Properties

Label 1764.2.a.l.1.2
Level $1764$
Weight $2$
Character 1764.1
Self dual yes
Analytic conductor $14.086$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,2,Mod(1,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.0856109166\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 196)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 1764.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421 q^{5} +O(q^{10})\) \(q+1.41421 q^{5} -4.00000 q^{11} -4.24264 q^{13} +1.41421 q^{17} -2.82843 q^{19} +4.00000 q^{23} -3.00000 q^{25} -8.00000 q^{29} -8.00000 q^{37} -7.07107 q^{41} -4.00000 q^{43} +5.65685 q^{47} -10.0000 q^{53} -5.65685 q^{55} +14.1421 q^{59} +7.07107 q^{61} -6.00000 q^{65} +7.07107 q^{73} +8.00000 q^{79} -14.1421 q^{83} +2.00000 q^{85} +7.07107 q^{89} -4.00000 q^{95} +1.41421 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{11} + 8 q^{23} - 6 q^{25} - 16 q^{29} - 16 q^{37} - 8 q^{43} - 20 q^{53} - 12 q^{65} + 16 q^{79} + 4 q^{85} - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.41421 0.632456 0.316228 0.948683i \(-0.397584\pi\)
0.316228 + 0.948683i \(0.397584\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) −4.24264 −1.17670 −0.588348 0.808608i \(-0.700222\pi\)
−0.588348 + 0.808608i \(0.700222\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.41421 0.342997 0.171499 0.985184i \(-0.445139\pi\)
0.171499 + 0.985184i \(0.445139\pi\)
\(18\) 0 0
\(19\) −2.82843 −0.648886 −0.324443 0.945905i \(-0.605177\pi\)
−0.324443 + 0.945905i \(0.605177\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) −3.00000 −0.600000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.00000 −1.48556 −0.742781 0.669534i \(-0.766494\pi\)
−0.742781 + 0.669534i \(0.766494\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.07107 −1.10432 −0.552158 0.833740i \(-0.686195\pi\)
−0.552158 + 0.833740i \(0.686195\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.65685 0.825137 0.412568 0.910927i \(-0.364632\pi\)
0.412568 + 0.910927i \(0.364632\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −10.0000 −1.37361 −0.686803 0.726844i \(-0.740986\pi\)
−0.686803 + 0.726844i \(0.740986\pi\)
\(54\) 0 0
\(55\) −5.65685 −0.762770
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 14.1421 1.84115 0.920575 0.390567i \(-0.127721\pi\)
0.920575 + 0.390567i \(0.127721\pi\)
\(60\) 0 0
\(61\) 7.07107 0.905357 0.452679 0.891674i \(-0.350468\pi\)
0.452679 + 0.891674i \(0.350468\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.00000 −0.744208
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 7.07107 0.827606 0.413803 0.910366i \(-0.364200\pi\)
0.413803 + 0.910366i \(0.364200\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −14.1421 −1.55230 −0.776151 0.630548i \(-0.782830\pi\)
−0.776151 + 0.630548i \(0.782830\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.07107 0.749532 0.374766 0.927119i \(-0.377723\pi\)
0.374766 + 0.927119i \(0.377723\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.00000 −0.410391
\(96\) 0 0
\(97\) 1.41421 0.143592 0.0717958 0.997419i \(-0.477127\pi\)
0.0717958 + 0.997419i \(0.477127\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −12.7279 −1.26648 −0.633238 0.773957i \(-0.718274\pi\)
−0.633238 + 0.773957i \(0.718274\pi\)
\(102\) 0 0
\(103\) 11.3137 1.11477 0.557386 0.830253i \(-0.311804\pi\)
0.557386 + 0.830253i \(0.311804\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.00000 −0.773389 −0.386695 0.922208i \(-0.626383\pi\)
−0.386695 + 0.922208i \(0.626383\pi\)
\(108\) 0 0
\(109\) −8.00000 −0.766261 −0.383131 0.923694i \(-0.625154\pi\)
−0.383131 + 0.923694i \(0.625154\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 5.65685 0.527504
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.3137 −1.01193
\(126\) 0 0
\(127\) −20.0000 −1.77471 −0.887357 0.461084i \(-0.847461\pi\)
−0.887357 + 0.461084i \(0.847461\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.48528 −0.741362 −0.370681 0.928760i \(-0.620876\pi\)
−0.370681 + 0.928760i \(0.620876\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) −2.82843 −0.239904 −0.119952 0.992780i \(-0.538274\pi\)
−0.119952 + 0.992780i \(0.538274\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 16.9706 1.41915
\(144\) 0 0
\(145\) −11.3137 −0.939552
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −7.07107 −0.564333 −0.282166 0.959366i \(-0.591053\pi\)
−0.282166 + 0.959366i \(0.591053\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.65685 −0.437741 −0.218870 0.975754i \(-0.570237\pi\)
−0.218870 + 0.975754i \(0.570237\pi\)
\(168\) 0 0
\(169\) 5.00000 0.384615
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.24264 −0.322562 −0.161281 0.986909i \(-0.551563\pi\)
−0.161281 + 0.986909i \(0.551563\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 21.2132 1.57676 0.788382 0.615185i \(-0.210919\pi\)
0.788382 + 0.615185i \(0.210919\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −11.3137 −0.831800
\(186\) 0 0
\(187\) −5.65685 −0.413670
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 16.0000 1.15772 0.578860 0.815427i \(-0.303498\pi\)
0.578860 + 0.815427i \(0.303498\pi\)
\(192\) 0 0
\(193\) −10.0000 −0.719816 −0.359908 0.932988i \(-0.617192\pi\)
−0.359908 + 0.932988i \(0.617192\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 10.0000 0.712470 0.356235 0.934396i \(-0.384060\pi\)
0.356235 + 0.934396i \(0.384060\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −10.0000 −0.698430
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 11.3137 0.782586
\(210\) 0 0
\(211\) 24.0000 1.65223 0.826114 0.563503i \(-0.190547\pi\)
0.826114 + 0.563503i \(0.190547\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −5.65685 −0.385794
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.00000 −0.403604
\(222\) 0 0
\(223\) −16.9706 −1.13643 −0.568216 0.822879i \(-0.692366\pi\)
−0.568216 + 0.822879i \(0.692366\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.48528 0.563188 0.281594 0.959534i \(-0.409137\pi\)
0.281594 + 0.959534i \(0.409137\pi\)
\(228\) 0 0
\(229\) 21.2132 1.40181 0.700904 0.713256i \(-0.252780\pi\)
0.700904 + 0.713256i \(0.252780\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 8.00000 0.521862
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) −12.7279 −0.819878 −0.409939 0.912113i \(-0.634450\pi\)
−0.409939 + 0.912113i \(0.634450\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 12.0000 0.763542
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.7990 1.24970 0.624851 0.780744i \(-0.285160\pi\)
0.624851 + 0.780744i \(0.285160\pi\)
\(252\) 0 0
\(253\) −16.0000 −1.00591
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 21.2132 1.32324 0.661622 0.749838i \(-0.269869\pi\)
0.661622 + 0.749838i \(0.269869\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 0 0
\(265\) −14.1421 −0.868744
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −18.3848 −1.12094 −0.560470 0.828175i \(-0.689379\pi\)
−0.560470 + 0.828175i \(0.689379\pi\)
\(270\) 0 0
\(271\) −28.2843 −1.71815 −0.859074 0.511852i \(-0.828960\pi\)
−0.859074 + 0.511852i \(0.828960\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 12.0000 0.723627
\(276\) 0 0
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −16.0000 −0.954480 −0.477240 0.878773i \(-0.658363\pi\)
−0.477240 + 0.878773i \(0.658363\pi\)
\(282\) 0 0
\(283\) 2.82843 0.168133 0.0840663 0.996460i \(-0.473209\pi\)
0.0840663 + 0.996460i \(0.473209\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −15.0000 −0.882353
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 32.5269 1.90024 0.950121 0.311881i \(-0.100959\pi\)
0.950121 + 0.311881i \(0.100959\pi\)
\(294\) 0 0
\(295\) 20.0000 1.16445
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −16.9706 −0.981433
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 10.0000 0.572598
\(306\) 0 0
\(307\) 19.7990 1.12999 0.564994 0.825095i \(-0.308878\pi\)
0.564994 + 0.825095i \(0.308878\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −22.6274 −1.28308 −0.641542 0.767088i \(-0.721705\pi\)
−0.641542 + 0.767088i \(0.721705\pi\)
\(312\) 0 0
\(313\) −4.24264 −0.239808 −0.119904 0.992785i \(-0.538259\pi\)
−0.119904 + 0.992785i \(0.538259\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 0 0
\(319\) 32.0000 1.79166
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.00000 −0.222566
\(324\) 0 0
\(325\) 12.7279 0.706018
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 8.00000 0.435788 0.217894 0.975972i \(-0.430081\pi\)
0.217894 + 0.975972i \(0.430081\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) 4.24264 0.227103 0.113552 0.993532i \(-0.463777\pi\)
0.113552 + 0.993532i \(0.463777\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.89949 0.526897 0.263448 0.964673i \(-0.415140\pi\)
0.263448 + 0.964673i \(0.415140\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 20.0000 1.05556 0.527780 0.849381i \(-0.323025\pi\)
0.527780 + 0.849381i \(0.323025\pi\)
\(360\) 0 0
\(361\) −11.0000 −0.578947
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 10.0000 0.523424
\(366\) 0 0
\(367\) −5.65685 −0.295285 −0.147643 0.989041i \(-0.547169\pi\)
−0.147643 + 0.989041i \(0.547169\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 33.9411 1.74806
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −5.65685 −0.289052 −0.144526 0.989501i \(-0.546166\pi\)
−0.144526 + 0.989501i \(0.546166\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −8.00000 −0.405616 −0.202808 0.979219i \(-0.565007\pi\)
−0.202808 + 0.979219i \(0.565007\pi\)
\(390\) 0 0
\(391\) 5.65685 0.286079
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 11.3137 0.569254
\(396\) 0 0
\(397\) −15.5563 −0.780751 −0.390375 0.920656i \(-0.627655\pi\)
−0.390375 + 0.920656i \(0.627655\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −24.0000 −1.19850 −0.599251 0.800561i \(-0.704535\pi\)
−0.599251 + 0.800561i \(0.704535\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 32.0000 1.58618
\(408\) 0 0
\(409\) −38.1838 −1.88807 −0.944033 0.329851i \(-0.893001\pi\)
−0.944033 + 0.329851i \(0.893001\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −20.0000 −0.981761
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 14.1421 0.690889 0.345444 0.938439i \(-0.387728\pi\)
0.345444 + 0.938439i \(0.387728\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −4.24264 −0.205798
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 36.0000 1.73406 0.867029 0.498257i \(-0.166026\pi\)
0.867029 + 0.498257i \(0.166026\pi\)
\(432\) 0 0
\(433\) 21.2132 1.01944 0.509721 0.860340i \(-0.329749\pi\)
0.509721 + 0.860340i \(0.329749\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −11.3137 −0.541208
\(438\) 0 0
\(439\) 16.9706 0.809961 0.404980 0.914325i \(-0.367278\pi\)
0.404980 + 0.914325i \(0.367278\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 16.0000 0.760183 0.380091 0.924949i \(-0.375893\pi\)
0.380091 + 0.924949i \(0.375893\pi\)
\(444\) 0 0
\(445\) 10.0000 0.474045
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) 28.2843 1.33185
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 30.0000 1.40334 0.701670 0.712502i \(-0.252438\pi\)
0.701670 + 0.712502i \(0.252438\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7.07107 0.329332 0.164666 0.986349i \(-0.447345\pi\)
0.164666 + 0.986349i \(0.447345\pi\)
\(462\) 0 0
\(463\) 40.0000 1.85896 0.929479 0.368875i \(-0.120257\pi\)
0.929479 + 0.368875i \(0.120257\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19.7990 −0.916188 −0.458094 0.888904i \(-0.651468\pi\)
−0.458094 + 0.888904i \(0.651468\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 16.0000 0.735681
\(474\) 0 0
\(475\) 8.48528 0.389331
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −11.3137 −0.516937 −0.258468 0.966020i \(-0.583218\pi\)
−0.258468 + 0.966020i \(0.583218\pi\)
\(480\) 0 0
\(481\) 33.9411 1.54758
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.00000 0.0908153
\(486\) 0 0
\(487\) −12.0000 −0.543772 −0.271886 0.962329i \(-0.587647\pi\)
−0.271886 + 0.962329i \(0.587647\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −24.0000 −1.08310 −0.541552 0.840667i \(-0.682163\pi\)
−0.541552 + 0.840667i \(0.682163\pi\)
\(492\) 0 0
\(493\) −11.3137 −0.509544
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 32.0000 1.43252 0.716258 0.697835i \(-0.245853\pi\)
0.716258 + 0.697835i \(0.245853\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −39.5980 −1.76559 −0.882793 0.469762i \(-0.844340\pi\)
−0.882793 + 0.469762i \(0.844340\pi\)
\(504\) 0 0
\(505\) −18.0000 −0.800989
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −18.3848 −0.814891 −0.407445 0.913230i \(-0.633580\pi\)
−0.407445 + 0.913230i \(0.633580\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 16.0000 0.705044
\(516\) 0 0
\(517\) −22.6274 −0.995153
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −41.0122 −1.79678 −0.898388 0.439202i \(-0.855261\pi\)
−0.898388 + 0.439202i \(0.855261\pi\)
\(522\) 0 0
\(523\) −42.4264 −1.85518 −0.927589 0.373603i \(-0.878122\pi\)
−0.927589 + 0.373603i \(0.878122\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 30.0000 1.29944
\(534\) 0 0
\(535\) −11.3137 −0.489134
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −14.0000 −0.601907 −0.300954 0.953639i \(-0.597305\pi\)
−0.300954 + 0.953639i \(0.597305\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −11.3137 −0.484626
\(546\) 0 0
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 22.6274 0.963960
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −30.0000 −1.27114 −0.635570 0.772043i \(-0.719235\pi\)
−0.635570 + 0.772043i \(0.719235\pi\)
\(558\) 0 0
\(559\) 16.9706 0.717778
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14.1421 0.596020 0.298010 0.954563i \(-0.403677\pi\)
0.298010 + 0.954563i \(0.403677\pi\)
\(564\) 0 0
\(565\) −8.48528 −0.356978
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −40.0000 −1.67689 −0.838444 0.544988i \(-0.816534\pi\)
−0.838444 + 0.544988i \(0.816534\pi\)
\(570\) 0 0
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −12.0000 −0.500435
\(576\) 0 0
\(577\) −12.7279 −0.529870 −0.264935 0.964266i \(-0.585351\pi\)
−0.264935 + 0.964266i \(0.585351\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 40.0000 1.65663
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 25.4558 1.05068 0.525338 0.850894i \(-0.323939\pi\)
0.525338 + 0.850894i \(0.323939\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −9.89949 −0.406524 −0.203262 0.979124i \(-0.565154\pi\)
−0.203262 + 0.979124i \(0.565154\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −8.00000 −0.326871 −0.163436 0.986554i \(-0.552258\pi\)
−0.163436 + 0.986554i \(0.552258\pi\)
\(600\) 0 0
\(601\) 29.6985 1.21143 0.605713 0.795683i \(-0.292888\pi\)
0.605713 + 0.795683i \(0.292888\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.07107 0.287480
\(606\) 0 0
\(607\) 33.9411 1.37763 0.688814 0.724938i \(-0.258132\pi\)
0.688814 + 0.724938i \(0.258132\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −24.0000 −0.970936
\(612\) 0 0
\(613\) 24.0000 0.969351 0.484675 0.874694i \(-0.338938\pi\)
0.484675 + 0.874694i \(0.338938\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.00000 0.322068 0.161034 0.986949i \(-0.448517\pi\)
0.161034 + 0.986949i \(0.448517\pi\)
\(618\) 0 0
\(619\) 31.1127 1.25052 0.625262 0.780415i \(-0.284992\pi\)
0.625262 + 0.780415i \(0.284992\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −11.3137 −0.451107
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −28.2843 −1.12243
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −8.00000 −0.315981 −0.157991 0.987441i \(-0.550502\pi\)
−0.157991 + 0.987441i \(0.550502\pi\)
\(642\) 0 0
\(643\) −2.82843 −0.111542 −0.0557711 0.998444i \(-0.517762\pi\)
−0.0557711 + 0.998444i \(0.517762\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) −56.5685 −2.22051
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 24.0000 0.939193 0.469596 0.882881i \(-0.344399\pi\)
0.469596 + 0.882881i \(0.344399\pi\)
\(654\) 0 0
\(655\) −12.0000 −0.468879
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) 21.2132 0.825098 0.412549 0.910935i \(-0.364639\pi\)
0.412549 + 0.910935i \(0.364639\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −32.0000 −1.23904
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −28.2843 −1.09190
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 12.7279 0.489174 0.244587 0.969627i \(-0.421348\pi\)
0.244587 + 0.969627i \(0.421348\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 42.4264 1.61632
\(690\) 0 0
\(691\) 42.4264 1.61398 0.806988 0.590567i \(-0.201096\pi\)
0.806988 + 0.590567i \(0.201096\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.00000 −0.151729
\(696\) 0 0
\(697\) −10.0000 −0.378777
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −24.0000 −0.906467 −0.453234 0.891392i \(-0.649730\pi\)
−0.453234 + 0.891392i \(0.649730\pi\)
\(702\) 0 0
\(703\) 22.6274 0.853409
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −8.00000 −0.300446 −0.150223 0.988652i \(-0.547999\pi\)
−0.150223 + 0.988652i \(0.547999\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 24.0000 0.897549
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 39.5980 1.47676 0.738378 0.674387i \(-0.235592\pi\)
0.738378 + 0.674387i \(0.235592\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 24.0000 0.891338
\(726\) 0 0
\(727\) −28.2843 −1.04901 −0.524503 0.851409i \(-0.675749\pi\)
−0.524503 + 0.851409i \(0.675749\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.65685 −0.209226
\(732\) 0 0
\(733\) 38.1838 1.41035 0.705175 0.709034i \(-0.250869\pi\)
0.705175 + 0.709034i \(0.250869\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −12.0000 −0.441427 −0.220714 0.975339i \(-0.570839\pi\)
−0.220714 + 0.975339i \(0.570839\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 20.0000 0.733729 0.366864 0.930274i \(-0.380431\pi\)
0.366864 + 0.930274i \(0.380431\pi\)
\(744\) 0 0
\(745\) −14.1421 −0.518128
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −4.00000 −0.145962 −0.0729810 0.997333i \(-0.523251\pi\)
−0.0729810 + 0.997333i \(0.523251\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −5.65685 −0.205874
\(756\) 0 0
\(757\) −40.0000 −1.45382 −0.726912 0.686730i \(-0.759045\pi\)
−0.726912 + 0.686730i \(0.759045\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 41.0122 1.48669 0.743345 0.668908i \(-0.233238\pi\)
0.743345 + 0.668908i \(0.233238\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −60.0000 −2.16647
\(768\) 0 0
\(769\) −46.6690 −1.68293 −0.841464 0.540312i \(-0.818306\pi\)
−0.841464 + 0.540312i \(0.818306\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 24.0416 0.864717 0.432359 0.901702i \(-0.357681\pi\)
0.432359 + 0.901702i \(0.357681\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 20.0000 0.716574
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −10.0000 −0.356915
\(786\) 0 0
\(787\) −48.0833 −1.71398 −0.856992 0.515330i \(-0.827669\pi\)
−0.856992 + 0.515330i \(0.827669\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −30.0000 −1.06533
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −29.6985 −1.05197 −0.525987 0.850493i \(-0.676304\pi\)
−0.525987 + 0.850493i \(0.676304\pi\)
\(798\) 0 0
\(799\) 8.00000 0.283020
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −28.2843 −0.998130
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −2.00000 −0.0703163 −0.0351581 0.999382i \(-0.511193\pi\)
−0.0351581 + 0.999382i \(0.511193\pi\)
\(810\) 0 0
\(811\) −8.48528 −0.297959 −0.148979 0.988840i \(-0.547599\pi\)
−0.148979 + 0.988840i \(0.547599\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5.65685 0.198151
\(816\) 0 0
\(817\) 11.3137 0.395817
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −6.00000 −0.209401 −0.104701 0.994504i \(-0.533388\pi\)
−0.104701 + 0.994504i \(0.533388\pi\)
\(822\) 0 0
\(823\) 40.0000 1.39431 0.697156 0.716919i \(-0.254448\pi\)
0.697156 + 0.716919i \(0.254448\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −48.0000 −1.66912 −0.834562 0.550914i \(-0.814279\pi\)
−0.834562 + 0.550914i \(0.814279\pi\)
\(828\) 0 0
\(829\) 7.07107 0.245588 0.122794 0.992432i \(-0.460815\pi\)
0.122794 + 0.992432i \(0.460815\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −8.00000 −0.276851
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −11.3137 −0.390593 −0.195296 0.980744i \(-0.562567\pi\)
−0.195296 + 0.980744i \(0.562567\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 7.07107 0.243252
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −32.0000 −1.09695
\(852\) 0 0
\(853\) −12.7279 −0.435796 −0.217898 0.975972i \(-0.569920\pi\)
−0.217898 + 0.975972i \(0.569920\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 7.07107 0.241543 0.120772 0.992680i \(-0.461463\pi\)
0.120772 + 0.992680i \(0.461463\pi\)
\(858\) 0 0
\(859\) −14.1421 −0.482523 −0.241262 0.970460i \(-0.577561\pi\)
−0.241262 + 0.970460i \(0.577561\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 40.0000 1.36162 0.680808 0.732462i \(-0.261629\pi\)
0.680808 + 0.732462i \(0.261629\pi\)
\(864\) 0 0
\(865\) −6.00000 −0.204006
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −32.0000 −1.08553
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 8.00000 0.270141 0.135070 0.990836i \(-0.456874\pi\)
0.135070 + 0.990836i \(0.456874\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −21.2132 −0.714691 −0.357345 0.933972i \(-0.616318\pi\)
−0.357345 + 0.933972i \(0.616318\pi\)
\(882\) 0 0
\(883\) −40.0000 −1.34611 −0.673054 0.739594i \(-0.735018\pi\)
−0.673054 + 0.739594i \(0.735018\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 28.2843 0.949693 0.474846 0.880069i \(-0.342504\pi\)
0.474846 + 0.880069i \(0.342504\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −16.0000 −0.535420
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −14.1421 −0.471143
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 30.0000 0.997234
\(906\) 0 0
\(907\) −8.00000 −0.265636 −0.132818 0.991140i \(-0.542403\pi\)
−0.132818 + 0.991140i \(0.542403\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −20.0000 −0.662630 −0.331315 0.943520i \(-0.607492\pi\)
−0.331315 + 0.943520i \(0.607492\pi\)
\(912\) 0 0
\(913\) 56.5685 1.87215
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −8.00000 −0.263896 −0.131948 0.991257i \(-0.542123\pi\)
−0.131948 + 0.991257i \(0.542123\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 24.0000 0.789115
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 35.3553 1.15997 0.579986 0.814627i \(-0.303058\pi\)
0.579986 + 0.814627i \(0.303058\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −8.00000 −0.261628
\(936\) 0 0
\(937\) −15.5563 −0.508204 −0.254102 0.967177i \(-0.581780\pi\)
−0.254102 + 0.967177i \(0.581780\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −7.07107 −0.230510 −0.115255 0.993336i \(-0.536769\pi\)
−0.115255 + 0.993336i \(0.536769\pi\)
\(942\) 0 0
\(943\) −28.2843 −0.921063
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −60.0000 −1.94974 −0.974869 0.222779i \(-0.928487\pi\)
−0.974869 + 0.222779i \(0.928487\pi\)
\(948\) 0 0
\(949\) −30.0000 −0.973841
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −10.0000 −0.323932 −0.161966 0.986796i \(-0.551783\pi\)
−0.161966 + 0.986796i \(0.551783\pi\)
\(954\) 0 0
\(955\) 22.6274 0.732206
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −14.1421 −0.455251
\(966\) 0 0
\(967\) 12.0000 0.385894 0.192947 0.981209i \(-0.438195\pi\)
0.192947 + 0.981209i \(0.438195\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 14.1421 0.453843 0.226921 0.973913i \(-0.427134\pi\)
0.226921 + 0.973913i \(0.427134\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −48.0000 −1.53566 −0.767828 0.640656i \(-0.778662\pi\)
−0.767828 + 0.640656i \(0.778662\pi\)
\(978\) 0 0
\(979\) −28.2843 −0.903969
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 45.2548 1.44341 0.721703 0.692203i \(-0.243360\pi\)
0.721703 + 0.692203i \(0.243360\pi\)
\(984\) 0 0
\(985\) 14.1421 0.450606
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −16.0000 −0.508770
\(990\) 0 0
\(991\) −40.0000 −1.27064 −0.635321 0.772248i \(-0.719132\pi\)
−0.635321 + 0.772248i \(0.719132\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1.41421 −0.0447886 −0.0223943 0.999749i \(-0.507129\pi\)
−0.0223943 + 0.999749i \(0.507129\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.a.l.1.2 2
3.2 odd 2 196.2.a.c.1.2 yes 2
4.3 odd 2 7056.2.a.cr.1.2 2
7.2 even 3 1764.2.k.l.361.1 4
7.3 odd 6 1764.2.k.l.1549.2 4
7.4 even 3 1764.2.k.l.1549.1 4
7.5 odd 6 1764.2.k.l.361.2 4
7.6 odd 2 inner 1764.2.a.l.1.1 2
12.11 even 2 784.2.a.m.1.1 2
15.2 even 4 4900.2.e.p.2549.2 4
15.8 even 4 4900.2.e.p.2549.4 4
15.14 odd 2 4900.2.a.y.1.1 2
21.2 odd 6 196.2.e.b.165.1 4
21.5 even 6 196.2.e.b.165.2 4
21.11 odd 6 196.2.e.b.177.1 4
21.17 even 6 196.2.e.b.177.2 4
21.20 even 2 196.2.a.c.1.1 2
24.5 odd 2 3136.2.a.br.1.1 2
24.11 even 2 3136.2.a.bs.1.2 2
28.27 even 2 7056.2.a.cr.1.1 2
84.11 even 6 784.2.i.l.177.2 4
84.23 even 6 784.2.i.l.753.2 4
84.47 odd 6 784.2.i.l.753.1 4
84.59 odd 6 784.2.i.l.177.1 4
84.83 odd 2 784.2.a.m.1.2 2
105.62 odd 4 4900.2.e.p.2549.3 4
105.83 odd 4 4900.2.e.p.2549.1 4
105.104 even 2 4900.2.a.y.1.2 2
168.83 odd 2 3136.2.a.bs.1.1 2
168.125 even 2 3136.2.a.br.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
196.2.a.c.1.1 2 21.20 even 2
196.2.a.c.1.2 yes 2 3.2 odd 2
196.2.e.b.165.1 4 21.2 odd 6
196.2.e.b.165.2 4 21.5 even 6
196.2.e.b.177.1 4 21.11 odd 6
196.2.e.b.177.2 4 21.17 even 6
784.2.a.m.1.1 2 12.11 even 2
784.2.a.m.1.2 2 84.83 odd 2
784.2.i.l.177.1 4 84.59 odd 6
784.2.i.l.177.2 4 84.11 even 6
784.2.i.l.753.1 4 84.47 odd 6
784.2.i.l.753.2 4 84.23 even 6
1764.2.a.l.1.1 2 7.6 odd 2 inner
1764.2.a.l.1.2 2 1.1 even 1 trivial
1764.2.k.l.361.1 4 7.2 even 3
1764.2.k.l.361.2 4 7.5 odd 6
1764.2.k.l.1549.1 4 7.4 even 3
1764.2.k.l.1549.2 4 7.3 odd 6
3136.2.a.br.1.1 2 24.5 odd 2
3136.2.a.br.1.2 2 168.125 even 2
3136.2.a.bs.1.1 2 168.83 odd 2
3136.2.a.bs.1.2 2 24.11 even 2
4900.2.a.y.1.1 2 15.14 odd 2
4900.2.a.y.1.2 2 105.104 even 2
4900.2.e.p.2549.1 4 105.83 odd 4
4900.2.e.p.2549.2 4 15.2 even 4
4900.2.e.p.2549.3 4 105.62 odd 4
4900.2.e.p.2549.4 4 15.8 even 4
7056.2.a.cr.1.1 2 28.27 even 2
7056.2.a.cr.1.2 2 4.3 odd 2