Properties

Label 1764.1.z
Level $1764$
Weight $1$
Character orbit 1764.z
Rep. character $\chi_{1764}(325,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $2$
Newform subspaces $1$
Sturm bound $336$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1764.z (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(336\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1764, [\chi])\).

Total New Old
Modular forms 108 2 106
Cusp forms 12 2 10
Eisenstein series 96 0 96

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2q + O(q^{10}) \) \( 2q + 3q^{19} - q^{25} + 3q^{31} - q^{37} + 2q^{43} + q^{67} - 3q^{73} + q^{79} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(1764, [\chi])\) into newform subspaces

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
1764.1.z.a \(2\) \(0.880\) \(\Q(\sqrt{-3}) \) \(D_{6}\) \(\Q(\sqrt{-3}) \) None \(0\) \(0\) \(0\) \(0\) \(q+(-\zeta_{6}-\zeta_{6}^{2})q^{13}+(1+\zeta_{6})q^{19}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(1764, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(1764, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 3}\)