Defining parameters
Level: | \( N \) | \(=\) | \( 176 = 2^{4} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 176.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 10 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(176))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 78 | 15 | 63 |
Cusp forms | 66 | 15 | 51 |
Eisenstein series | 12 | 0 | 12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(11\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(5\) |
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(4\) |
\(-\) | \(-\) | \(+\) | \(4\) |
Plus space | \(+\) | \(9\) | |
Minus space | \(-\) | \(6\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(176))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(176))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(176)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 2}\)