Defining parameters
Level: | \( N \) | \(=\) | \( 1760 = 2^{5} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1760.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 440 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1760, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 304 | 76 | 228 |
Cusp forms | 272 | 68 | 204 |
Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1760, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1760.2.c.a | $4$ | $14.054$ | \(\Q(\sqrt{-2}, \sqrt{5})\) | \(\Q(\sqrt{-10}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{3}q^{5}+2\beta _{1}q^{7}+3q^{9}+(1+\beta _{2}+\cdots)q^{11}+\cdots\) |
1760.2.c.b | $8$ | $14.054$ | 8.0.\(\cdots\).19 | \(\Q(\sqrt{-55}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{1}q^{5}+\beta _{2}q^{7}+3q^{9}+\beta _{3}q^{11}+\cdots\) |
1760.2.c.c | $56$ | $14.054$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1760, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1760, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(440, [\chi])\)\(^{\oplus 3}\)