Properties

Label 1760.2.g.b
Level $1760$
Weight $2$
Character orbit 1760.g
Analytic conductor $14.054$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1760,2,Mod(881,1760)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1760, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1760.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1760 = 2^{5} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1760.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0536707557\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.192526503153664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{11} - x^{10} + 2x^{9} + 6x^{8} - 20x^{6} + 24x^{4} + 16x^{3} - 16x^{2} - 64x + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 440)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} - \beta_{9} q^{5} + ( - \beta_{10} + \beta_{3} - \beta_{2}) q^{7} + \beta_{2} q^{9} + \beta_{9} q^{11} + (\beta_{11} - 2 \beta_{9}) q^{13} - \beta_{3} q^{15} + ( - \beta_{5} - \beta_{3} + \beta_{2} - 1) q^{17}+ \cdots - \beta_{6} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{7} - 16 q^{17} - 12 q^{23} - 12 q^{25} - 12 q^{31} + 8 q^{39} + 64 q^{41} - 4 q^{47} + 32 q^{49} + 12 q^{55} + 36 q^{57} - 40 q^{63} - 20 q^{65} + 52 q^{71} - 28 q^{73} + 8 q^{79} - 36 q^{81}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 2x^{11} - x^{10} + 2x^{9} + 6x^{8} - 20x^{6} + 24x^{4} + 16x^{3} - 16x^{2} - 64x + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{11} - 2\nu^{10} - \nu^{9} + 2\nu^{8} + 6\nu^{7} - 20\nu^{5} + 24\nu^{3} + 16\nu^{2} + 16\nu - 64 ) / 32 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{11} + \nu^{10} + 3\nu^{9} - \nu^{8} - 8\nu^{7} - 6\nu^{6} + 20\nu^{5} + 20\nu^{4} - 24\nu^{3} - 24\nu^{2} + 64 ) / 16 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -3\nu^{10} + 7\nu^{8} + 8\nu^{7} - 6\nu^{6} - 28\nu^{5} - 4\nu^{4} + 40\nu^{3} + 40\nu^{2} - 16\nu - 80 ) / 16 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - \nu^{11} + 2 \nu^{10} + 3 \nu^{9} - 2 \nu^{8} - 12 \nu^{7} - 8 \nu^{6} + 28 \nu^{5} + 32 \nu^{4} + \cdots + 96 ) / 16 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 2 \nu^{11} + \nu^{10} + 4 \nu^{9} + 3 \nu^{8} - 10 \nu^{7} - 14 \nu^{6} + 20 \nu^{5} + 28 \nu^{4} + \cdots + 80 ) / 16 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 2\nu^{11} - \nu^{10} - 4\nu^{9} - 3\nu^{8} + 10\nu^{7} + 22\nu^{6} - 20\nu^{5} - 36\nu^{4} + 56\nu^{2} + 48\nu - 96 ) / 16 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 5 \nu^{11} - 2 \nu^{10} - 9 \nu^{9} - 6 \nu^{8} + 26 \nu^{7} + 40 \nu^{6} - 36 \nu^{5} - 80 \nu^{4} + \cdots - 192 ) / 32 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 2 \nu^{11} - 3 \nu^{10} - 6 \nu^{9} - \nu^{8} + 16 \nu^{7} + 18 \nu^{6} - 36 \nu^{5} - 44 \nu^{4} + \cdots - 128 ) / 16 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 5 \nu^{11} + 4 \nu^{10} + 13 \nu^{9} + 4 \nu^{8} - 30 \nu^{7} - 44 \nu^{6} + 52 \nu^{5} + 88 \nu^{4} + \cdots + 192 ) / 32 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 2 \nu^{11} - 5 \nu^{10} + 2 \nu^{9} + 17 \nu^{8} + 16 \nu^{7} - 26 \nu^{6} - 56 \nu^{5} + 12 \nu^{4} + \cdots - 128 ) / 16 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 9 \nu^{11} + 8 \nu^{10} + 23 \nu^{9} + 12 \nu^{8} - 56 \nu^{7} - 88 \nu^{6} + 92 \nu^{5} + \cdots + 352 ) / 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} - \beta_{4} - \beta_{3} + 2\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{11} - 2\beta_{9} + 2\beta_{8} + \beta_{7} + 2\beta_{2} - \beta _1 + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{9} + 2\beta_{8} + 2\beta_{7} + 3\beta_{5} + \beta_{4} - \beta_{3} - 2\beta_{2} + 2\beta _1 + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( \beta_{11} + 2\beta_{10} - 6\beta_{9} - \beta_{7} + 2\beta_{6} + 2\beta_{4} - 4\beta_{3} + 4\beta_{2} + 5\beta _1 - 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 2 \beta_{9} + 2 \beta_{8} + 6 \beta_{7} - 4 \beta_{6} + 5 \beta_{5} + 3 \beta_{4} + \beta_{3} + \cdots - 10 ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - \beta_{11} + 2 \beta_{10} - 2 \beta_{9} - 4 \beta_{8} - 3 \beta_{7} + 10 \beta_{6} + 4 \beta_{5} + \cdots + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 4 \beta_{11} + 8 \beta_{10} + 2 \beta_{9} - 10 \beta_{8} + 6 \beta_{7} - 4 \beta_{6} - \beta_{5} + \cdots - 6 ) / 4 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 5 \beta_{11} - 2 \beta_{10} - 30 \beta_{9} - 12 \beta_{8} - \beta_{7} + 6 \beta_{6} + 8 \beta_{5} + \cdots - 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 8 \beta_{11} + 46 \beta_{9} - 14 \beta_{8} + 14 \beta_{7} + 12 \beta_{6} - 3 \beta_{5} - 5 \beta_{4} + \cdots + 38 ) / 4 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 15 \beta_{11} + 10 \beta_{10} - 34 \beta_{9} - 12 \beta_{8} + 5 \beta_{7} + 18 \beta_{6} - 4 \beta_{5} + \cdots + 18 ) / 4 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 20 \beta_{11} - 24 \beta_{10} - 30 \beta_{9} + 6 \beta_{8} + 46 \beta_{7} - 20 \beta_{6} - 9 \beta_{5} + \cdots + 90 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1760\mathbb{Z}\right)^\times\).

\(n\) \(321\) \(991\) \(1057\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
881.1
−0.480846 + 1.32996i
−0.856842 + 1.12509i
1.12994 + 0.850428i
1.18373 + 0.773803i
−1.37658 + 0.324093i
1.40059 + 0.195848i
1.40059 0.195848i
−1.37658 0.324093i
1.18373 0.773803i
1.12994 0.850428i
−0.856842 1.12509i
−0.480846 1.32996i
0 2.65991i 0 1.00000i 0 −1.19647 0 −4.07515 0
881.2 0 2.25017i 0 1.00000i 0 4.09451 0 −2.06329 0
881.3 0 1.70086i 0 1.00000i 0 −1.51507 0 0.107089 0
881.4 0 1.54761i 0 1.00000i 0 3.13415 0 0.604914 0
881.5 0 0.648186i 0 1.00000i 0 −1.46292 0 2.57985 0
881.6 0 0.391695i 0 1.00000i 0 −5.05421 0 2.84657 0
881.7 0 0.391695i 0 1.00000i 0 −5.05421 0 2.84657 0
881.8 0 0.648186i 0 1.00000i 0 −1.46292 0 2.57985 0
881.9 0 1.54761i 0 1.00000i 0 3.13415 0 0.604914 0
881.10 0 1.70086i 0 1.00000i 0 −1.51507 0 0.107089 0
881.11 0 2.25017i 0 1.00000i 0 4.09451 0 −2.06329 0
881.12 0 2.65991i 0 1.00000i 0 −1.19647 0 −4.07515 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 881.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1760.2.g.b 12
4.b odd 2 1 440.2.g.b 12
8.b even 2 1 inner 1760.2.g.b 12
8.d odd 2 1 440.2.g.b 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
440.2.g.b 12 4.b odd 2 1
440.2.g.b 12 8.d odd 2 1
1760.2.g.b 12 1.a even 1 1 trivial
1760.2.g.b 12 8.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} + 18T_{3}^{10} + 117T_{3}^{8} + 336T_{3}^{6} + 412T_{3}^{4} + 160T_{3}^{2} + 16 \) acting on \(S_{2}^{\mathrm{new}}(1760, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( T^{12} + 18 T^{10} + \cdots + 16 \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{6} \) Copy content Toggle raw display
$7$ \( (T^{6} + 2 T^{5} + \cdots + 172)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 1)^{6} \) Copy content Toggle raw display
$13$ \( T^{12} + 80 T^{10} + \cdots + 565504 \) Copy content Toggle raw display
$17$ \( (T^{6} + 8 T^{5} + \cdots + 124)^{2} \) Copy content Toggle raw display
$19$ \( T^{12} + 90 T^{10} + \cdots + 102400 \) Copy content Toggle raw display
$23$ \( (T^{6} + 6 T^{5} - 58 T^{4} + \cdots - 64)^{2} \) Copy content Toggle raw display
$29$ \( T^{12} + 122 T^{10} + \cdots + 4096 \) Copy content Toggle raw display
$31$ \( (T^{6} + 6 T^{5} + \cdots - 752)^{2} \) Copy content Toggle raw display
$37$ \( T^{12} + 138 T^{10} + \cdots + 24127744 \) Copy content Toggle raw display
$41$ \( (T^{6} - 32 T^{5} + \cdots - 6016)^{2} \) Copy content Toggle raw display
$43$ \( T^{12} + \cdots + 266864896 \) Copy content Toggle raw display
$47$ \( (T^{6} + 2 T^{5} + \cdots + 67552)^{2} \) Copy content Toggle raw display
$53$ \( T^{12} + \cdots + 9231366400 \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 365628227584 \) Copy content Toggle raw display
$61$ \( T^{12} + \cdots + 491065600 \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots + 255437246464 \) Copy content Toggle raw display
$71$ \( (T^{6} - 26 T^{5} + \cdots + 181904)^{2} \) Copy content Toggle raw display
$73$ \( (T^{6} + 14 T^{5} + \cdots - 18064)^{2} \) Copy content Toggle raw display
$79$ \( (T^{6} - 4 T^{5} + \cdots - 5888)^{2} \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 10653542656 \) Copy content Toggle raw display
$89$ \( (T^{6} - 22 T^{5} + \cdots - 14576)^{2} \) Copy content Toggle raw display
$97$ \( (T^{6} + 12 T^{5} + \cdots - 33728)^{2} \) Copy content Toggle raw display
show more
show less