Defining parameters
| Level: | \( N \) | \(=\) | \( 1760 = 2^{5} \cdot 5 \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1760.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 22 \) | ||
| Sturm bound: | \(576\) | ||
| Trace bound: | \(11\) | ||
| Distinguishing \(T_p\): | \(3\), \(7\), \(17\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1760))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 304 | 40 | 264 |
| Cusp forms | 273 | 40 | 233 |
| Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(5\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(32\) | \(4\) | \(28\) | \(29\) | \(4\) | \(25\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(42\) | \(6\) | \(36\) | \(38\) | \(6\) | \(32\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(44\) | \(7\) | \(37\) | \(40\) | \(7\) | \(33\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(34\) | \(3\) | \(31\) | \(30\) | \(3\) | \(27\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(40\) | \(6\) | \(34\) | \(36\) | \(6\) | \(30\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(38\) | \(4\) | \(34\) | \(34\) | \(4\) | \(30\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(36\) | \(3\) | \(33\) | \(32\) | \(3\) | \(29\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(38\) | \(7\) | \(31\) | \(34\) | \(7\) | \(27\) | \(4\) | \(0\) | \(4\) | |||
| Plus space | \(+\) | \(140\) | \(14\) | \(126\) | \(125\) | \(14\) | \(111\) | \(15\) | \(0\) | \(15\) | |||||
| Minus space | \(-\) | \(164\) | \(26\) | \(138\) | \(148\) | \(26\) | \(122\) | \(16\) | \(0\) | \(16\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1760))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1760))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1760)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(160))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(220))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(352))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(440))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(880))\)\(^{\oplus 2}\)