Properties

Label 1764.2.j.c
Level $1764$
Weight $2$
Character orbit 1764.j
Analytic conductor $14.086$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 + \zeta_{6} ) q^{3} -2 \zeta_{6} q^{5} + 3 \zeta_{6} q^{9} +O(q^{10})\) \( q + ( 1 + \zeta_{6} ) q^{3} -2 \zeta_{6} q^{5} + 3 \zeta_{6} q^{9} + ( -4 + 4 \zeta_{6} ) q^{11} -3 \zeta_{6} q^{13} + ( 2 - 4 \zeta_{6} ) q^{15} + 7 q^{17} + 5 q^{19} -4 \zeta_{6} q^{23} + ( 1 - \zeta_{6} ) q^{25} + ( -3 + 6 \zeta_{6} ) q^{27} + ( 1 - \zeta_{6} ) q^{29} + 3 \zeta_{6} q^{31} + ( -8 + 4 \zeta_{6} ) q^{33} + 11 q^{37} + ( 3 - 6 \zeta_{6} ) q^{39} + 9 \zeta_{6} q^{41} + ( -5 + 5 \zeta_{6} ) q^{43} + ( 6 - 6 \zeta_{6} ) q^{45} + ( -3 + 3 \zeta_{6} ) q^{47} + ( 7 + 7 \zeta_{6} ) q^{51} + 3 q^{53} + 8 q^{55} + ( 5 + 5 \zeta_{6} ) q^{57} + 7 \zeta_{6} q^{59} + ( -3 + 3 \zeta_{6} ) q^{61} + ( -6 + 6 \zeta_{6} ) q^{65} -13 \zeta_{6} q^{67} + ( 4 - 8 \zeta_{6} ) q^{69} -8 q^{71} + 7 q^{73} + ( 2 - \zeta_{6} ) q^{75} + ( 9 - 9 \zeta_{6} ) q^{79} + ( -9 + 9 \zeta_{6} ) q^{81} + ( -1 + \zeta_{6} ) q^{83} -14 \zeta_{6} q^{85} + ( 2 - \zeta_{6} ) q^{87} + 15 q^{89} + ( -3 + 6 \zeta_{6} ) q^{93} -10 \zeta_{6} q^{95} + ( 17 - 17 \zeta_{6} ) q^{97} -12 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 3q^{3} - 2q^{5} + 3q^{9} + O(q^{10}) \) \( 2q + 3q^{3} - 2q^{5} + 3q^{9} - 4q^{11} - 3q^{13} + 14q^{17} + 10q^{19} - 4q^{23} + q^{25} + q^{29} + 3q^{31} - 12q^{33} + 22q^{37} + 9q^{41} - 5q^{43} + 6q^{45} - 3q^{47} + 21q^{51} + 6q^{53} + 16q^{55} + 15q^{57} + 7q^{59} - 3q^{61} - 6q^{65} - 13q^{67} - 16q^{71} + 14q^{73} + 3q^{75} + 9q^{79} - 9q^{81} - q^{83} - 14q^{85} + 3q^{87} + 30q^{89} - 10q^{95} + 17q^{97} - 24q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
589.1
0.500000 0.866025i
0.500000 + 0.866025i
0 1.50000 0.866025i 0 −1.00000 + 1.73205i 0 0 0 1.50000 2.59808i 0
1177.1 0 1.50000 + 0.866025i 0 −1.00000 1.73205i 0 0 0 1.50000 + 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1764.2.j.c 2
3.b odd 2 1 5292.2.j.c 2
7.b odd 2 1 1764.2.j.a 2
7.c even 3 1 252.2.i.a 2
7.c even 3 1 252.2.l.a yes 2
7.d odd 6 1 1764.2.i.b 2
7.d odd 6 1 1764.2.l.b 2
9.c even 3 1 inner 1764.2.j.c 2
9.d odd 6 1 5292.2.j.c 2
21.c even 2 1 5292.2.j.b 2
21.g even 6 1 5292.2.i.b 2
21.g even 6 1 5292.2.l.b 2
21.h odd 6 1 756.2.i.a 2
21.h odd 6 1 756.2.l.a 2
28.g odd 6 1 1008.2.q.f 2
28.g odd 6 1 1008.2.t.b 2
63.g even 3 1 252.2.i.a 2
63.g even 3 1 2268.2.k.a 2
63.h even 3 1 252.2.l.a yes 2
63.h even 3 1 2268.2.k.a 2
63.i even 6 1 5292.2.l.b 2
63.j odd 6 1 756.2.l.a 2
63.j odd 6 1 2268.2.k.b 2
63.k odd 6 1 1764.2.i.b 2
63.l odd 6 1 1764.2.j.a 2
63.n odd 6 1 756.2.i.a 2
63.n odd 6 1 2268.2.k.b 2
63.o even 6 1 5292.2.j.b 2
63.s even 6 1 5292.2.i.b 2
63.t odd 6 1 1764.2.l.b 2
84.n even 6 1 3024.2.q.e 2
84.n even 6 1 3024.2.t.b 2
252.o even 6 1 3024.2.q.e 2
252.u odd 6 1 1008.2.t.b 2
252.bb even 6 1 3024.2.t.b 2
252.bl odd 6 1 1008.2.q.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.2.i.a 2 7.c even 3 1
252.2.i.a 2 63.g even 3 1
252.2.l.a yes 2 7.c even 3 1
252.2.l.a yes 2 63.h even 3 1
756.2.i.a 2 21.h odd 6 1
756.2.i.a 2 63.n odd 6 1
756.2.l.a 2 21.h odd 6 1
756.2.l.a 2 63.j odd 6 1
1008.2.q.f 2 28.g odd 6 1
1008.2.q.f 2 252.bl odd 6 1
1008.2.t.b 2 28.g odd 6 1
1008.2.t.b 2 252.u odd 6 1
1764.2.i.b 2 7.d odd 6 1
1764.2.i.b 2 63.k odd 6 1
1764.2.j.a 2 7.b odd 2 1
1764.2.j.a 2 63.l odd 6 1
1764.2.j.c 2 1.a even 1 1 trivial
1764.2.j.c 2 9.c even 3 1 inner
1764.2.l.b 2 7.d odd 6 1
1764.2.l.b 2 63.t odd 6 1
2268.2.k.a 2 63.g even 3 1
2268.2.k.a 2 63.h even 3 1
2268.2.k.b 2 63.j odd 6 1
2268.2.k.b 2 63.n odd 6 1
3024.2.q.e 2 84.n even 6 1
3024.2.q.e 2 252.o even 6 1
3024.2.t.b 2 84.n even 6 1
3024.2.t.b 2 252.bb even 6 1
5292.2.i.b 2 21.g even 6 1
5292.2.i.b 2 63.s even 6 1
5292.2.j.b 2 21.c even 2 1
5292.2.j.b 2 63.o even 6 1
5292.2.j.c 2 3.b odd 2 1
5292.2.j.c 2 9.d odd 6 1
5292.2.l.b 2 21.g even 6 1
5292.2.l.b 2 63.i even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 2 T_{5} + 4 \) acting on \(S_{2}^{\mathrm{new}}(1764, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 3 - 3 T + T^{2} \)
$5$ \( 4 + 2 T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( 16 + 4 T + T^{2} \)
$13$ \( 9 + 3 T + T^{2} \)
$17$ \( ( -7 + T )^{2} \)
$19$ \( ( -5 + T )^{2} \)
$23$ \( 16 + 4 T + T^{2} \)
$29$ \( 1 - T + T^{2} \)
$31$ \( 9 - 3 T + T^{2} \)
$37$ \( ( -11 + T )^{2} \)
$41$ \( 81 - 9 T + T^{2} \)
$43$ \( 25 + 5 T + T^{2} \)
$47$ \( 9 + 3 T + T^{2} \)
$53$ \( ( -3 + T )^{2} \)
$59$ \( 49 - 7 T + T^{2} \)
$61$ \( 9 + 3 T + T^{2} \)
$67$ \( 169 + 13 T + T^{2} \)
$71$ \( ( 8 + T )^{2} \)
$73$ \( ( -7 + T )^{2} \)
$79$ \( 81 - 9 T + T^{2} \)
$83$ \( 1 + T + T^{2} \)
$89$ \( ( -15 + T )^{2} \)
$97$ \( 289 - 17 T + T^{2} \)
show more
show less