Properties

Label 1764.1.h.a.1763.5
Level $1764$
Weight $1$
Character 1764.1763
Analytic conductor $0.880$
Analytic rank $0$
Dimension $8$
Projective image $D_{8}$
CM discriminant -4
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1764.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.880350682285\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Defining polynomial: \(x^{8} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Projective image: \(D_{8}\)
Projective field: Galois closure of 8.0.38423222208.1

Embedding invariants

Embedding label 1763.5
Root \(0.382683 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 1764.1763
Dual form 1764.1.h.a.1763.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} -1.84776 q^{5} -1.00000i q^{8} +O(q^{10})\) \(q+1.00000i q^{2} -1.00000 q^{4} -1.84776 q^{5} -1.00000i q^{8} -1.84776i q^{10} -0.765367i q^{13} +1.00000 q^{16} +0.765367 q^{17} +1.84776 q^{20} +2.41421 q^{25} +0.765367 q^{26} +1.00000i q^{32} +0.765367i q^{34} +1.41421 q^{37} +1.84776i q^{40} +0.765367 q^{41} +2.41421i q^{50} +0.765367i q^{52} -1.41421i q^{53} -1.84776i q^{61} -1.00000 q^{64} +1.41421i q^{65} -0.765367 q^{68} +1.84776i q^{73} +1.41421i q^{74} -1.84776 q^{80} +0.765367i q^{82} -1.41421 q^{85} +1.84776 q^{89} -1.84776i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 8q^{4} + O(q^{10}) \) \( 8q - 8q^{4} + 8q^{16} + 8q^{25} - 8q^{64} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 1.00000i
\(3\) 0 0
\(4\) −1.00000 −1.00000
\(5\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) − 1.00000i − 1.00000i
\(9\) 0 0
\(10\) − 1.84776i − 1.84776i
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) − 0.765367i − 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 1.00000
\(17\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 1.84776 1.84776
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 2.41421 2.41421
\(26\) 0.765367 0.765367
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 1.00000i 1.00000i
\(33\) 0 0
\(34\) 0.765367i 0.765367i
\(35\) 0 0
\(36\) 0 0
\(37\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 1.84776i 1.84776i
\(41\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 2.41421i 2.41421i
\(51\) 0 0
\(52\) 0.765367i 0.765367i
\(53\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) − 1.84776i − 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −1.00000 −1.00000
\(65\) 1.41421i 1.41421i
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) −0.765367 −0.765367
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(74\) 1.41421i 1.41421i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) −1.84776 −1.84776
\(81\) 0 0
\(82\) 0.765367i 0.765367i
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) −1.41421 −1.41421
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 1.84776i − 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −2.41421 −2.41421
\(101\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) −0.765367 −0.765367
\(105\) 0 0
\(106\) 1.41421 1.41421
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.00000 −1.00000
\(122\) 1.84776 1.84776
\(123\) 0 0
\(124\) 0 0
\(125\) −2.61313 −2.61313
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) − 1.00000i − 1.00000i
\(129\) 0 0
\(130\) −1.41421 −1.41421
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) − 0.765367i − 0.765367i
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) −1.84776 −1.84776
\(147\) 0 0
\(148\) −1.41421 −1.41421
\(149\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 0.765367i − 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) − 1.84776i − 1.84776i
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) −0.765367 −0.765367
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 0.414214 0.414214
\(170\) − 1.41421i − 1.41421i
\(171\) 0 0
\(172\) 0 0
\(173\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 1.84776i 1.84776i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.61313 −2.61313
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 1.84776 1.84776
\(195\) 0 0
\(196\) 0 0
\(197\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) − 2.41421i − 2.41421i
\(201\) 0 0
\(202\) 1.84776i 1.84776i
\(203\) 0 0
\(204\) 0 0
\(205\) −1.41421 −1.41421
\(206\) 0 0
\(207\) 0 0
\(208\) − 0.765367i − 0.765367i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 1.41421i 1.41421i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) − 1.41421i − 1.41421i
\(219\) 0 0
\(220\) 0 0
\(221\) − 0.585786i − 0.585786i
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 1.41421 1.41421
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(242\) − 1.00000i − 1.00000i
\(243\) 0 0
\(244\) 1.84776i 1.84776i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) − 2.61313i − 2.61313i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) − 1.41421i − 1.41421i
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 2.61313i 2.61313i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0.765367 0.765367
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −0.414214 −0.414214
\(290\) 0 0
\(291\) 0 0
\(292\) − 1.84776i − 1.84776i
\(293\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) − 1.41421i − 1.41421i
\(297\) 0 0
\(298\) 1.41421 1.41421
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.41421i 3.41421i
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) − 0.765367i − 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(314\) 0.765367 0.765367
\(315\) 0 0
\(316\) 0 0
\(317\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.84776 1.84776
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) − 1.84776i − 1.84776i
\(326\) 0 0
\(327\) 0 0
\(328\) − 0.765367i − 0.765367i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(338\) 0.414214i 0.414214i
\(339\) 0 0
\(340\) 1.41421 1.41421
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) − 0.765367i − 0.765367i
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −1.84776 −1.84776
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −1.00000 −1.00000
\(362\) −1.84776 −1.84776
\(363\) 0 0
\(364\) 0 0
\(365\) − 3.41421i − 3.41421i
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) − 2.61313i − 2.61313i
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 1.84776i 1.84776i
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) −1.41421 −1.41421
\(395\) 0 0
\(396\) 0 0
\(397\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 2.41421 2.41421
\(401\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −1.84776 −1.84776
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) − 1.84776i − 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(410\) − 1.41421i − 1.41421i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0.765367 0.765367
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −1.41421 −1.41421
\(425\) 1.84776 1.84776
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) − 1.84776i − 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.41421 1.41421
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0.585786 0.585786
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) −3.41421 −3.41421
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 1.41421i 1.41421i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(458\) −1.84776 −1.84776
\(459\) 0 0
\(460\) 0 0
\(461\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 2.00000 2.00000
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) − 1.08239i − 1.08239i
\(482\) −0.765367 −0.765367
\(483\) 0 0
\(484\) 1.00000 1.00000
\(485\) 3.41421i 3.41421i
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) −1.84776 −1.84776
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 2.61313 2.61313
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) −3.41421 −3.41421
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 1.00000i
\(513\) 0 0
\(514\) 0.765367i 0.765367i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 1.41421 1.41421
\(521\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −1.00000 −1.00000
\(530\) −2.61313 −2.61313
\(531\) 0 0
\(532\) 0 0
\(533\) − 0.585786i − 0.585786i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) − 0.765367i − 0.765367i
\(539\) 0 0
\(540\) 0 0
\(541\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0.765367i 0.765367i
\(545\) 2.61313 2.61313
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −2.00000 −2.00000
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 2.61313i 2.61313i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 1.84776i − 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(578\) − 0.414214i − 0.414214i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 1.84776 1.84776
\(585\) 0 0
\(586\) 1.84776i 1.84776i
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 1.41421 1.41421
\(593\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.41421i 1.41421i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.84776 1.84776
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −3.41421 −3.41421
\(611\) 0 0
\(612\) 0 0
\(613\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 2.41421 2.41421
\(626\) 0.765367 0.765367
\(627\) 0 0
\(628\) 0.765367i 0.765367i
\(629\) 1.08239 1.08239
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 1.41421 1.41421
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 1.84776i 1.84776i
\(641\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 1.84776 1.84776
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.765367 0.765367
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(674\) 1.41421i 1.41421i
\(675\) 0 0
\(676\) −0.414214 −0.414214
\(677\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 1.41421i 1.41421i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.08239 −1.08239
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0.765367 0.765367
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0.585786 0.585786
\(698\) −0.765367 −0.765367
\(699\) 0 0
\(700\) 0 0
\(701\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) − 1.84776i − 1.84776i
\(707\) 0 0
\(708\) 0 0
\(709\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 1.84776i − 1.84776i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) − 1.00000i − 1.00000i
\(723\) 0 0
\(724\) − 1.84776i − 1.84776i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 3.41421 3.41421
\(731\) 0 0
\(732\) 0 0
\(733\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 2.61313 2.61313
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 2.61313i 2.61313i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) − 1.84776i − 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −1.84776 −1.84776
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.41421i 1.41421i
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) − 1.41421i − 1.41421i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −1.41421 −1.41421
\(794\) −1.84776 −1.84776
\(795\) 0 0
\(796\) 0 0
\(797\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 2.41421i 2.41421i
\(801\) 0 0
\(802\) −2.00000 −2.00000
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) − 1.84776i − 1.84776i
\(809\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 1.84776 1.84776
\(819\) 0 0
\(820\) 1.41421 1.41421
\(821\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) − 0.765367i − 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.765367i 0.765367i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 1.00000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.765367 −0.765367
\(846\) 0 0
\(847\) 0 0
\(848\) − 1.41421i − 1.41421i
\(849\) 0 0
\(850\) 1.84776i 1.84776i
\(851\) 0 0
\(852\) 0 0
\(853\) − 0.765367i − 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 1.41421 1.41421
\(866\) 1.84776 1.84776
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 1.41421i 1.41421i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0.585786i 0.585786i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) − 3.41421i − 3.41421i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −1.41421 −1.41421
\(899\) 0 0
\(900\) 0 0
\(901\) − 1.08239i − 1.08239i
\(902\) 0 0
\(903\) 0 0
\(904\) −1.41421 −1.41421
\(905\) − 3.41421i − 3.41421i
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 2.00000i 2.00000i
\(915\) 0 0
\(916\) − 1.84776i − 1.84776i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 0.765367i − 0.765367i
\(923\) 0 0
\(924\) 0 0
\(925\) 3.41421 3.41421
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 2.00000i 2.00000i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 0.765367i − 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 1.41421 1.41421
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −1.00000 −1.00000
\(962\) 1.08239 1.08239
\(963\) 0 0
\(964\) − 0.765367i − 0.765367i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 1.00000i 1.00000i
\(969\) 0 0
\(970\) −3.41421 −3.41421
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) − 1.84776i − 1.84776i
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) − 2.61313i − 2.61313i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 0.765367i − 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.1.h.a.1763.5 yes 8
3.2 odd 2 inner 1764.1.h.a.1763.4 yes 8
4.3 odd 2 CM 1764.1.h.a.1763.5 yes 8
7.2 even 3 1764.1.q.b.1403.8 16
7.3 odd 6 1764.1.q.b.215.1 16
7.4 even 3 1764.1.q.b.215.4 16
7.5 odd 6 1764.1.q.b.1403.5 16
7.6 odd 2 inner 1764.1.h.a.1763.8 yes 8
12.11 even 2 inner 1764.1.h.a.1763.4 yes 8
21.2 odd 6 1764.1.q.b.1403.1 16
21.5 even 6 1764.1.q.b.1403.4 16
21.11 odd 6 1764.1.q.b.215.5 16
21.17 even 6 1764.1.q.b.215.8 16
21.20 even 2 inner 1764.1.h.a.1763.1 8
28.3 even 6 1764.1.q.b.215.1 16
28.11 odd 6 1764.1.q.b.215.4 16
28.19 even 6 1764.1.q.b.1403.5 16
28.23 odd 6 1764.1.q.b.1403.8 16
28.27 even 2 inner 1764.1.h.a.1763.8 yes 8
84.11 even 6 1764.1.q.b.215.5 16
84.23 even 6 1764.1.q.b.1403.1 16
84.47 odd 6 1764.1.q.b.1403.4 16
84.59 odd 6 1764.1.q.b.215.8 16
84.83 odd 2 inner 1764.1.h.a.1763.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.1.h.a.1763.1 8 21.20 even 2 inner
1764.1.h.a.1763.1 8 84.83 odd 2 inner
1764.1.h.a.1763.4 yes 8 3.2 odd 2 inner
1764.1.h.a.1763.4 yes 8 12.11 even 2 inner
1764.1.h.a.1763.5 yes 8 1.1 even 1 trivial
1764.1.h.a.1763.5 yes 8 4.3 odd 2 CM
1764.1.h.a.1763.8 yes 8 7.6 odd 2 inner
1764.1.h.a.1763.8 yes 8 28.27 even 2 inner
1764.1.q.b.215.1 16 7.3 odd 6
1764.1.q.b.215.1 16 28.3 even 6
1764.1.q.b.215.4 16 7.4 even 3
1764.1.q.b.215.4 16 28.11 odd 6
1764.1.q.b.215.5 16 21.11 odd 6
1764.1.q.b.215.5 16 84.11 even 6
1764.1.q.b.215.8 16 21.17 even 6
1764.1.q.b.215.8 16 84.59 odd 6
1764.1.q.b.1403.1 16 21.2 odd 6
1764.1.q.b.1403.1 16 84.23 even 6
1764.1.q.b.1403.4 16 21.5 even 6
1764.1.q.b.1403.4 16 84.47 odd 6
1764.1.q.b.1403.5 16 7.5 odd 6
1764.1.q.b.1403.5 16 28.19 even 6
1764.1.q.b.1403.8 16 7.2 even 3
1764.1.q.b.1403.8 16 28.23 odd 6