Properties

Label 1764.1.y
Level $1764$
Weight $1$
Character orbit 1764.y
Rep. character $\chi_{1764}(667,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $14$
Newform subspaces $4$
Sturm bound $336$
Trace bound $2$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1764.y (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 28 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 4 \)
Sturm bound: \(336\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1764, [\chi])\).

Total New Old
Modular forms 84 22 62
Cusp forms 20 14 6
Eisenstein series 64 8 56

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 14 0 0 0

Trace form

\( 14q - q^{2} - 3q^{4} + 2q^{8} + O(q^{10}) \) \( 14q - q^{2} - 3q^{4} + 2q^{8} - 7q^{16} + 8q^{22} - q^{25} + 4q^{29} - q^{32} - 2q^{37} - 4q^{46} - 2q^{50} + 2q^{53} + 6q^{58} + 6q^{64} + 2q^{74} - 16q^{85} + 4q^{88} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(1764, [\chi])\) into newform subspaces

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
1764.1.y.a \(2\) \(0.880\) \(\Q(\sqrt{-3}) \) \(D_{2}\) \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-7}) \) \(\Q(\sqrt{7}) \) \(-1\) \(0\) \(0\) \(0\) \(q-\zeta_{6}q^{2}+\zeta_{6}^{2}q^{4}+q^{8}-\zeta_{6}q^{16}+\cdots\)
1764.1.y.b \(4\) \(0.880\) \(\Q(\sqrt{2}, \sqrt{-3})\) \(D_{4}\) \(\Q(\sqrt{-1}) \) None \(-2\) \(0\) \(0\) \(0\) \(q+\beta _{2}q^{2}+(-1-\beta _{2})q^{4}+(-\beta _{1}-\beta _{3})q^{5}+\cdots\)
1764.1.y.c \(4\) \(0.880\) \(\Q(\zeta_{12})\) \(D_{2}\) \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-21}) \) \(\Q(\sqrt{3}) \) \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{12}q^{2}+\zeta_{12}^{2}q^{4}-\zeta_{12}^{3}q^{8}+\zeta_{12}^{5}q^{11}+\cdots\)
1764.1.y.d \(4\) \(0.880\) \(\Q(\sqrt{2}, \sqrt{-3})\) \(D_{4}\) \(\Q(\sqrt{-1}) \) None \(2\) \(0\) \(0\) \(0\) \(q-\beta _{2}q^{2}+(-1-\beta _{2})q^{4}+(-\beta _{1}-\beta _{3})q^{5}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(1764, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(1764, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(196, [\chi])\)\(^{\oplus 3}\)