Properties

Label 1760.2.c.b
Level $1760$
Weight $2$
Character orbit 1760.c
Analytic conductor $14.054$
Analytic rank $0$
Dimension $8$
CM discriminant -55
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1760,2,Mod(879,1760)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1760, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1760.879");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1760 = 2^{5} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1760.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0536707557\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.599695360000.19
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{4} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 440)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{5} + \beta_{2} q^{7} + 3 q^{9} + \beta_{3} q^{11} + ( - \beta_{6} + \beta_{2}) q^{13} + ( - \beta_{7} - \beta_{4}) q^{17} - 5 q^{25} + 4 \beta_1 q^{31} + (2 \beta_{7} - \beta_{4}) q^{35}+ \cdots + 3 \beta_{3} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 24 q^{9} - 40 q^{25} - 56 q^{49} + 32 q^{59} + 72 q^{81} - 96 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 3x^{4} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{6} + \nu^{2} ) / 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{7} + 4\nu^{5} + 5\nu^{3} - 4\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{6} + 7\nu^{2} ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{7} + 4\nu^{5} - 5\nu^{3} - 4\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( 2\nu^{4} - 3 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{7} - 3\nu^{3} + 8\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -\nu^{7} + 3\nu^{3} + 8\nu ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} + \beta_{6} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{7} - \beta_{6} - 2\beta_{4} + 2\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( \beta_{5} + 3 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( \beta_{7} + \beta_{6} + 4\beta_{4} + 4\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -\beta_{3} + 7\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -5\beta_{7} + 5\beta_{6} - 6\beta_{4} + 6\beta_{2} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1760\mathbb{Z}\right)^\times\).

\(n\) \(321\) \(991\) \(1057\) \(1541\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
879.1
−1.35246 0.413333i
0.413333 + 1.35246i
−0.413333 1.35246i
1.35246 + 0.413333i
1.35246 0.413333i
−0.413333 + 1.35246i
0.413333 1.35246i
−1.35246 + 0.413333i
0 0 0 2.23607i 0 5.22173i 0 3.00000 0
879.2 0 0 0 2.23607i 0 0.856447i 0 3.00000 0
879.3 0 0 0 2.23607i 0 0.856447i 0 3.00000 0
879.4 0 0 0 2.23607i 0 5.22173i 0 3.00000 0
879.5 0 0 0 2.23607i 0 5.22173i 0 3.00000 0
879.6 0 0 0 2.23607i 0 0.856447i 0 3.00000 0
879.7 0 0 0 2.23607i 0 0.856447i 0 3.00000 0
879.8 0 0 0 2.23607i 0 5.22173i 0 3.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 879.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
55.d odd 2 1 CM by \(\Q(\sqrt{-55}) \)
5.b even 2 1 inner
8.d odd 2 1 inner
11.b odd 2 1 inner
40.e odd 2 1 inner
88.g even 2 1 inner
440.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1760.2.c.b 8
4.b odd 2 1 440.2.c.b 8
5.b even 2 1 inner 1760.2.c.b 8
8.b even 2 1 440.2.c.b 8
8.d odd 2 1 inner 1760.2.c.b 8
11.b odd 2 1 inner 1760.2.c.b 8
20.d odd 2 1 440.2.c.b 8
40.e odd 2 1 inner 1760.2.c.b 8
40.f even 2 1 440.2.c.b 8
44.c even 2 1 440.2.c.b 8
55.d odd 2 1 CM 1760.2.c.b 8
88.b odd 2 1 440.2.c.b 8
88.g even 2 1 inner 1760.2.c.b 8
220.g even 2 1 440.2.c.b 8
440.c even 2 1 inner 1760.2.c.b 8
440.o odd 2 1 440.2.c.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
440.2.c.b 8 4.b odd 2 1
440.2.c.b 8 8.b even 2 1
440.2.c.b 8 20.d odd 2 1
440.2.c.b 8 40.f even 2 1
440.2.c.b 8 44.c even 2 1
440.2.c.b 8 88.b odd 2 1
440.2.c.b 8 220.g even 2 1
440.2.c.b 8 440.o odd 2 1
1760.2.c.b 8 1.a even 1 1 trivial
1760.2.c.b 8 5.b even 2 1 inner
1760.2.c.b 8 8.d odd 2 1 inner
1760.2.c.b 8 11.b odd 2 1 inner
1760.2.c.b 8 40.e odd 2 1 inner
1760.2.c.b 8 55.d odd 2 1 CM
1760.2.c.b 8 88.g even 2 1 inner
1760.2.c.b 8 440.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1760, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{7}^{4} + 28T_{7}^{2} + 20 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{2} + 5)^{4} \) Copy content Toggle raw display
$7$ \( (T^{4} + 28 T^{2} + 20)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 11)^{4} \) Copy content Toggle raw display
$13$ \( (T^{4} + 52 T^{2} + 500)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} - 68 T^{2} + 980)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( (T^{2} + 80)^{4} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( (T^{4} - 172 T^{2} + 7220)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( (T - 4)^{8} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( (T^{2} + 220)^{4} \) Copy content Toggle raw display
$73$ \( (T^{4} - 292 T^{2} + 20)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( (T^{4} - 332 T^{2} + 27380)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 176)^{4} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less