Properties

Label 1760.2.g.a
Level $1760$
Weight $2$
Character orbit 1760.g
Analytic conductor $14.054$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1760,2,Mod(881,1760)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1760, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1760.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1760 = 2^{5} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1760.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0536707557\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 440)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + \beta_1) q^{3} - \beta_1 q^{5} + q^{7} - 2 \beta_{3} q^{9} + \beta_1 q^{11} - 2 \beta_{2} q^{13} + (\beta_{3} + 1) q^{15} + ( - 3 \beta_{3} - 3) q^{17} + 3 \beta_1 q^{19} + (\beta_{2} + \beta_1) q^{21}+ \cdots - 2 \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{7} + 4 q^{15} - 12 q^{17} - 4 q^{25} + 4 q^{31} - 4 q^{33} + 16 q^{39} - 24 q^{41} + 24 q^{47} - 24 q^{49} + 4 q^{55} - 12 q^{57} - 12 q^{71} + 32 q^{73} - 4 q^{81} - 36 q^{87} + 12 q^{89} + 12 q^{95}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{8}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{8}^{3} + \zeta_{8} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\zeta_{8}^{3} + \zeta_{8} \) Copy content Toggle raw display
\(\zeta_{8}\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\zeta_{8}^{2}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{8}^{3}\)\(=\) \( ( -\beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1760\mathbb{Z}\right)^\times\).

\(n\) \(321\) \(991\) \(1057\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
881.1
0.707107 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
0 2.41421i 0 1.00000i 0 1.00000 0 −2.82843 0
881.2 0 0.414214i 0 1.00000i 0 1.00000 0 2.82843 0
881.3 0 0.414214i 0 1.00000i 0 1.00000 0 2.82843 0
881.4 0 2.41421i 0 1.00000i 0 1.00000 0 −2.82843 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1760.2.g.a 4
4.b odd 2 1 440.2.g.a 4
8.b even 2 1 inner 1760.2.g.a 4
8.d odd 2 1 440.2.g.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
440.2.g.a 4 4.b odd 2 1
440.2.g.a 4 8.d odd 2 1
1760.2.g.a 4 1.a even 1 1 trivial
1760.2.g.a 4 8.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 6T_{3}^{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(1760, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 6T^{2} + 1 \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T - 1)^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 8)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 6 T - 9)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 54T^{2} + 81 \) Copy content Toggle raw display
$31$ \( (T^{2} - 2 T - 17)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 178T^{2} + 5329 \) Copy content Toggle raw display
$41$ \( (T^{2} + 12 T + 28)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 12 T + 28)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 25)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 176T^{2} + 3136 \) Copy content Toggle raw display
$61$ \( T^{4} + 118T^{2} + 1681 \) Copy content Toggle raw display
$67$ \( T^{4} + 136T^{2} + 16 \) Copy content Toggle raw display
$71$ \( (T^{2} + 6 T - 9)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 16 T - 8)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 72)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 176T^{2} + 3136 \) Copy content Toggle raw display
$89$ \( (T^{2} - 6 T - 23)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 4 T - 68)^{2} \) Copy content Toggle raw display
show more
show less