Newspace parameters
Level: | \( N \) | \(=\) | \( 1760 = 2^{5} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1760.g (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(14.0536707557\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | no (minimal twist has level 440) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
881.1 | 0 | − | 3.34174i | 0 | 1.00000i | 0 | −0.333306 | 0 | −8.16722 | 0 | |||||||||||||||||
881.2 | 0 | − | 3.33890i | 0 | − | 1.00000i | 0 | 3.21725 | 0 | −8.14826 | 0 | ||||||||||||||||
881.3 | 0 | − | 2.93797i | 0 | 1.00000i | 0 | 4.84749 | 0 | −5.63167 | 0 | |||||||||||||||||
881.4 | 0 | − | 2.73124i | 0 | − | 1.00000i | 0 | −4.25690 | 0 | −4.45970 | 0 | ||||||||||||||||
881.5 | 0 | − | 2.28755i | 0 | 1.00000i | 0 | −2.08702 | 0 | −2.23288 | 0 | |||||||||||||||||
881.6 | 0 | − | 2.08501i | 0 | 1.00000i | 0 | −2.28761 | 0 | −1.34727 | 0 | |||||||||||||||||
881.7 | 0 | − | 1.82409i | 0 | − | 1.00000i | 0 | 3.30914 | 0 | −0.327312 | 0 | ||||||||||||||||
881.8 | 0 | − | 1.41634i | 0 | 1.00000i | 0 | −4.34669 | 0 | 0.993975 | 0 | |||||||||||||||||
881.9 | 0 | − | 1.29586i | 0 | − | 1.00000i | 0 | −1.35877 | 0 | 1.32075 | 0 | ||||||||||||||||
881.10 | 0 | − | 0.894414i | 0 | − | 1.00000i | 0 | −2.43095 | 0 | 2.20002 | 0 | ||||||||||||||||
881.11 | 0 | − | 0.324436i | 0 | 1.00000i | 0 | 2.45816 | 0 | 2.89474 | 0 | |||||||||||||||||
881.12 | 0 | − | 0.308537i | 0 | − | 1.00000i | 0 | 3.26920 | 0 | 2.90480 | 0 | ||||||||||||||||
881.13 | 0 | 0.308537i | 0 | 1.00000i | 0 | 3.26920 | 0 | 2.90480 | 0 | ||||||||||||||||||
881.14 | 0 | 0.324436i | 0 | − | 1.00000i | 0 | 2.45816 | 0 | 2.89474 | 0 | |||||||||||||||||
881.15 | 0 | 0.894414i | 0 | 1.00000i | 0 | −2.43095 | 0 | 2.20002 | 0 | ||||||||||||||||||
881.16 | 0 | 1.29586i | 0 | 1.00000i | 0 | −1.35877 | 0 | 1.32075 | 0 | ||||||||||||||||||
881.17 | 0 | 1.41634i | 0 | − | 1.00000i | 0 | −4.34669 | 0 | 0.993975 | 0 | |||||||||||||||||
881.18 | 0 | 1.82409i | 0 | 1.00000i | 0 | 3.30914 | 0 | −0.327312 | 0 | ||||||||||||||||||
881.19 | 0 | 2.08501i | 0 | − | 1.00000i | 0 | −2.28761 | 0 | −1.34727 | 0 | |||||||||||||||||
881.20 | 0 | 2.28755i | 0 | − | 1.00000i | 0 | −2.08702 | 0 | −2.23288 | 0 | |||||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1760.2.g.c | 24 | |
4.b | odd | 2 | 1 | 440.2.g.c | ✓ | 24 | |
8.b | even | 2 | 1 | inner | 1760.2.g.c | 24 | |
8.d | odd | 2 | 1 | 440.2.g.c | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
440.2.g.c | ✓ | 24 | 4.b | odd | 2 | 1 | |
440.2.g.c | ✓ | 24 | 8.d | odd | 2 | 1 | |
1760.2.g.c | 24 | 1.a | even | 1 | 1 | trivial | |
1760.2.g.c | 24 | 8.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{24} + 56 T_{3}^{22} + 1346 T_{3}^{20} + 18208 T_{3}^{18} + 152849 T_{3}^{16} + 828472 T_{3}^{14} + \cdots + 16384 \)
acting on \(S_{2}^{\mathrm{new}}(1760, [\chi])\).