649$$ −13.5000 23.3827i −0.529921 0.917851i
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 19.5000 + 33.7750i 0.763094 + 1.32172i 0.941248 + 0.337715i $$0.109654\pi$$
−0.178154 + 0.984003i $$0.557013\pi$$
$$654$$ 0 0
$$655$$ −4.50000 + 7.79423i −0.175830 + 0.304546i
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ −12.0000 −0.467454 −0.233727 0.972302i $$-0.575092\pi$$
−0.233727 + 0.972302i $$0.575092\pi$$
$$660$$ 0 0
$$661$$ 5.50000 9.52628i 0.213925 0.370529i −0.739014 0.673690i $$-0.764708\pi$$
0.952940 + 0.303160i $$0.0980418\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 9.00000 + 15.5885i 0.348481 + 0.603587i
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 3.00000 0.115814
$$672$$ 0 0
$$673$$ 14.0000 0.539660 0.269830 0.962908i $$-0.413032\pi$$
0.269830 + 0.962908i $$0.413032\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ −13.5000 23.3827i −0.518847 0.898670i −0.999760 0.0219013i $$-0.993028\pi$$
0.480913 0.876768i $$-0.340305\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 10.5000 18.1865i 0.401771 0.695888i −0.592168 0.805814i $$-0.701728\pi$$
0.993940 + 0.109926i $$0.0350613\pi$$
$$684$$ 0 0
$$685$$ 63.0000 2.40711
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ −3.00000 + 5.19615i −0.114291 + 0.197958i
$$690$$ 0 0
$$691$$ −6.50000 11.2583i −0.247272 0.428287i 0.715496 0.698617i $$-0.246201\pi$$
−0.962768 + 0.270330i $$0.912867\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 30.0000 + 51.9615i 1.13796 + 1.97101i
$$696$$ 0 0
$$697$$ −9.00000 + 15.5885i −0.340899 + 0.590455i
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 18.0000 0.679851 0.339925 0.940452i $$-0.389598\pi$$
0.339925 + 0.940452i $$0.389598\pi$$
$$702$$ 0 0
$$703$$ 0.500000 0.866025i 0.0188579 0.0326628i
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ 0.500000 + 0.866025i 0.0187779 + 0.0325243i 0.875262 0.483650i $$-0.160689\pi$$
−0.856484 + 0.516174i $$0.827356\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ −21.0000 −0.786456
$$714$$ 0 0
$$715$$ −18.0000 −0.673162
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 10.5000 + 18.1865i 0.391584 + 0.678243i 0.992659 0.120950i $$-0.0385939\pi$$
−0.601075 + 0.799193i $$0.705261\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ −12.0000 + 20.7846i −0.445669 + 0.771921i
$$726$$ 0 0
$$727$$ −32.0000 −1.18681 −0.593407 0.804902i $$-0.702218\pi$$
−0.593407 + 0.804902i $$0.702218\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ 6.00000 10.3923i 0.221918 0.384373i
$$732$$ 0 0
$$733$$ −12.5000 21.6506i −0.461698 0.799684i 0.537348 0.843361i $$-0.319426\pi$$
−0.999046 + 0.0436764i $$0.986093\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 10.5000 + 18.1865i 0.386772 + 0.669910i
$$738$$ 0 0
$$739$$ 9.50000 16.4545i 0.349463 0.605288i −0.636691 0.771119i $$-0.719697\pi$$
0.986154 + 0.165831i $$0.0530307\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 48.0000 1.76095 0.880475 0.474093i $$-0.157224\pi$$
0.880475 + 0.474093i $$0.157224\pi$$
$$744$$ 0 0
$$745$$ 4.50000 7.79423i 0.164867 0.285558i
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 12.5000 + 21.6506i 0.456131 + 0.790043i 0.998752 0.0499348i $$-0.0159013\pi$$
−0.542621 + 0.839978i $$0.682568\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 51.0000 1.85608
$$756$$ 0 0
$$757$$ 2.00000 0.0726912 0.0363456 0.999339i $$-0.488428\pi$$
0.0363456 + 0.999339i $$0.488428\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ −1.50000 2.59808i −0.0543750 0.0941802i 0.837557 0.546350i $$-0.183983\pi$$
−0.891932 + 0.452170i $$0.850650\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 9.00000 15.5885i 0.324971 0.562867i
$$768$$ 0 0
$$769$$ 34.0000 1.22607 0.613036 0.790055i $$-0.289948\pi$$
0.613036 + 0.790055i $$0.289948\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ 16.5000 28.5788i 0.593464 1.02791i −0.400298 0.916385i $$-0.631093\pi$$
0.993762 0.111524i $$-0.0355733\pi$$
$$774$$ 0 0
$$775$$ −14.0000 24.2487i −0.502895 0.871039i
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ −3.00000 5.19615i −0.107486 0.186171i
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 39.0000 1.39197
$$786$$ 0 0
$$787$$ −15.5000 + 26.8468i −0.552515 + 0.956985i 0.445577 + 0.895244i $$0.352999\pi$$
−0.998092 + 0.0617409i $$0.980335\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 1.00000 + 1.73205i 0.0355110 + 0.0615069i
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 42.0000 1.48772 0.743858 0.668338i $$-0.232994\pi$$
0.743858 + 0.668338i $$0.232994\pi$$
$$798$$ 0 0
$$799$$ −27.0000 −0.955191
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ −1.50000 2.59808i −0.0529339 0.0916841i
$$804$$ 0 0
$$805$$ 0 0