Properties

Label 1760.2.l.a
Level $1760$
Weight $2$
Character orbit 1760.l
Analytic conductor $14.054$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1760,2,Mod(529,1760)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1760, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1760.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1760 = 2^{5} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1760.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0536707557\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 440)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{3} + (2 i + 1) q^{5} + 4 i q^{7} + q^{9} + i q^{11} + 2 q^{13} + ( - 4 i - 2) q^{15} + 6 i q^{17} - 8 i q^{21} + 8 i q^{23} + (4 i - 3) q^{25} + 4 q^{27} - 6 i q^{29} + 10 q^{31} - 2 i q^{33} + \cdots + i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{3} + 2 q^{5} + 2 q^{9} + 4 q^{13} - 4 q^{15} - 6 q^{25} + 8 q^{27} + 20 q^{31} - 16 q^{35} - 12 q^{37} - 8 q^{39} + 12 q^{41} - 16 q^{43} + 2 q^{45} - 18 q^{49} + 20 q^{53} - 4 q^{55} + 4 q^{65}+ \cdots - 40 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1760\mathbb{Z}\right)^\times\).

\(n\) \(321\) \(991\) \(1057\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
529.1
1.00000i
1.00000i
0 −2.00000 0 1.00000 2.00000i 0 4.00000i 0 1.00000 0
529.2 0 −2.00000 0 1.00000 + 2.00000i 0 4.00000i 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1760.2.l.a 2
4.b odd 2 1 440.2.l.b yes 2
5.b even 2 1 1760.2.l.b 2
8.b even 2 1 1760.2.l.b 2
8.d odd 2 1 440.2.l.a 2
20.d odd 2 1 440.2.l.a 2
40.e odd 2 1 440.2.l.b yes 2
40.f even 2 1 inner 1760.2.l.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
440.2.l.a 2 8.d odd 2 1
440.2.l.a 2 20.d odd 2 1
440.2.l.b yes 2 4.b odd 2 1
440.2.l.b yes 2 40.e odd 2 1
1760.2.l.a 2 1.a even 1 1 trivial
1760.2.l.a 2 40.f even 2 1 inner
1760.2.l.b 2 5.b even 2 1
1760.2.l.b 2 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 2 \) acting on \(S_{2}^{\mathrm{new}}(1760, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 2)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 2T + 5 \) Copy content Toggle raw display
$7$ \( T^{2} + 16 \) Copy content Toggle raw display
$11$ \( T^{2} + 1 \) Copy content Toggle raw display
$13$ \( (T - 2)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 36 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 64 \) Copy content Toggle raw display
$29$ \( T^{2} + 36 \) Copy content Toggle raw display
$31$ \( (T - 10)^{2} \) Copy content Toggle raw display
$37$ \( (T + 6)^{2} \) Copy content Toggle raw display
$41$ \( (T - 6)^{2} \) Copy content Toggle raw display
$43$ \( (T + 8)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 64 \) Copy content Toggle raw display
$53$ \( (T - 10)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 16 \) Copy content Toggle raw display
$61$ \( T^{2} + 36 \) Copy content Toggle raw display
$67$ \( (T + 2)^{2} \) Copy content Toggle raw display
$71$ \( (T + 6)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 4 \) Copy content Toggle raw display
$79$ \( (T + 4)^{2} \) Copy content Toggle raw display
$83$ \( (T + 4)^{2} \) Copy content Toggle raw display
$89$ \( (T + 10)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 16 \) Copy content Toggle raw display
show more
show less