Properties

Label 1760.2.a
Level $1760$
Weight $2$
Character orbit 1760.a
Rep. character $\chi_{1760}(1,\cdot)$
Character field $\Q$
Dimension $40$
Newform subspaces $22$
Sturm bound $576$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1760 = 2^{5} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1760.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 22 \)
Sturm bound: \(576\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(3\), \(7\), \(17\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1760))\).

Total New Old
Modular forms 304 40 264
Cusp forms 273 40 233
Eisenstein series 31 0 31

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(11\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(32\)\(4\)\(28\)\(29\)\(4\)\(25\)\(3\)\(0\)\(3\)
\(+\)\(+\)\(-\)\(-\)\(42\)\(6\)\(36\)\(38\)\(6\)\(32\)\(4\)\(0\)\(4\)
\(+\)\(-\)\(+\)\(-\)\(44\)\(7\)\(37\)\(40\)\(7\)\(33\)\(4\)\(0\)\(4\)
\(+\)\(-\)\(-\)\(+\)\(34\)\(3\)\(31\)\(30\)\(3\)\(27\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(+\)\(-\)\(40\)\(6\)\(34\)\(36\)\(6\)\(30\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(-\)\(+\)\(38\)\(4\)\(34\)\(34\)\(4\)\(30\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(+\)\(+\)\(36\)\(3\)\(33\)\(32\)\(3\)\(29\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(-\)\(-\)\(38\)\(7\)\(31\)\(34\)\(7\)\(27\)\(4\)\(0\)\(4\)
Plus space\(+\)\(140\)\(14\)\(126\)\(125\)\(14\)\(111\)\(15\)\(0\)\(15\)
Minus space\(-\)\(164\)\(26\)\(138\)\(148\)\(26\)\(122\)\(16\)\(0\)\(16\)

Trace form

\( 40 q + 40 q^{9} + 32 q^{13} + 16 q^{21} + 40 q^{25} - 16 q^{29} + 32 q^{37} - 16 q^{45} + 72 q^{49} + 32 q^{57} + 32 q^{61} - 16 q^{69} + 32 q^{73} + 88 q^{81} + 32 q^{89} + 32 q^{93} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1760))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 11
1760.2.a.a 1760.a 1.a $1$ $14.054$ \(\Q\) None 1760.2.a.a \(0\) \(-2\) \(-1\) \(2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}-q^{5}+2q^{7}+q^{9}+q^{11}-2q^{13}+\cdots\)
1760.2.a.b 1760.a 1.a $1$ $14.054$ \(\Q\) None 1760.2.a.b \(0\) \(-2\) \(1\) \(-4\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}+q^{5}-4q^{7}+q^{9}+q^{11}+4q^{13}+\cdots\)
1760.2.a.c 1760.a 1.a $1$ $14.054$ \(\Q\) None 1760.2.a.c \(0\) \(-2\) \(1\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+q^{5}+q^{9}-q^{11}+4q^{13}+\cdots\)
1760.2.a.d 1760.a 1.a $1$ $14.054$ \(\Q\) None 1760.2.a.d \(0\) \(-1\) \(-1\) \(3\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}+3q^{7}-2q^{9}-q^{11}-2q^{13}+\cdots\)
1760.2.a.e 1760.a 1.a $1$ $14.054$ \(\Q\) None 1760.2.a.e \(0\) \(-1\) \(1\) \(1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+q^{7}-2q^{9}-q^{11}-2q^{13}+\cdots\)
1760.2.a.f 1760.a 1.a $1$ $14.054$ \(\Q\) None 1760.2.a.f \(0\) \(-1\) \(1\) \(3\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+3q^{7}-2q^{9}+q^{11}-2q^{13}+\cdots\)
1760.2.a.g 1760.a 1.a $1$ $14.054$ \(\Q\) None 1760.2.a.g \(0\) \(0\) \(1\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}-3q^{9}-q^{11}-2q^{13}-2q^{17}+\cdots\)
1760.2.a.h 1760.a 1.a $1$ $14.054$ \(\Q\) None 1760.2.a.g \(0\) \(0\) \(1\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}-3q^{9}+q^{11}-2q^{13}-2q^{17}+\cdots\)
1760.2.a.i 1760.a 1.a $1$ $14.054$ \(\Q\) None 1760.2.a.d \(0\) \(1\) \(-1\) \(-3\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}-3q^{7}-2q^{9}+q^{11}-2q^{13}+\cdots\)
1760.2.a.j 1760.a 1.a $1$ $14.054$ \(\Q\) None 1760.2.a.f \(0\) \(1\) \(1\) \(-3\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-3q^{7}-2q^{9}-q^{11}-2q^{13}+\cdots\)
1760.2.a.k 1760.a 1.a $1$ $14.054$ \(\Q\) None 1760.2.a.e \(0\) \(1\) \(1\) \(-1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-q^{7}-2q^{9}+q^{11}-2q^{13}+\cdots\)
1760.2.a.l 1760.a 1.a $1$ $14.054$ \(\Q\) None 1760.2.a.a \(0\) \(2\) \(-1\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}-q^{5}-2q^{7}+q^{9}-q^{11}-2q^{13}+\cdots\)
1760.2.a.m 1760.a 1.a $1$ $14.054$ \(\Q\) None 1760.2.a.c \(0\) \(2\) \(1\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+q^{5}+q^{9}+q^{11}+4q^{13}+\cdots\)
1760.2.a.n 1760.a 1.a $1$ $14.054$ \(\Q\) None 1760.2.a.b \(0\) \(2\) \(1\) \(4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}+q^{5}+4q^{7}+q^{9}-q^{11}+4q^{13}+\cdots\)
1760.2.a.o 1760.a 1.a $2$ $14.054$ \(\Q(\sqrt{5}) \) None 1760.2.a.o \(0\) \(-2\) \(-2\) \(-4\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{3}-q^{5}-2q^{7}+(3+2\beta )q^{9}+\cdots\)
1760.2.a.p 1760.a 1.a $2$ $14.054$ \(\Q(\sqrt{5}) \) None 1760.2.a.o \(0\) \(2\) \(-2\) \(4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}-q^{5}+2q^{7}+(3+2\beta )q^{9}+\cdots\)
1760.2.a.q 1760.a 1.a $3$ $14.054$ 3.3.229.1 None 1760.2.a.q \(0\) \(-2\) \(-3\) \(4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{2})q^{3}-q^{5}+(1-\beta _{1})q^{7}+\cdots\)
1760.2.a.r 1760.a 1.a $3$ $14.054$ 3.3.229.1 None 1760.2.a.r \(0\) \(-1\) \(-3\) \(7\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{3}-q^{5}+(2-\beta _{1})q^{7}+(1-\beta _{1}+\cdots)q^{9}+\cdots\)
1760.2.a.s 1760.a 1.a $3$ $14.054$ 3.3.229.1 None 1760.2.a.r \(0\) \(1\) \(-3\) \(-7\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{3}-q^{5}+(-2+\beta _{1})q^{7}+(1-\beta _{1}+\cdots)q^{9}+\cdots\)
1760.2.a.t 1760.a 1.a $3$ $14.054$ 3.3.229.1 None 1760.2.a.q \(0\) \(2\) \(-3\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{3}-q^{5}+(-1+\beta _{1})q^{7}+\cdots\)
1760.2.a.u 1760.a 1.a $5$ $14.054$ 5.5.792644.1 None 1760.2.a.u \(0\) \(0\) \(5\) \(-2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{3}q^{3}+q^{5}-\beta _{4}q^{7}+(2-\beta _{1})q^{9}+\cdots\)
1760.2.a.v 1760.a 1.a $5$ $14.054$ 5.5.792644.1 None 1760.2.a.u \(0\) \(0\) \(5\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{3}q^{3}+q^{5}+\beta _{4}q^{7}+(2-\beta _{1})q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1760))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1760)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(160))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(220))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(352))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(440))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(880))\)\(^{\oplus 2}\)