Properties

 Label 1764.2.a.i Level $1764$ Weight $2$ Character orbit 1764.a Self dual yes Analytic conductor $14.086$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$1764 = 2^{2} \cdot 3^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1764.a (trivial)

Newform invariants

 Self dual: yes Analytic conductor: $$14.0856109166$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 588) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

 $$f(q)$$ $$=$$ $$q + 2q^{5} + O(q^{10})$$ $$q + 2q^{5} - 2q^{11} + 4q^{13} + 6q^{17} - 8q^{19} + 6q^{23} - q^{25} + 10q^{29} - 4q^{31} + 6q^{37} - 6q^{41} + 4q^{43} + 8q^{47} - 2q^{53} - 4q^{55} - 4q^{59} + 8q^{61} + 8q^{65} - 8q^{67} + 10q^{71} - 4q^{73} + 4q^{79} + 12q^{83} + 12q^{85} - 14q^{89} - 16q^{95} - 4q^{97} + O(q^{100})$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 2.00000 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$7$$ $$-1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1764.2.a.i 1
3.b odd 2 1 588.2.a.b 1
4.b odd 2 1 7056.2.a.bu 1
7.b odd 2 1 1764.2.a.b 1
7.c even 3 2 1764.2.k.c 2
7.d odd 6 2 1764.2.k.i 2
12.b even 2 1 2352.2.a.p 1
21.c even 2 1 588.2.a.e yes 1
21.g even 6 2 588.2.i.a 2
21.h odd 6 2 588.2.i.g 2
24.f even 2 1 9408.2.a.bf 1
24.h odd 2 1 9408.2.a.cu 1
28.d even 2 1 7056.2.a.n 1
84.h odd 2 1 2352.2.a.j 1
84.j odd 6 2 2352.2.q.p 2
84.n even 6 2 2352.2.q.k 2
168.e odd 2 1 9408.2.a.ca 1
168.i even 2 1 9408.2.a.l 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
588.2.a.b 1 3.b odd 2 1
588.2.a.e yes 1 21.c even 2 1
588.2.i.a 2 21.g even 6 2
588.2.i.g 2 21.h odd 6 2
1764.2.a.b 1 7.b odd 2 1
1764.2.a.i 1 1.a even 1 1 trivial
1764.2.k.c 2 7.c even 3 2
1764.2.k.i 2 7.d odd 6 2
2352.2.a.j 1 84.h odd 2 1
2352.2.a.p 1 12.b even 2 1
2352.2.q.k 2 84.n even 6 2
2352.2.q.p 2 84.j odd 6 2
7056.2.a.n 1 28.d even 2 1
7056.2.a.bu 1 4.b odd 2 1
9408.2.a.l 1 168.i even 2 1
9408.2.a.bf 1 24.f even 2 1
9408.2.a.ca 1 168.e odd 2 1
9408.2.a.cu 1 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1764))$$:

 $$T_{5} - 2$$ $$T_{11} + 2$$ $$T_{13} - 4$$