Properties

Label 1760.1.o.c
Level $1760$
Weight $1$
Character orbit 1760.o
Self dual yes
Analytic conductor $0.878$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -440
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1760,1,Mod(1649,1760)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1760, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1760.1649"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1760 = 2^{5} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1760.o (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,1,0,1,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.878354422234\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 440)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.440.1
Artin image: $D_6$
Artin field: Galois closure of 6.0.30976000.1
Stark unit: Root of $x^{6} - 21686x^{5} + 1404835x^{4} - 467516300x^{3} + 1404835x^{2} - 21686x + 1$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{3} + q^{5} - q^{7} + q^{11} + q^{15} + q^{17} - q^{19} - q^{21} + q^{25} - q^{27} + q^{29} + q^{31} + q^{33} - q^{35} - q^{37} + q^{51} - q^{53} + q^{55} - q^{57} + q^{61} - 2 q^{67}+ \cdots - q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1760\mathbb{Z}\right)^\times\).

\(n\) \(321\) \(991\) \(1057\) \(1541\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1649.1
0
0 1.00000 0 1.00000 0 −1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
440.o odd 2 1 CM by \(\Q(\sqrt{-110}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1760.1.o.c 1
4.b odd 2 1 440.1.o.a 1
5.b even 2 1 1760.1.o.b 1
8.b even 2 1 1760.1.o.a 1
8.d odd 2 1 440.1.o.b yes 1
11.b odd 2 1 1760.1.o.d 1
12.b even 2 1 3960.1.x.c 1
20.d odd 2 1 440.1.o.d yes 1
20.e even 4 2 2200.1.d.f 2
24.f even 2 1 3960.1.x.d 1
40.e odd 2 1 440.1.o.c yes 1
40.f even 2 1 1760.1.o.d 1
40.k even 4 2 2200.1.d.e 2
44.c even 2 1 440.1.o.c yes 1
55.d odd 2 1 1760.1.o.a 1
60.h even 2 1 3960.1.x.b 1
88.b odd 2 1 1760.1.o.b 1
88.g even 2 1 440.1.o.d yes 1
120.m even 2 1 3960.1.x.a 1
132.d odd 2 1 3960.1.x.a 1
220.g even 2 1 440.1.o.b yes 1
220.i odd 4 2 2200.1.d.e 2
264.p odd 2 1 3960.1.x.b 1
440.c even 2 1 440.1.o.a 1
440.o odd 2 1 CM 1760.1.o.c 1
440.w odd 4 2 2200.1.d.f 2
660.g odd 2 1 3960.1.x.d 1
1320.b odd 2 1 3960.1.x.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
440.1.o.a 1 4.b odd 2 1
440.1.o.a 1 440.c even 2 1
440.1.o.b yes 1 8.d odd 2 1
440.1.o.b yes 1 220.g even 2 1
440.1.o.c yes 1 40.e odd 2 1
440.1.o.c yes 1 44.c even 2 1
440.1.o.d yes 1 20.d odd 2 1
440.1.o.d yes 1 88.g even 2 1
1760.1.o.a 1 8.b even 2 1
1760.1.o.a 1 55.d odd 2 1
1760.1.o.b 1 5.b even 2 1
1760.1.o.b 1 88.b odd 2 1
1760.1.o.c 1 1.a even 1 1 trivial
1760.1.o.c 1 440.o odd 2 1 CM
1760.1.o.d 1 11.b odd 2 1
1760.1.o.d 1 40.f even 2 1
2200.1.d.e 2 40.k even 4 2
2200.1.d.e 2 220.i odd 4 2
2200.1.d.f 2 20.e even 4 2
2200.1.d.f 2 440.w odd 4 2
3960.1.x.a 1 120.m even 2 1
3960.1.x.a 1 132.d odd 2 1
3960.1.x.b 1 60.h even 2 1
3960.1.x.b 1 264.p odd 2 1
3960.1.x.c 1 12.b even 2 1
3960.1.x.c 1 1320.b odd 2 1
3960.1.x.d 1 24.f even 2 1
3960.1.x.d 1 660.g odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1760, [\chi])\):

\( T_{3} - 1 \) Copy content Toggle raw display
\( T_{7} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T + 1 \) Copy content Toggle raw display
$11$ \( T - 1 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T - 1 \) Copy content Toggle raw display
$19$ \( T + 1 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T - 1 \) Copy content Toggle raw display
$31$ \( T - 1 \) Copy content Toggle raw display
$37$ \( T + 1 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T + 1 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T - 1 \) Copy content Toggle raw display
$67$ \( T + 2 \) Copy content Toggle raw display
$71$ \( T - 1 \) Copy content Toggle raw display
$73$ \( T + 2 \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 1 \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less