Properties

Label 1760.1.cn.b
Level $1760$
Weight $1$
Character orbit 1760.cn
Analytic conductor $0.878$
Analytic rank $0$
Dimension $4$
Projective image $D_{5}$
CM discriminant -40
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1760,1,Mod(399,1760)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1760, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 5, 8]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1760.399");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1760 = 2^{5} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1760.cn (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.878354422234\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 440)
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.23425600.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{10} q^{5} + ( - \zeta_{10} + 1) q^{7} + \zeta_{10}^{4} q^{9} + \zeta_{10}^{3} q^{11} + (\zeta_{10}^{3} - 1) q^{13} + (\zeta_{10}^{3} + \zeta_{10}) q^{19} + ( - \zeta_{10}^{3} + \zeta_{10}^{2}) q^{23}+ \cdots - \zeta_{10}^{2} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{5} + 3 q^{7} - q^{9} + q^{11} - 3 q^{13} + 2 q^{19} - 2 q^{23} - q^{25} + 2 q^{35} + 2 q^{37} + 3 q^{41} - 4 q^{45} - 2 q^{47} + 2 q^{49} + 2 q^{53} - q^{55} + 2 q^{59} + 3 q^{63} - 2 q^{65}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1760\mathbb{Z}\right)^\times\).

\(n\) \(321\) \(991\) \(1057\) \(1541\)
\(\chi(n)\) \(-\zeta_{10}^{3}\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
399.1
0.809017 + 0.587785i
−0.309017 0.951057i
0.809017 0.587785i
−0.309017 + 0.951057i
0 0 0 0.809017 + 0.587785i 0 0.190983 0.587785i 0 −0.809017 + 0.587785i 0
559.1 0 0 0 −0.309017 0.951057i 0 1.30902 + 0.951057i 0 0.309017 0.951057i 0
719.1 0 0 0 0.809017 0.587785i 0 0.190983 + 0.587785i 0 −0.809017 0.587785i 0
1039.1 0 0 0 −0.309017 + 0.951057i 0 1.30902 0.951057i 0 0.309017 + 0.951057i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.e odd 2 1 CM by \(\Q(\sqrt{-10}) \)
11.c even 5 1 inner
440.bh odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1760.1.cn.b 4
4.b odd 2 1 440.1.bh.b yes 4
5.b even 2 1 1760.1.cn.a 4
8.b even 2 1 440.1.bh.a 4
8.d odd 2 1 1760.1.cn.a 4
11.c even 5 1 inner 1760.1.cn.b 4
12.b even 2 1 3960.1.dh.a 4
20.d odd 2 1 440.1.bh.a 4
20.e even 4 2 2200.1.cl.c 8
24.h odd 2 1 3960.1.dh.b 4
40.e odd 2 1 CM 1760.1.cn.b 4
40.f even 2 1 440.1.bh.b yes 4
40.i odd 4 2 2200.1.cl.c 8
44.h odd 10 1 440.1.bh.b yes 4
55.j even 10 1 1760.1.cn.a 4
60.h even 2 1 3960.1.dh.b 4
88.l odd 10 1 1760.1.cn.a 4
88.o even 10 1 440.1.bh.a 4
120.i odd 2 1 3960.1.dh.a 4
132.o even 10 1 3960.1.dh.a 4
220.n odd 10 1 440.1.bh.a 4
220.v even 20 2 2200.1.cl.c 8
264.t odd 10 1 3960.1.dh.b 4
440.bd even 10 1 440.1.bh.b yes 4
440.bh odd 10 1 inner 1760.1.cn.b 4
440.bp odd 20 2 2200.1.cl.c 8
660.bd even 10 1 3960.1.dh.b 4
1320.cp odd 10 1 3960.1.dh.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
440.1.bh.a 4 8.b even 2 1
440.1.bh.a 4 20.d odd 2 1
440.1.bh.a 4 88.o even 10 1
440.1.bh.a 4 220.n odd 10 1
440.1.bh.b yes 4 4.b odd 2 1
440.1.bh.b yes 4 40.f even 2 1
440.1.bh.b yes 4 44.h odd 10 1
440.1.bh.b yes 4 440.bd even 10 1
1760.1.cn.a 4 5.b even 2 1
1760.1.cn.a 4 8.d odd 2 1
1760.1.cn.a 4 55.j even 10 1
1760.1.cn.a 4 88.l odd 10 1
1760.1.cn.b 4 1.a even 1 1 trivial
1760.1.cn.b 4 11.c even 5 1 inner
1760.1.cn.b 4 40.e odd 2 1 CM
1760.1.cn.b 4 440.bh odd 10 1 inner
2200.1.cl.c 8 20.e even 4 2
2200.1.cl.c 8 40.i odd 4 2
2200.1.cl.c 8 220.v even 20 2
2200.1.cl.c 8 440.bp odd 20 2
3960.1.dh.a 4 12.b even 2 1
3960.1.dh.a 4 120.i odd 2 1
3960.1.dh.a 4 132.o even 10 1
3960.1.dh.a 4 1320.cp odd 10 1
3960.1.dh.b 4 24.h odd 2 1
3960.1.dh.b 4 60.h even 2 1
3960.1.dh.b 4 264.t odd 10 1
3960.1.dh.b 4 660.bd even 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} - 3T_{7}^{3} + 4T_{7}^{2} - 2T_{7} + 1 \) acting on \(S_{1}^{\mathrm{new}}(1760, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less