Defining parameters
| Level: | \( N \) | \(=\) | \( 176 = 2^{4} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 176.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 10 \) | ||
| Sturm bound: | \(96\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(176))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 78 | 15 | 63 |
| Cusp forms | 66 | 15 | 51 |
| Eisenstein series | 12 | 0 | 12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(21\) | \(5\) | \(16\) | \(18\) | \(5\) | \(13\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(-\) | \(18\) | \(2\) | \(16\) | \(15\) | \(2\) | \(13\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(18\) | \(4\) | \(14\) | \(15\) | \(4\) | \(11\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(21\) | \(4\) | \(17\) | \(18\) | \(4\) | \(14\) | \(3\) | \(0\) | \(3\) | |||
| Plus space | \(+\) | \(42\) | \(9\) | \(33\) | \(36\) | \(9\) | \(27\) | \(6\) | \(0\) | \(6\) | ||||
| Minus space | \(-\) | \(36\) | \(6\) | \(30\) | \(30\) | \(6\) | \(24\) | \(6\) | \(0\) | \(6\) | ||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(176))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(176))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(176)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 2}\)