Properties

Label 176.2.w.a.5.9
Level $176$
Weight $2$
Character 176.5
Analytic conductor $1.405$
Analytic rank $0$
Dimension $176$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,2,Mod(5,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 5, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 176.w (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40536707557\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 5.9
Character \(\chi\) \(=\) 176.5
Dual form 176.2.w.a.141.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.565804 - 1.29610i) q^{2} +(0.310032 - 0.0491042i) q^{3} +(-1.35973 + 1.46667i) q^{4} +(-3.81933 + 1.94605i) q^{5} +(-0.239061 - 0.374048i) q^{6} +(1.09214 + 1.50320i) q^{7} +(2.67029 + 0.932494i) q^{8} +(-2.75946 + 0.896603i) q^{9} +O(q^{10})\) \(q+(-0.565804 - 1.29610i) q^{2} +(0.310032 - 0.0491042i) q^{3} +(-1.35973 + 1.46667i) q^{4} +(-3.81933 + 1.94605i) q^{5} +(-0.239061 - 0.374048i) q^{6} +(1.09214 + 1.50320i) q^{7} +(2.67029 + 0.932494i) q^{8} +(-2.75946 + 0.896603i) q^{9} +(4.68326 + 3.84914i) q^{10} +(-3.17433 + 0.961057i) q^{11} +(-0.349540 + 0.521484i) q^{12} +(2.45942 + 1.25314i) q^{13} +(1.33036 - 2.26604i) q^{14} +(-1.08856 + 0.790882i) q^{15} +(-0.302259 - 3.98856i) q^{16} +(1.19888 - 3.68976i) q^{17} +(2.72340 + 3.06923i) q^{18} +(-4.34691 + 0.688483i) q^{19} +(2.33905 - 8.24781i) q^{20} +(0.412413 + 0.412413i) q^{21} +(3.04167 + 3.57047i) q^{22} +4.26655i q^{23} +(0.873665 + 0.157980i) q^{24} +(7.86126 - 10.8201i) q^{25} +(0.232637 - 3.89668i) q^{26} +(-1.65055 + 0.840995i) q^{27} +(-3.68973 - 0.442140i) q^{28} +(-0.366550 + 2.31431i) q^{29} +(1.64097 + 0.963389i) q^{30} +(2.13622 + 6.57461i) q^{31} +(-4.99854 + 2.64850i) q^{32} +(-0.936952 + 0.453831i) q^{33} +(-5.46062 + 0.533823i) q^{34} +(-7.09656 - 3.61588i) q^{35} +(2.43710 - 5.26637i) q^{36} +(0.159587 + 0.0252761i) q^{37} +(3.35184 + 5.24447i) q^{38} +(0.824033 + 0.267745i) q^{39} +(-12.0134 + 1.63501i) q^{40} +(-1.60040 + 2.20276i) q^{41} +(0.301182 - 0.767871i) q^{42} +(-0.345550 - 0.345550i) q^{43} +(2.90668 - 5.96248i) q^{44} +(8.79446 - 8.79446i) q^{45} +(5.52986 - 2.41403i) q^{46} +(-6.18649 - 4.49475i) q^{47} +(-0.289565 - 1.22174i) q^{48} +(1.09627 - 3.37397i) q^{49} +(-18.4718 - 4.06690i) q^{50} +(0.190507 - 1.20281i) q^{51} +(-5.18210 + 1.90324i) q^{52} +(-1.31251 + 2.57594i) q^{53} +(2.02390 + 1.66343i) q^{54} +(10.2536 - 9.84799i) q^{55} +(1.51461 + 5.03241i) q^{56} +(-1.31387 + 0.426904i) q^{57} +(3.20696 - 0.834359i) q^{58} +(11.9847 + 1.89819i) q^{59} +(0.320179 - 2.67194i) q^{60} +(-1.21788 - 2.39023i) q^{61} +(7.31265 - 6.48869i) q^{62} +(-4.36150 - 3.16882i) q^{63} +(6.26091 + 4.98006i) q^{64} -11.8320 q^{65} +(1.11834 + 0.957600i) q^{66} +(-7.27592 + 7.27592i) q^{67} +(3.78152 + 6.77545i) q^{68} +(0.209506 + 1.32277i) q^{69} +(-0.671265 + 11.2437i) q^{70} +(0.720725 + 0.234178i) q^{71} +(-8.20464 - 0.178990i) q^{72} +(8.13834 + 11.2015i) q^{73} +(-0.0575346 - 0.221141i) q^{74} +(1.90593 - 3.74060i) q^{75} +(4.90085 - 7.31165i) q^{76} +(-4.91148 - 3.72206i) q^{77} +(-0.119218 - 1.21952i) q^{78} +(4.04571 + 12.4514i) q^{79} +(8.91636 + 14.6454i) q^{80} +(6.57159 - 4.77454i) q^{81} +(3.76051 + 0.827942i) q^{82} +(1.39046 + 2.72893i) q^{83} +(-1.16565 + 0.0441039i) q^{84} +(2.60154 + 16.4255i) q^{85} +(-0.252353 + 0.643380i) q^{86} +0.735508i q^{87} +(-9.37256 - 0.393744i) q^{88} -0.416911i q^{89} +(-16.3744 - 6.42253i) q^{90} +(0.802315 + 5.06562i) q^{91} +(-6.25763 - 5.80136i) q^{92} +(0.985138 + 1.93344i) q^{93} +(-2.32529 + 10.5614i) q^{94} +(15.2625 - 11.0888i) q^{95} +(-1.41966 + 1.06657i) q^{96} +(-3.21549 - 9.89626i) q^{97} +(-4.99326 + 0.488135i) q^{98} +(7.89775 - 5.49811i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8} - 16 q^{10} - 12 q^{11} - 6 q^{13} - 12 q^{15} + 14 q^{16} - 12 q^{17} - 44 q^{18} - 6 q^{19} + 2 q^{20} - 28 q^{21} + 50 q^{22} - 38 q^{24} - 68 q^{26} - 18 q^{27} - 46 q^{28} - 22 q^{29} + 26 q^{30} - 12 q^{31} - 16 q^{32} - 16 q^{33} + 12 q^{34} - 26 q^{35} - 22 q^{36} + 18 q^{37} - 34 q^{38} + 14 q^{40} - 10 q^{42} - 40 q^{43} + 2 q^{44} - 24 q^{45} + 38 q^{46} - 12 q^{47} - 26 q^{48} + 8 q^{49} - 62 q^{50} + 6 q^{51} + 74 q^{52} - 30 q^{53} - 52 q^{54} - 96 q^{56} - 26 q^{58} + 10 q^{59} + 118 q^{60} - 6 q^{61} - 42 q^{62} - 28 q^{63} - 106 q^{64} - 32 q^{65} + 6 q^{66} + 24 q^{67} + 116 q^{68} + 12 q^{69} + 52 q^{70} - 98 q^{72} + 96 q^{74} - 46 q^{75} + 112 q^{76} - 14 q^{77} + 44 q^{78} - 52 q^{79} - 28 q^{80} + 66 q^{82} + 54 q^{83} + 120 q^{84} + 14 q^{85} + 86 q^{86} + 142 q^{88} + 228 q^{90} - 122 q^{91} + 146 q^{92} + 6 q^{93} + 56 q^{94} + 52 q^{95} + 86 q^{96} - 12 q^{97} + 140 q^{98} + 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.565804 1.29610i −0.400084 0.916479i
\(3\) 0.310032 0.0491042i 0.178997 0.0283503i −0.0662924 0.997800i \(-0.521117\pi\)
0.245289 + 0.969450i \(0.421117\pi\)
\(4\) −1.35973 + 1.46667i −0.679866 + 0.733336i
\(5\) −3.81933 + 1.94605i −1.70806 + 0.870298i −0.724596 + 0.689173i \(0.757974\pi\)
−0.983460 + 0.181125i \(0.942026\pi\)
\(6\) −0.239061 0.374048i −0.0975963 0.152704i
\(7\) 1.09214 + 1.50320i 0.412791 + 0.568158i 0.963896 0.266278i \(-0.0857938\pi\)
−0.551105 + 0.834436i \(0.685794\pi\)
\(8\) 2.67029 + 0.932494i 0.944090 + 0.329686i
\(9\) −2.75946 + 0.896603i −0.919820 + 0.298868i
\(10\) 4.68326 + 3.84914i 1.48098 + 1.21720i
\(11\) −3.17433 + 0.961057i −0.957096 + 0.289769i
\(12\) −0.349540 + 0.521484i −0.100904 + 0.150539i
\(13\) 2.45942 + 1.25314i 0.682121 + 0.347558i 0.760475 0.649368i \(-0.224966\pi\)
−0.0783539 + 0.996926i \(0.524966\pi\)
\(14\) 1.33036 2.26604i 0.355554 0.605625i
\(15\) −1.08856 + 0.790882i −0.281064 + 0.204205i
\(16\) −0.302259 3.98856i −0.0755647 0.997141i
\(17\) 1.19888 3.68976i 0.290770 0.894899i −0.693839 0.720130i \(-0.744082\pi\)
0.984609 0.174769i \(-0.0559179\pi\)
\(18\) 2.72340 + 3.06923i 0.641911 + 0.723423i
\(19\) −4.34691 + 0.688483i −0.997250 + 0.157949i −0.633661 0.773611i \(-0.718449\pi\)
−0.363589 + 0.931560i \(0.618449\pi\)
\(20\) 2.33905 8.24781i 0.523028 1.84427i
\(21\) 0.412413 + 0.412413i 0.0899958 + 0.0899958i
\(22\) 3.04167 + 3.57047i 0.648486 + 0.761226i
\(23\) 4.26655i 0.889637i 0.895621 + 0.444819i \(0.146732\pi\)
−0.895621 + 0.444819i \(0.853268\pi\)
\(24\) 0.873665 + 0.157980i 0.178336 + 0.0322476i
\(25\) 7.86126 10.8201i 1.57225 2.16402i
\(26\) 0.232637 3.89668i 0.0456239 0.764201i
\(27\) −1.65055 + 0.840995i −0.317648 + 0.161850i
\(28\) −3.68973 0.442140i −0.697293 0.0835566i
\(29\) −0.366550 + 2.31431i −0.0680666 + 0.429756i 0.929998 + 0.367565i \(0.119809\pi\)
−0.998064 + 0.0621903i \(0.980191\pi\)
\(30\) 1.64097 + 0.963389i 0.299598 + 0.175890i
\(31\) 2.13622 + 6.57461i 0.383676 + 1.18083i 0.937436 + 0.348158i \(0.113193\pi\)
−0.553759 + 0.832677i \(0.686807\pi\)
\(32\) −4.99854 + 2.64850i −0.883626 + 0.468193i
\(33\) −0.936952 + 0.453831i −0.163102 + 0.0790019i
\(34\) −5.46062 + 0.533823i −0.936488 + 0.0915498i
\(35\) −7.09656 3.61588i −1.19954 0.611195i
\(36\) 2.43710 5.26637i 0.406184 0.877728i
\(37\) 0.159587 + 0.0252761i 0.0262359 + 0.00415536i 0.169539 0.985524i \(-0.445772\pi\)
−0.143303 + 0.989679i \(0.545772\pi\)
\(38\) 3.35184 + 5.24447i 0.543740 + 0.850765i
\(39\) 0.824033 + 0.267745i 0.131951 + 0.0428735i
\(40\) −12.0134 + 1.63501i −1.89949 + 0.258517i
\(41\) −1.60040 + 2.20276i −0.249941 + 0.344014i −0.915490 0.402340i \(-0.868197\pi\)
0.665550 + 0.746353i \(0.268197\pi\)
\(42\) 0.301182 0.767871i 0.0464734 0.118485i
\(43\) −0.345550 0.345550i −0.0526959 0.0526959i 0.680268 0.732964i \(-0.261863\pi\)
−0.732964 + 0.680268i \(0.761863\pi\)
\(44\) 2.90668 5.96248i 0.438199 0.898878i
\(45\) 8.79446 8.79446i 1.31100 1.31100i
\(46\) 5.52986 2.41403i 0.815333 0.355929i
\(47\) −6.18649 4.49475i −0.902392 0.655626i 0.0366873 0.999327i \(-0.488319\pi\)
−0.939079 + 0.343701i \(0.888319\pi\)
\(48\) −0.289565 1.22174i −0.0417951 0.176343i
\(49\) 1.09627 3.37397i 0.156610 0.481996i
\(50\) −18.4718 4.06690i −2.61231 0.575147i
\(51\) 0.190507 1.20281i 0.0266763 0.168428i
\(52\) −5.18210 + 1.90324i −0.718627 + 0.263931i
\(53\) −1.31251 + 2.57594i −0.180287 + 0.353833i −0.963409 0.268035i \(-0.913626\pi\)
0.783123 + 0.621867i \(0.213626\pi\)
\(54\) 2.02390 + 1.66343i 0.275417 + 0.226364i
\(55\) 10.2536 9.84799i 1.38259 1.32790i
\(56\) 1.51461 + 5.03241i 0.202398 + 0.672484i
\(57\) −1.31387 + 0.426904i −0.174027 + 0.0565448i
\(58\) 3.20696 0.834359i 0.421094 0.109557i
\(59\) 11.9847 + 1.89819i 1.56027 + 0.247123i 0.876076 0.482174i \(-0.160153\pi\)
0.684198 + 0.729297i \(0.260153\pi\)
\(60\) 0.320179 2.67194i 0.0413349 0.344946i
\(61\) −1.21788 2.39023i −0.155934 0.306037i 0.799802 0.600264i \(-0.204938\pi\)
−0.955736 + 0.294227i \(0.904938\pi\)
\(62\) 7.31265 6.48869i 0.928707 0.824064i
\(63\) −4.36150 3.16882i −0.549498 0.399233i
\(64\) 6.26091 + 4.98006i 0.782614 + 0.622508i
\(65\) −11.8320 −1.46758
\(66\) 1.11834 + 0.957600i 0.137658 + 0.117872i
\(67\) −7.27592 + 7.27592i −0.888895 + 0.888895i −0.994417 0.105522i \(-0.966349\pi\)
0.105522 + 0.994417i \(0.466349\pi\)
\(68\) 3.78152 + 6.77545i 0.458577 + 0.821644i
\(69\) 0.209506 + 1.32277i 0.0252215 + 0.159242i
\(70\) −0.671265 + 11.2437i −0.0802315 + 1.34388i
\(71\) 0.720725 + 0.234178i 0.0855343 + 0.0277918i 0.351472 0.936199i \(-0.385681\pi\)
−0.265937 + 0.963990i \(0.585681\pi\)
\(72\) −8.20464 0.178990i −0.966926 0.0210942i
\(73\) 8.13834 + 11.2015i 0.952521 + 1.31103i 0.950398 + 0.311035i \(0.100676\pi\)
0.00212249 + 0.999998i \(0.499324\pi\)
\(74\) −0.0575346 0.221141i −0.00668827 0.0257071i
\(75\) 1.90593 3.74060i 0.220078 0.431927i
\(76\) 4.90085 7.31165i 0.562167 0.838704i
\(77\) −4.91148 3.72206i −0.559716 0.424168i
\(78\) −0.119218 1.21952i −0.0134988 0.138083i
\(79\) 4.04571 + 12.4514i 0.455178 + 1.40089i 0.870926 + 0.491413i \(0.163520\pi\)
−0.415749 + 0.909479i \(0.636480\pi\)
\(80\) 8.91636 + 14.6454i 0.996879 + 1.63741i
\(81\) 6.57159 4.77454i 0.730176 0.530504i
\(82\) 3.76051 + 0.827942i 0.415279 + 0.0914309i
\(83\) 1.39046 + 2.72893i 0.152623 + 0.299539i 0.954640 0.297762i \(-0.0962400\pi\)
−0.802018 + 0.597300i \(0.796240\pi\)
\(84\) −1.16565 + 0.0441039i −0.127182 + 0.00481213i
\(85\) 2.60154 + 16.4255i 0.282177 + 1.78160i
\(86\) −0.252353 + 0.643380i −0.0272119 + 0.0693774i
\(87\) 0.735508i 0.0788547i
\(88\) −9.37256 0.393744i −0.999119 0.0419732i
\(89\) 0.416911i 0.0441925i −0.999756 0.0220962i \(-0.992966\pi\)
0.999756 0.0220962i \(-0.00703403\pi\)
\(90\) −16.3744 6.42253i −1.72601 0.676994i
\(91\) 0.802315 + 5.06562i 0.0841055 + 0.531021i
\(92\) −6.25763 5.80136i −0.652403 0.604834i
\(93\) 0.985138 + 1.93344i 0.102154 + 0.200489i
\(94\) −2.32529 + 10.5614i −0.239835 + 1.08933i
\(95\) 15.2625 11.0888i 1.56590 1.13769i
\(96\) −1.41966 + 1.06657i −0.144893 + 0.108856i
\(97\) −3.21549 9.89626i −0.326483 1.00481i −0.970767 0.240026i \(-0.922844\pi\)
0.644283 0.764787i \(-0.277156\pi\)
\(98\) −4.99326 + 0.488135i −0.504396 + 0.0493091i
\(99\) 7.89775 5.49811i 0.793754 0.552581i
\(100\) 5.18034 + 26.2423i 0.518034 + 2.62423i
\(101\) 3.25797 6.39412i 0.324180 0.636239i −0.670192 0.742188i \(-0.733788\pi\)
0.994372 + 0.105949i \(0.0337881\pi\)
\(102\) −1.66675 + 0.433642i −0.165033 + 0.0429369i
\(103\) −0.853459 1.17469i −0.0840938 0.115745i 0.764897 0.644152i \(-0.222790\pi\)
−0.848991 + 0.528407i \(0.822790\pi\)
\(104\) 5.39883 + 5.63964i 0.529398 + 0.553012i
\(105\) −2.37771 0.772566i −0.232041 0.0753947i
\(106\) 4.08129 + 0.243659i 0.396410 + 0.0236662i
\(107\) 1.34182 + 8.47193i 0.129719 + 0.819013i 0.963655 + 0.267151i \(0.0860823\pi\)
−0.833936 + 0.551862i \(0.813918\pi\)
\(108\) 1.01083 3.56434i 0.0972676 0.342979i
\(109\) 2.67947 2.67947i 0.256647 0.256647i −0.567042 0.823689i \(-0.691912\pi\)
0.823689 + 0.567042i \(0.191912\pi\)
\(110\) −18.5654 7.71757i −1.77015 0.735841i
\(111\) 0.0507182 0.00481396
\(112\) 5.66552 4.81043i 0.535341 0.454543i
\(113\) 9.10924 + 6.61825i 0.856925 + 0.622593i 0.927047 0.374946i \(-0.122339\pi\)
−0.0701215 + 0.997538i \(0.522339\pi\)
\(114\) 1.29670 + 1.46136i 0.121447 + 0.136869i
\(115\) −8.30290 16.2954i −0.774250 1.51955i
\(116\) −2.89592 3.68444i −0.268879 0.342092i
\(117\) −7.91024 1.25286i −0.731302 0.115827i
\(118\) −4.32075 16.6073i −0.397757 1.52883i
\(119\) 6.85581 2.22759i 0.628471 0.204203i
\(120\) −3.64425 + 1.09681i −0.332673 + 0.100125i
\(121\) 9.15274 6.10142i 0.832067 0.554675i
\(122\) −2.40888 + 2.93089i −0.218090 + 0.265350i
\(123\) −0.388011 + 0.761514i −0.0349857 + 0.0686634i
\(124\) −12.5475 5.80657i −1.12680 0.521445i
\(125\) −5.61554 + 35.4551i −0.502269 + 3.17120i
\(126\) −1.63934 + 7.44586i −0.146044 + 0.663330i
\(127\) −2.56188 + 7.88466i −0.227330 + 0.699650i 0.770717 + 0.637178i \(0.219898\pi\)
−0.998047 + 0.0624721i \(0.980102\pi\)
\(128\) 2.91219 10.9325i 0.257404 0.966304i
\(129\) −0.124100 0.0901636i −0.0109264 0.00793846i
\(130\) 6.69460 + 15.3354i 0.587155 + 1.34501i
\(131\) 5.09858 5.09858i 0.445465 0.445465i −0.448378 0.893844i \(-0.647998\pi\)
0.893844 + 0.448378i \(0.147998\pi\)
\(132\) 0.608381 1.99129i 0.0529528 0.173320i
\(133\) −5.78238 5.78238i −0.501396 0.501396i
\(134\) 13.5470 + 5.31355i 1.17029 + 0.459021i
\(135\) 4.66736 6.42408i 0.401703 0.552896i
\(136\) 6.64203 8.73480i 0.569550 0.749003i
\(137\) −8.69085 2.82383i −0.742509 0.241256i −0.0867543 0.996230i \(-0.527650\pi\)
−0.655755 + 0.754974i \(0.727650\pi\)
\(138\) 1.59589 1.01997i 0.135852 0.0868253i
\(139\) −21.7200 3.44011i −1.84226 0.291786i −0.864679 0.502325i \(-0.832478\pi\)
−0.977586 + 0.210539i \(0.932478\pi\)
\(140\) 14.9527 5.49171i 1.26374 0.464134i
\(141\) −2.13872 1.08973i −0.180113 0.0917720i
\(142\) −0.104272 1.06663i −0.00875032 0.0895094i
\(143\) −9.01135 1.61423i −0.753567 0.134989i
\(144\) 4.41023 + 10.7353i 0.367519 + 0.894607i
\(145\) −3.10377 9.55242i −0.257754 0.793285i
\(146\) 9.91348 16.8859i 0.820445 1.39749i
\(147\) 0.174202 1.09987i 0.0143680 0.0907157i
\(148\) −0.254067 + 0.199693i −0.0208842 + 0.0164147i
\(149\) −1.16502 + 0.593608i −0.0954422 + 0.0486302i −0.501060 0.865413i \(-0.667056\pi\)
0.405618 + 0.914043i \(0.367056\pi\)
\(150\) −5.92656 0.353824i −0.483902 0.0288896i
\(151\) −11.1961 + 15.4101i −0.911125 + 1.25406i 0.0556565 + 0.998450i \(0.482275\pi\)
−0.966781 + 0.255606i \(0.917725\pi\)
\(152\) −12.2495 2.21502i −0.993568 0.179662i
\(153\) 11.2567i 0.910048i
\(154\) −2.04521 + 8.47171i −0.164808 + 0.682670i
\(155\) −20.9534 20.9534i −1.68302 1.68302i
\(156\) −1.51316 + 0.844527i −0.121150 + 0.0676162i
\(157\) −13.9700 + 2.21263i −1.11493 + 0.176587i −0.686599 0.727037i \(-0.740897\pi\)
−0.428328 + 0.903624i \(0.640897\pi\)
\(158\) 13.8491 12.2887i 1.10178 0.977635i
\(159\) −0.280430 + 0.863073i −0.0222395 + 0.0684462i
\(160\) 13.9370 19.8429i 1.10182 1.56872i
\(161\) −6.41350 + 4.65968i −0.505454 + 0.367234i
\(162\) −9.90649 5.81596i −0.778327 0.456945i
\(163\) 6.44938 + 3.28612i 0.505154 + 0.257389i 0.687945 0.725763i \(-0.258513\pi\)
−0.182791 + 0.983152i \(0.558513\pi\)
\(164\) −1.05462 5.34243i −0.0823517 0.417174i
\(165\) 2.69535 3.55668i 0.209833 0.276887i
\(166\) 2.75023 3.34621i 0.213459 0.259716i
\(167\) −0.446864 + 0.145195i −0.0345794 + 0.0112355i −0.326256 0.945282i \(-0.605787\pi\)
0.291676 + 0.956517i \(0.405787\pi\)
\(168\) 0.716689 + 1.48583i 0.0552938 + 0.114635i
\(169\) −3.16281 4.35324i −0.243293 0.334864i
\(170\) 19.8171 12.6655i 1.51990 0.971396i
\(171\) 11.3778 5.79730i 0.870085 0.443330i
\(172\) 0.976664 0.0369535i 0.0744699 0.00281768i
\(173\) −0.0706005 + 0.0111820i −0.00536766 + 0.000850154i −0.159118 0.987260i \(-0.550865\pi\)
0.153750 + 0.988110i \(0.450865\pi\)
\(174\) 0.953289 0.416153i 0.0722687 0.0315485i
\(175\) 24.8504 1.87852
\(176\) 4.79270 + 12.3705i 0.361264 + 0.932464i
\(177\) 3.80885 0.286290
\(178\) −0.540357 + 0.235890i −0.0405015 + 0.0176807i
\(179\) 7.41675 1.17470i 0.554354 0.0878011i 0.127029 0.991899i \(-0.459456\pi\)
0.427325 + 0.904098i \(0.359456\pi\)
\(180\) 0.940489 + 24.8567i 0.0700999 + 1.85271i
\(181\) −2.65121 + 1.35086i −0.197063 + 0.100409i −0.549738 0.835337i \(-0.685272\pi\)
0.352675 + 0.935746i \(0.385272\pi\)
\(182\) 6.11158 3.90602i 0.453020 0.289534i
\(183\) −0.494952 0.681243i −0.0365879 0.0503590i
\(184\) −3.97853 + 11.3929i −0.293301 + 0.839898i
\(185\) −0.658703 + 0.214026i −0.0484288 + 0.0157355i
\(186\) 1.94853 2.37078i 0.142873 0.173834i
\(187\) −0.259559 + 12.8647i −0.0189809 + 0.940761i
\(188\) 15.0043 2.96190i 1.09430 0.216019i
\(189\) −3.06682 1.56262i −0.223078 0.113664i
\(190\) −23.0078 13.5075i −1.66916 0.979939i
\(191\) −7.88503 + 5.72881i −0.570541 + 0.414522i −0.835302 0.549792i \(-0.814707\pi\)
0.264761 + 0.964314i \(0.414707\pi\)
\(192\) 2.18562 + 1.23654i 0.157734 + 0.0892397i
\(193\) −3.71863 + 11.4448i −0.267673 + 0.823813i 0.723392 + 0.690437i \(0.242582\pi\)
−0.991066 + 0.133376i \(0.957418\pi\)
\(194\) −11.0072 + 9.76692i −0.790268 + 0.701224i
\(195\) −3.66830 + 0.581002i −0.262692 + 0.0416064i
\(196\) 3.45788 + 6.19556i 0.246991 + 0.442540i
\(197\) 1.55502 + 1.55502i 0.110791 + 0.110791i 0.760329 0.649538i \(-0.225038\pi\)
−0.649538 + 0.760329i \(0.725038\pi\)
\(198\) −11.5947 7.12540i −0.823997 0.506380i
\(199\) 19.9018i 1.41080i −0.708808 0.705402i \(-0.750767\pi\)
0.708808 0.705402i \(-0.249233\pi\)
\(200\) 31.0815 21.5622i 2.19780 1.52468i
\(201\) −1.89849 + 2.61305i −0.133909 + 0.184310i
\(202\) −10.1308 0.604821i −0.712799 0.0425551i
\(203\) −3.87920 + 1.97655i −0.272266 + 0.138727i
\(204\) 1.50510 + 1.91492i 0.105378 + 0.134071i
\(205\) 1.82578 11.5275i 0.127518 0.805118i
\(206\) −1.03962 + 1.77081i −0.0724334 + 0.123378i
\(207\) −3.82540 11.7734i −0.265884 0.818306i
\(208\) 4.25484 10.1883i 0.295020 0.706433i
\(209\) 13.1369 6.36310i 0.908696 0.440145i
\(210\) 0.344000 + 3.51887i 0.0237382 + 0.242825i
\(211\) 19.6401 + 10.0071i 1.35208 + 0.688920i 0.971768 0.235938i \(-0.0758162\pi\)
0.380313 + 0.924858i \(0.375816\pi\)
\(212\) −1.99340 5.42761i −0.136908 0.372769i
\(213\) 0.234947 + 0.0372119i 0.0160983 + 0.00254972i
\(214\) 10.2212 6.53259i 0.698709 0.446558i
\(215\) 1.99223 + 0.647313i 0.135869 + 0.0441464i
\(216\) −5.19166 + 0.706577i −0.353248 + 0.0480765i
\(217\) −7.54993 + 10.3916i −0.512523 + 0.705427i
\(218\) −4.98890 1.95680i −0.337891 0.132531i
\(219\) 3.07319 + 3.07319i 0.207667 + 0.207667i
\(220\) 0.501688 + 28.4292i 0.0338238 + 1.91670i
\(221\) 7.57232 7.57232i 0.509370 0.509370i
\(222\) −0.0286966 0.0657357i −0.00192599 0.00441189i
\(223\) −6.85069 4.97732i −0.458756 0.333306i 0.334287 0.942471i \(-0.391505\pi\)
−0.793043 + 0.609165i \(0.791505\pi\)
\(224\) −9.44036 4.62129i −0.630761 0.308773i
\(225\) −11.9915 + 36.9061i −0.799434 + 2.46041i
\(226\) 3.42385 15.5511i 0.227751 1.03444i
\(227\) −0.377522 + 2.38358i −0.0250570 + 0.158204i −0.997044 0.0768301i \(-0.975520\pi\)
0.971987 + 0.235034i \(0.0755201\pi\)
\(228\) 1.16039 2.50750i 0.0768486 0.166063i
\(229\) 5.11368 10.0362i 0.337922 0.663209i −0.658040 0.752983i \(-0.728614\pi\)
0.995962 + 0.0897739i \(0.0286144\pi\)
\(230\) −16.4225 + 19.9813i −1.08287 + 1.31753i
\(231\) −1.70549 0.912782i −0.112213 0.0600566i
\(232\) −3.13687 + 5.83806i −0.205946 + 0.383288i
\(233\) −20.4213 + 6.63528i −1.33784 + 0.434692i −0.888586 0.458711i \(-0.848311\pi\)
−0.449258 + 0.893402i \(0.648311\pi\)
\(234\) 2.85182 + 10.9613i 0.186429 + 0.716563i
\(235\) 32.3752 + 5.12773i 2.11193 + 0.334496i
\(236\) −19.0800 + 14.9966i −1.24200 + 0.976195i
\(237\) 1.86572 + 3.66167i 0.121191 + 0.237851i
\(238\) −6.76622 7.62542i −0.438589 0.494282i
\(239\) −0.155720 0.113138i −0.0100727 0.00731826i 0.582738 0.812660i \(-0.301982\pi\)
−0.592810 + 0.805342i \(0.701982\pi\)
\(240\) 3.48351 + 4.10272i 0.224859 + 0.264830i
\(241\) −20.8859 −1.34538 −0.672691 0.739923i \(-0.734862\pi\)
−0.672691 + 0.739923i \(0.734862\pi\)
\(242\) −13.0867 8.41063i −0.841244 0.540656i
\(243\) 5.73259 5.73259i 0.367746 0.367746i
\(244\) 5.16167 + 1.46383i 0.330442 + 0.0937123i
\(245\) 2.37889 + 15.0197i 0.151981 + 0.959573i
\(246\) 1.20653 + 0.0720317i 0.0769257 + 0.00459257i
\(247\) −11.5536 3.75401i −0.735141 0.238862i
\(248\) −0.426456 + 19.5481i −0.0270800 + 1.24131i
\(249\) 0.565089 + 0.777778i 0.0358110 + 0.0492897i
\(250\) 49.1306 12.7824i 3.10729 0.808428i
\(251\) 0.393145 0.771591i 0.0248151 0.0487024i −0.878266 0.478172i \(-0.841300\pi\)
0.903081 + 0.429470i \(0.141300\pi\)
\(252\) 10.5781 2.08816i 0.666357 0.131541i
\(253\) −4.10040 13.5434i −0.257790 0.851468i
\(254\) 11.6688 1.14073i 0.732165 0.0715755i
\(255\) 1.61312 + 4.96468i 0.101018 + 0.310900i
\(256\) −15.8173 + 2.41116i −0.988580 + 0.150697i
\(257\) 6.74655 4.90166i 0.420838 0.305757i −0.357137 0.934052i \(-0.616247\pi\)
0.777975 + 0.628295i \(0.216247\pi\)
\(258\) −0.0466447 + 0.211860i −0.00290397 + 0.0131898i
\(259\) 0.136296 + 0.267497i 0.00846905 + 0.0166214i
\(260\) 16.0884 17.3537i 0.997757 1.07623i
\(261\) −1.06353 6.71489i −0.0658311 0.415641i
\(262\) −9.49306 3.72346i −0.586483 0.230036i
\(263\) 15.3734i 0.947967i 0.880534 + 0.473983i \(0.157184\pi\)
−0.880534 + 0.473983i \(0.842816\pi\)
\(264\) −2.92513 + 0.338160i −0.180029 + 0.0208123i
\(265\) 12.3926i 0.761269i
\(266\) −4.22283 + 10.7662i −0.258918 + 0.660119i
\(267\) −0.0204721 0.129256i −0.00125287 0.00791033i
\(268\) −0.778095 20.5647i −0.0475297 1.25619i
\(269\) −4.04063 7.93018i −0.246361 0.483512i 0.734401 0.678716i \(-0.237463\pi\)
−0.980763 + 0.195204i \(0.937463\pi\)
\(270\) −10.9670 2.41459i −0.667433 0.146947i
\(271\) −14.4883 + 10.5264i −0.880103 + 0.639433i −0.933279 0.359153i \(-0.883066\pi\)
0.0531755 + 0.998585i \(0.483066\pi\)
\(272\) −15.0792 3.66653i −0.914312 0.222316i
\(273\) 0.497487 + 1.53111i 0.0301093 + 0.0926668i
\(274\) 1.25736 + 12.8619i 0.0759601 + 0.777016i
\(275\) −14.5555 + 41.9017i −0.877731 + 2.52677i
\(276\) −2.22494 1.49133i −0.133926 0.0897676i
\(277\) 8.55840 16.7968i 0.514224 1.00922i −0.477231 0.878778i \(-0.658360\pi\)
0.991456 0.130444i \(-0.0416404\pi\)
\(278\) 7.83054 + 30.0976i 0.469645 + 1.80513i
\(279\) −11.7896 16.2270i −0.705827 0.971487i
\(280\) −15.5781 16.2729i −0.930969 0.972494i
\(281\) 14.7580 + 4.79517i 0.880389 + 0.286056i 0.714119 0.700024i \(-0.246828\pi\)
0.166270 + 0.986080i \(0.446828\pi\)
\(282\) −0.202302 + 3.38856i −0.0120469 + 0.201786i
\(283\) −3.95931 24.9981i −0.235356 1.48598i −0.768442 0.639920i \(-0.778968\pi\)
0.533085 0.846061i \(-0.321032\pi\)
\(284\) −1.32345 + 0.738649i −0.0785326 + 0.0438307i
\(285\) 4.18735 4.18735i 0.248037 0.248037i
\(286\) 3.00646 + 12.5929i 0.177776 + 0.744635i
\(287\) −5.05907 −0.298627
\(288\) 11.4186 11.7901i 0.672849 0.694741i
\(289\) 1.57624 + 1.14521i 0.0927201 + 0.0673651i
\(290\) −10.6247 + 9.42758i −0.623906 + 0.553607i
\(291\) −1.48285 2.91026i −0.0869263 0.170603i
\(292\) −27.4949 3.29471i −1.60901 0.192808i
\(293\) 20.6069 + 3.26381i 1.20387 + 0.190674i 0.725961 0.687736i \(-0.241395\pi\)
0.477908 + 0.878410i \(0.341395\pi\)
\(294\) −1.52410 + 0.396528i −0.0888874 + 0.0231260i
\(295\) −49.4674 + 16.0729i −2.88011 + 0.935803i
\(296\) 0.402574 + 0.216308i 0.0233991 + 0.0125727i
\(297\) 4.43113 4.25586i 0.257120 0.246950i
\(298\) 1.42855 + 1.17411i 0.0827534 + 0.0680146i
\(299\) −5.34657 + 10.4932i −0.309200 + 0.606840i
\(300\) 2.89468 + 7.88159i 0.167124 + 0.455044i
\(301\) 0.142043 0.896822i 0.00818720 0.0516920i
\(302\) 26.3078 + 5.79212i 1.51384 + 0.333299i
\(303\) 0.696096 2.14236i 0.0399897 0.123076i
\(304\) 4.05995 + 17.1298i 0.232854 + 0.982463i
\(305\) 9.30298 + 6.75901i 0.532687 + 0.387020i
\(306\) 14.5897 6.36907i 0.834040 0.364096i
\(307\) 16.4312 16.4312i 0.937776 0.937776i −0.0603985 0.998174i \(-0.519237\pi\)
0.998174 + 0.0603985i \(0.0192371\pi\)
\(308\) 12.1373 2.14254i 0.691589 0.122083i
\(309\) −0.322282 0.322282i −0.0183340 0.0183340i
\(310\) −15.3021 + 39.0132i −0.869103 + 2.21580i
\(311\) −7.42333 + 10.2173i −0.420938 + 0.579372i −0.965844 0.259126i \(-0.916566\pi\)
0.544905 + 0.838498i \(0.316566\pi\)
\(312\) 1.95074 + 1.48336i 0.110439 + 0.0839789i
\(313\) 11.1482 + 3.62226i 0.630131 + 0.204742i 0.606633 0.794982i \(-0.292520\pi\)
0.0234980 + 0.999724i \(0.492520\pi\)
\(314\) 10.7721 + 16.8545i 0.607902 + 0.951156i
\(315\) 22.8247 + 3.61507i 1.28602 + 0.203686i
\(316\) −23.7632 10.9968i −1.33679 0.618621i
\(317\) 26.4998 + 13.5023i 1.48838 + 0.758366i 0.993844 0.110793i \(-0.0353391\pi\)
0.494533 + 0.869159i \(0.335339\pi\)
\(318\) 1.27729 0.124867i 0.0716271 0.00700217i
\(319\) −1.06063 7.69864i −0.0593838 0.431041i
\(320\) −33.6039 6.83649i −1.87852 0.382171i
\(321\) 0.832016 + 2.56068i 0.0464386 + 0.142923i
\(322\) 9.66817 + 5.67605i 0.538786 + 0.316314i
\(323\) −2.67107 + 16.8645i −0.148622 + 0.938365i
\(324\) −1.93291 + 16.1305i −0.107384 + 0.896137i
\(325\) 32.8932 16.7599i 1.82459 0.929674i
\(326\) 0.610048 10.2183i 0.0337874 0.565940i
\(327\) 0.699148 0.962294i 0.0386629 0.0532150i
\(328\) −6.32760 + 4.38965i −0.349383 + 0.242378i
\(329\) 14.2085i 0.783338i
\(330\) −6.13485 1.48105i −0.337712 0.0815292i
\(331\) 12.7326 + 12.7326i 0.699848 + 0.699848i 0.964378 0.264529i \(-0.0852166\pi\)
−0.264529 + 0.964378i \(0.585217\pi\)
\(332\) −5.89310 1.67126i −0.323426 0.0917225i
\(333\) −0.463036 + 0.0733377i −0.0253742 + 0.00401888i
\(334\) 0.441024 + 0.497027i 0.0241318 + 0.0271961i
\(335\) 13.6299 41.9484i 0.744679 2.29189i
\(336\) 1.52028 1.76959i 0.0829380 0.0965390i
\(337\) 6.66082 4.83937i 0.362838 0.263617i −0.391397 0.920222i \(-0.628008\pi\)
0.754235 + 0.656605i \(0.228008\pi\)
\(338\) −3.85268 + 6.56239i −0.209558 + 0.356947i
\(339\) 3.14914 + 1.60457i 0.171038 + 0.0871481i
\(340\) −27.6282 18.5187i −1.49835 1.00432i
\(341\) −13.0996 18.8170i −0.709385 1.01900i
\(342\) −13.9515 11.4666i −0.754410 0.620045i
\(343\) 18.6389 6.05615i 1.00641 0.327001i
\(344\) −0.600496 1.24494i −0.0323766 0.0671228i
\(345\) −3.37434 4.64438i −0.181668 0.250045i
\(346\) 0.0544390 + 0.0851783i 0.00292666 + 0.00457921i
\(347\) −4.37118 + 2.22723i −0.234657 + 0.119564i −0.567366 0.823466i \(-0.692037\pi\)
0.332709 + 0.943030i \(0.392037\pi\)
\(348\) −1.07875 1.00009i −0.0578270 0.0536106i
\(349\) 28.5234 4.51766i 1.52682 0.241825i 0.664154 0.747596i \(-0.268792\pi\)
0.862668 + 0.505771i \(0.168792\pi\)
\(350\) −14.0605 32.2086i −0.751564 1.72162i
\(351\) −5.11327 −0.272926
\(352\) 13.3217 13.2111i 0.710047 0.704154i
\(353\) 16.4865 0.877488 0.438744 0.898612i \(-0.355423\pi\)
0.438744 + 0.898612i \(0.355423\pi\)
\(354\) −2.15506 4.93663i −0.114540 0.262379i
\(355\) −3.20841 + 0.508162i −0.170285 + 0.0269704i
\(356\) 0.611472 + 0.566887i 0.0324080 + 0.0300450i
\(357\) 2.01614 1.02727i 0.106705 0.0543691i
\(358\) −5.71895 8.94818i −0.302256 0.472926i
\(359\) 16.1094 + 22.1727i 0.850224 + 1.17023i 0.983813 + 0.179196i \(0.0573497\pi\)
−0.133589 + 0.991037i \(0.542650\pi\)
\(360\) 31.6846 15.2830i 1.66992 0.805484i
\(361\) 0.351555 0.114227i 0.0185029 0.00601195i
\(362\) 3.25091 + 2.67190i 0.170864 + 0.140432i
\(363\) 2.53804 2.34107i 0.133212 0.122875i
\(364\) −8.52054 5.71115i −0.446597 0.299345i
\(365\) −52.8816 26.9445i −2.76795 1.41034i
\(366\) −0.602911 + 1.02696i −0.0315147 + 0.0536799i
\(367\) 7.32444 5.32152i 0.382333 0.277781i −0.379974 0.924997i \(-0.624067\pi\)
0.762306 + 0.647216i \(0.224067\pi\)
\(368\) 17.0174 1.28960i 0.887093 0.0672252i
\(369\) 2.44124 7.51336i 0.127086 0.391130i
\(370\) 0.650095 + 0.732647i 0.0337968 + 0.0380885i
\(371\) −5.30561 + 0.840326i −0.275453 + 0.0436275i
\(372\) −4.17525 1.18409i −0.216477 0.0613921i
\(373\) −13.0091 13.0091i −0.673585 0.673585i 0.284956 0.958541i \(-0.408021\pi\)
−0.958541 + 0.284956i \(0.908021\pi\)
\(374\) 16.8208 6.94249i 0.869781 0.358988i
\(375\) 11.2680i 0.581875i
\(376\) −12.3284 17.7711i −0.635789 0.916477i
\(377\) −3.80164 + 5.23251i −0.195795 + 0.269488i
\(378\) −0.290091 + 4.85903i −0.0149207 + 0.249922i
\(379\) 5.18627 2.64254i 0.266401 0.135738i −0.315688 0.948863i \(-0.602235\pi\)
0.582089 + 0.813125i \(0.302235\pi\)
\(380\) −4.48917 + 37.4629i −0.230290 + 1.92181i
\(381\) −0.407095 + 2.57029i −0.0208561 + 0.131680i
\(382\) 11.8865 + 6.97838i 0.608165 + 0.357045i
\(383\) 2.88932 + 8.89240i 0.147637 + 0.454381i 0.997341 0.0728802i \(-0.0232191\pi\)
−0.849703 + 0.527261i \(0.823219\pi\)
\(384\) 0.366042 3.53242i 0.0186795 0.180263i
\(385\) 26.0019 + 4.65779i 1.32518 + 0.237383i
\(386\) 16.9375 1.65579i 0.862099 0.0842776i
\(387\) 1.26335 + 0.643710i 0.0642198 + 0.0327216i
\(388\) 18.8868 + 8.74018i 0.958831 + 0.443716i
\(389\) −7.03288 1.11390i −0.356581 0.0564769i −0.0244258 0.999702i \(-0.507776\pi\)
−0.332155 + 0.943225i \(0.607776\pi\)
\(390\) 2.82857 + 4.42574i 0.143230 + 0.224106i
\(391\) 15.7426 + 5.11507i 0.796135 + 0.258680i
\(392\) 6.07357 7.98722i 0.306761 0.403415i
\(393\) 1.33036 1.83109i 0.0671079 0.0923661i
\(394\) 1.13562 2.89530i 0.0572118 0.145863i
\(395\) −39.6829 39.6829i −1.99666 1.99666i
\(396\) −2.67489 + 19.0594i −0.134418 + 0.957770i
\(397\) −8.77258 + 8.77258i −0.440283 + 0.440283i −0.892107 0.451824i \(-0.850774\pi\)
0.451824 + 0.892107i \(0.350774\pi\)
\(398\) −25.7947 + 11.2605i −1.29297 + 0.564440i
\(399\) −2.07666 1.50878i −0.103963 0.0755336i
\(400\) −45.5328 28.0847i −2.27664 1.40423i
\(401\) −2.17865 + 6.70520i −0.108797 + 0.334842i −0.990603 0.136770i \(-0.956328\pi\)
0.881806 + 0.471612i \(0.156328\pi\)
\(402\) 4.46093 + 0.982153i 0.222491 + 0.0489854i
\(403\) −2.98503 + 18.8467i −0.148695 + 0.938822i
\(404\) 4.94812 + 13.4727i 0.246178 + 0.670290i
\(405\) −15.8076 + 31.0242i −0.785486 + 1.54160i
\(406\) 4.75667 + 3.90948i 0.236069 + 0.194024i
\(407\) −0.530873 + 0.0731374i −0.0263144 + 0.00362529i
\(408\) 1.63033 3.03422i 0.0807132 0.150216i
\(409\) 0.526815 0.171173i 0.0260493 0.00846395i −0.295963 0.955199i \(-0.595641\pi\)
0.322013 + 0.946735i \(0.395641\pi\)
\(410\) −15.9738 + 4.15594i −0.788891 + 0.205247i
\(411\) −2.83310 0.448719i −0.139747 0.0221337i
\(412\) 2.88335 + 0.345512i 0.142053 + 0.0170222i
\(413\) 10.2356 + 20.0885i 0.503662 + 0.988492i
\(414\) −13.0950 + 11.6195i −0.643584 + 0.571068i
\(415\) −10.6212 7.71678i −0.521376 0.378802i
\(416\) −15.6125 + 0.249917i −0.765464 + 0.0122532i
\(417\) −6.90281 −0.338032
\(418\) −15.6801 13.4264i −0.766938 0.656705i
\(419\) 6.37908 6.37908i 0.311639 0.311639i −0.533906 0.845544i \(-0.679276\pi\)
0.845544 + 0.533906i \(0.179276\pi\)
\(420\) 4.36616 2.43685i 0.213047 0.118906i
\(421\) −2.99294 18.8967i −0.145867 0.920969i −0.946708 0.322092i \(-0.895614\pi\)
0.800841 0.598877i \(-0.204386\pi\)
\(422\) 1.85776 31.1176i 0.0904344 1.51478i
\(423\) 21.1014 + 6.85625i 1.02598 + 0.333362i
\(424\) −5.90682 + 5.65460i −0.286861 + 0.274612i
\(425\) −30.4989 41.9782i −1.47942 2.03624i
\(426\) −0.0847036 0.325568i −0.00410390 0.0157738i
\(427\) 2.26290 4.44119i 0.109509 0.214924i
\(428\) −14.2501 9.55154i −0.688803 0.461691i
\(429\) −2.87307 0.0579673i −0.138713 0.00279869i
\(430\) −0.288229 2.94837i −0.0138996 0.142183i
\(431\) 5.70742 + 17.5656i 0.274917 + 0.846107i 0.989241 + 0.146292i \(0.0467340\pi\)
−0.714325 + 0.699815i \(0.753266\pi\)
\(432\) 3.85325 + 6.32911i 0.185390 + 0.304509i
\(433\) −1.02967 + 0.748098i −0.0494827 + 0.0359513i −0.612252 0.790663i \(-0.709736\pi\)
0.562769 + 0.826614i \(0.309736\pi\)
\(434\) 17.7403 + 3.90584i 0.851560 + 0.187486i
\(435\) −1.43133 2.80915i −0.0686271 0.134688i
\(436\) 0.286545 + 7.57326i 0.0137230 + 0.362693i
\(437\) −2.93745 18.5463i −0.140517 0.887190i
\(438\) 2.24432 5.72197i 0.107238 0.273406i
\(439\) 15.9921i 0.763264i 0.924314 + 0.381632i \(0.124638\pi\)
−0.924314 + 0.381632i \(0.875362\pi\)
\(440\) 36.5632 16.7356i 1.74308 0.797839i
\(441\) 10.2933i 0.490155i
\(442\) −14.0989 5.53001i −0.670617 0.263036i
\(443\) −3.42516 21.6256i −0.162734 1.02746i −0.924935 0.380124i \(-0.875881\pi\)
0.762201 0.647340i \(-0.224119\pi\)
\(444\) −0.0689631 + 0.0743870i −0.00327285 + 0.00353025i
\(445\) 0.811328 + 1.59232i 0.0384607 + 0.0754833i
\(446\) −2.57494 + 11.6953i −0.121927 + 0.553791i
\(447\) −0.332045 + 0.241245i −0.0157052 + 0.0114105i
\(448\) −0.648250 + 14.8504i −0.0306269 + 0.701614i
\(449\) 1.17055 + 3.60258i 0.0552416 + 0.170016i 0.974871 0.222772i \(-0.0715106\pi\)
−0.919629 + 0.392788i \(0.871511\pi\)
\(450\) 54.6187 5.33945i 2.57475 0.251704i
\(451\) 2.96322 8.53037i 0.139533 0.401680i
\(452\) −22.0929 + 4.36123i −1.03916 + 0.205135i
\(453\) −2.71444 + 5.32740i −0.127536 + 0.250303i
\(454\) 3.30295 0.859334i 0.155015 0.0403306i
\(455\) −12.9222 17.7859i −0.605804 0.833817i
\(456\) −3.90651 0.0852232i −0.182939 0.00399094i
\(457\) −3.77732 1.22733i −0.176696 0.0574119i 0.219333 0.975650i \(-0.429612\pi\)
−0.396029 + 0.918238i \(0.629612\pi\)
\(458\) −15.9012 0.949323i −0.743013 0.0443589i
\(459\) 1.12427 + 7.09837i 0.0524765 + 0.331324i
\(460\) 35.1897 + 9.97968i 1.64073 + 0.465305i
\(461\) −5.99225 + 5.99225i −0.279087 + 0.279087i −0.832744 0.553658i \(-0.813232\pi\)
0.553658 + 0.832744i \(0.313232\pi\)
\(462\) −0.218083 + 2.72693i −0.0101461 + 0.126868i
\(463\) −30.9010 −1.43609 −0.718045 0.695997i \(-0.754963\pi\)
−0.718045 + 0.695997i \(0.754963\pi\)
\(464\) 9.34155 + 0.762489i 0.433670 + 0.0353976i
\(465\) −7.52513 5.46733i −0.348970 0.253541i
\(466\) 20.1544 + 22.7137i 0.933635 + 1.05219i
\(467\) −3.87797 7.61095i −0.179451 0.352193i 0.783706 0.621132i \(-0.213327\pi\)
−0.963157 + 0.268939i \(0.913327\pi\)
\(468\) 12.5933 9.89819i 0.582128 0.457544i
\(469\) −18.8835 2.99086i −0.871961 0.138105i
\(470\) −11.6720 44.8627i −0.538389 2.06936i
\(471\) −4.22249 + 1.37197i −0.194562 + 0.0632171i
\(472\) 30.2326 + 16.2444i 1.39157 + 0.747708i
\(473\) 1.42898 + 0.764797i 0.0657047 + 0.0351654i
\(474\) 3.69025 4.48994i 0.169499 0.206230i
\(475\) −26.7228 + 52.4464i −1.22612 + 2.40640i
\(476\) −6.05492 + 13.0842i −0.277527 + 0.599711i
\(477\) 1.31222 8.28500i 0.0600822 0.379344i
\(478\) −0.0585299 + 0.265842i −0.00267710 + 0.0121593i
\(479\) 9.66343 29.7410i 0.441533 1.35890i −0.444708 0.895676i \(-0.646692\pi\)
0.886241 0.463224i \(-0.153308\pi\)
\(480\) 3.34654 6.83630i 0.152748 0.312033i
\(481\) 0.360817 + 0.262149i 0.0164518 + 0.0119530i
\(482\) 11.8174 + 27.0702i 0.538266 + 1.23301i
\(483\) −1.75958 + 1.75958i −0.0800636 + 0.0800636i
\(484\) −3.49648 + 21.7204i −0.158931 + 0.987290i
\(485\) 31.5396 + 31.5396i 1.43214 + 1.43214i
\(486\) −10.6735 4.18647i −0.484161 0.189902i
\(487\) −5.85737 + 8.06198i −0.265423 + 0.365323i −0.920838 0.389946i \(-0.872494\pi\)
0.655415 + 0.755269i \(0.272494\pi\)
\(488\) −1.02323 7.51827i −0.0463192 0.340336i
\(489\) 2.16088 + 0.702111i 0.0977182 + 0.0317506i
\(490\) 18.1210 11.5815i 0.818623 0.523197i
\(491\) 35.3602 + 5.60051i 1.59578 + 0.252747i 0.890095 0.455774i \(-0.150638\pi\)
0.705689 + 0.708522i \(0.250638\pi\)
\(492\) −0.589301 1.60454i −0.0265677 0.0723382i
\(493\) 8.09979 + 4.12705i 0.364796 + 0.185873i
\(494\) 1.67154 + 17.0987i 0.0752063 + 0.769306i
\(495\) −19.4645 + 36.3685i −0.874866 + 1.63464i
\(496\) 25.5776 10.5077i 1.14847 0.471809i
\(497\) 0.435117 + 1.33915i 0.0195177 + 0.0600692i
\(498\) 0.688346 1.17248i 0.0308455 0.0525400i
\(499\) 3.48703 22.0162i 0.156101 0.985582i −0.777920 0.628363i \(-0.783725\pi\)
0.934021 0.357218i \(-0.116275\pi\)
\(500\) −44.3654 56.4456i −1.98408 2.52433i
\(501\) −0.131412 + 0.0669580i −0.00587107 + 0.00299146i
\(502\) −1.22250 0.0729849i −0.0545628 0.00325748i
\(503\) 1.76478 2.42901i 0.0786877 0.108304i −0.767859 0.640619i \(-0.778678\pi\)
0.846546 + 0.532315i \(0.178678\pi\)
\(504\) −8.69158 12.5287i −0.387154 0.558074i
\(505\) 30.7614i 1.36887i
\(506\) −15.2336 + 12.9774i −0.677215 + 0.576917i
\(507\) −1.19433 1.19433i −0.0530423 0.0530423i
\(508\) −8.08074 14.4785i −0.358525 0.642378i
\(509\) 41.2071 6.52656i 1.82647 0.289284i 0.853650 0.520847i \(-0.174384\pi\)
0.972820 + 0.231562i \(0.0743836\pi\)
\(510\) 5.52199 4.89980i 0.244518 0.216967i
\(511\) −7.94987 + 24.4672i −0.351682 + 1.08236i
\(512\) 12.0746 + 19.1365i 0.533626 + 0.845721i
\(513\) 6.59576 4.79210i 0.291210 0.211577i
\(514\) −10.1702 5.97080i −0.448590 0.263361i
\(515\) 5.54563 + 2.82564i 0.244370 + 0.124513i
\(516\) 0.300983 0.0594151i 0.0132500 0.00261560i
\(517\) 23.9577 + 8.32224i 1.05366 + 0.366012i
\(518\) 0.269585 0.328004i 0.0118449 0.0144117i
\(519\) −0.0213393 + 0.00693357i −0.000936693 + 0.000304350i
\(520\) −31.5949 11.0333i −1.38553 0.483841i
\(521\) −2.50072 3.44195i −0.109559 0.150794i 0.750717 0.660624i \(-0.229708\pi\)
−0.860275 + 0.509830i \(0.829708\pi\)
\(522\) −8.10139 + 5.17775i −0.354588 + 0.226624i
\(523\) −25.5458 + 13.0162i −1.11704 + 0.569160i −0.912245 0.409645i \(-0.865653\pi\)
−0.204795 + 0.978805i \(0.565653\pi\)
\(524\) 0.545248 + 14.4107i 0.0238193 + 0.629533i
\(525\) 7.70443 1.22026i 0.336249 0.0532566i
\(526\) 19.9255 8.69835i 0.868791 0.379266i
\(527\) 26.8198 1.16829
\(528\) 2.09334 + 3.59992i 0.0911008 + 0.156666i
\(529\) 4.79656 0.208546
\(530\) −16.0620 + 7.01176i −0.697687 + 0.304571i
\(531\) −34.7732 + 5.50753i −1.50903 + 0.239007i
\(532\) 16.3433 0.618374i 0.708573 0.0268099i
\(533\) −6.69643 + 3.41200i −0.290054 + 0.147790i
\(534\) −0.155945 + 0.0996672i −0.00674839 + 0.00431302i
\(535\) −21.6116 29.7459i −0.934353 1.28603i
\(536\) −26.2136 + 12.6441i −1.13225 + 0.546141i
\(537\) 2.24175 0.728388i 0.0967386 0.0314323i
\(538\) −7.99207 + 9.72397i −0.344563 + 0.419230i
\(539\) −0.237345 + 11.7637i −0.0102232 + 0.506697i
\(540\) 3.07565 + 15.5805i 0.132355 + 0.670479i
\(541\) −27.0570 13.7862i −1.16327 0.592717i −0.237719 0.971334i \(-0.576400\pi\)
−0.925553 + 0.378617i \(0.876400\pi\)
\(542\) 21.8408 + 12.8224i 0.938141 + 0.550769i
\(543\) −0.755628 + 0.548996i −0.0324271 + 0.0235597i
\(544\) 3.77971 + 21.6187i 0.162054 + 0.926893i
\(545\) −5.01941 + 15.4481i −0.215008 + 0.661726i
\(546\) 1.70298 1.51110i 0.0728809 0.0646690i
\(547\) 27.4527 4.34808i 1.17379 0.185911i 0.461075 0.887361i \(-0.347464\pi\)
0.712718 + 0.701451i \(0.247464\pi\)
\(548\) 15.9589 8.90698i 0.681728 0.380487i
\(549\) 5.50378 + 5.50378i 0.234896 + 0.234896i
\(550\) 62.5442 4.84279i 2.66689 0.206497i
\(551\) 10.3124i 0.439325i
\(552\) −0.674031 + 3.72753i −0.0286887 + 0.158654i
\(553\) −14.2985 + 19.6802i −0.608035 + 0.836889i
\(554\) −26.6126 1.58881i −1.13066 0.0675022i
\(555\) −0.193710 + 0.0986999i −0.00822251 + 0.00418958i
\(556\) 34.5789 27.1785i 1.46647 1.15262i
\(557\) −3.21151 + 20.2767i −0.136076 + 0.859151i 0.821340 + 0.570439i \(0.193227\pi\)
−0.957416 + 0.288712i \(0.906773\pi\)
\(558\) −14.3612 + 24.4618i −0.607957 + 1.03555i
\(559\) −0.416831 1.28287i −0.0176301 0.0542598i
\(560\) −12.2772 + 29.3980i −0.518805 + 1.24229i
\(561\) 0.551240 + 4.00122i 0.0232734 + 0.168932i
\(562\) −2.13514 21.8409i −0.0900655 0.921304i
\(563\) 0.0752571 + 0.0383454i 0.00317171 + 0.00161607i 0.455576 0.890197i \(-0.349433\pi\)
−0.452404 + 0.891813i \(0.649433\pi\)
\(564\) 4.50637 1.65506i 0.189752 0.0696906i
\(565\) −47.6706 7.55028i −2.00552 0.317643i
\(566\) −30.1597 + 19.2757i −1.26771 + 0.810216i
\(567\) 14.3542 + 4.66397i 0.602820 + 0.195868i
\(568\) 1.70618 + 1.29739i 0.0715895 + 0.0544374i
\(569\) 12.9563 17.8328i 0.543157 0.747591i −0.445907 0.895079i \(-0.647119\pi\)
0.989064 + 0.147488i \(0.0471188\pi\)
\(570\) −7.79642 3.05799i −0.326556 0.128085i
\(571\) 29.1121 + 29.1121i 1.21830 + 1.21830i 0.968225 + 0.250080i \(0.0804568\pi\)
0.250080 + 0.968225i \(0.419543\pi\)
\(572\) 14.6206 11.0218i 0.611317 0.460844i
\(573\) −2.16330 + 2.16330i −0.0903733 + 0.0903733i
\(574\) 2.86244 + 6.55704i 0.119476 + 0.273686i
\(575\) 46.1645 + 33.5405i 1.92519 + 1.39873i
\(576\) −21.7419 8.12874i −0.905911 0.338697i
\(577\) −8.45243 + 26.0139i −0.351879 + 1.08297i 0.605918 + 0.795527i \(0.292806\pi\)
−0.957797 + 0.287445i \(0.907194\pi\)
\(578\) 0.592455 2.69092i 0.0246429 0.111928i
\(579\) −0.590908 + 3.73085i −0.0245573 + 0.155049i
\(580\) 18.2306 + 8.43652i 0.756983 + 0.350307i
\(581\) −2.58356 + 5.07052i −0.107184 + 0.210361i
\(582\) −2.93298 + 3.56856i −0.121576 + 0.147921i
\(583\) 1.69071 9.43828i 0.0700219 0.390893i
\(584\) 11.2864 + 37.5001i 0.467036 + 1.55177i
\(585\) 32.6500 10.6086i 1.34991 0.438612i
\(586\) −7.42925 28.5552i −0.306900 1.17961i
\(587\) −21.0007 3.32618i −0.866791 0.137286i −0.292825 0.956166i \(-0.594595\pi\)
−0.573965 + 0.818880i \(0.694595\pi\)
\(588\) 1.37628 + 1.75103i 0.0567569 + 0.0722111i
\(589\) −13.8125 27.1085i −0.569133 1.11699i
\(590\) 48.8210 + 55.0204i 2.00993 + 2.26516i
\(591\) 0.558465 + 0.405749i 0.0229722 + 0.0166903i
\(592\) 0.0525787 0.644162i 0.00216097 0.0264749i
\(593\) −19.8987 −0.817143 −0.408571 0.912726i \(-0.633973\pi\)
−0.408571 + 0.912726i \(0.633973\pi\)
\(594\) −8.02316 3.33519i −0.329194 0.136845i
\(595\) −21.8496 + 21.8496i −0.895747 + 0.895747i
\(596\) 0.713487 2.51585i 0.0292256 0.103053i
\(597\) −0.977264 6.17020i −0.0399968 0.252530i
\(598\) 16.6254 + 0.992557i 0.679862 + 0.0405887i
\(599\) −24.8773 8.08314i −1.01646 0.330268i −0.247036 0.969006i \(-0.579457\pi\)
−0.769424 + 0.638738i \(0.779457\pi\)
\(600\) 8.57748 8.21122i 0.350174 0.335222i
\(601\) 22.0134 + 30.2988i 0.897943 + 1.23591i 0.971119 + 0.238594i \(0.0766865\pi\)
−0.0731761 + 0.997319i \(0.523314\pi\)
\(602\) −1.24274 + 0.323324i −0.0506501 + 0.0131777i
\(603\) 13.5540 26.6012i 0.551962 1.08329i
\(604\) −7.37789 37.3746i −0.300202 1.52075i
\(605\) −23.0837 + 41.1150i −0.938486 + 1.67156i
\(606\) −3.17056 + 0.309950i −0.128795 + 0.0125909i
\(607\) −13.5940 41.8382i −0.551765 1.69816i −0.704337 0.709866i \(-0.748755\pi\)
0.152572 0.988292i \(-0.451245\pi\)
\(608\) 19.9048 14.9542i 0.807245 0.606473i
\(609\) −1.10562 + 0.803279i −0.0448019 + 0.0325505i
\(610\) 3.49667 15.8818i 0.141576 0.643037i
\(611\) −9.58264 18.8070i −0.387672 0.760849i
\(612\) −16.5099 15.3061i −0.667371 0.618711i
\(613\) 7.17261 + 45.2861i 0.289699 + 1.82909i 0.517860 + 0.855465i \(0.326729\pi\)
−0.228161 + 0.973623i \(0.573271\pi\)
\(614\) −30.5932 11.9996i −1.23464 0.484263i
\(615\) 3.66356i 0.147729i
\(616\) −9.64429 14.5189i −0.388580 0.584983i
\(617\) 17.4507i 0.702539i −0.936274 0.351269i \(-0.885750\pi\)
0.936274 0.351269i \(-0.114250\pi\)
\(618\) −0.235360 + 0.600056i −0.00946756 + 0.0241378i
\(619\) −1.68727 10.6530i −0.0678171 0.428180i −0.998115 0.0613749i \(-0.980451\pi\)
0.930298 0.366805i \(-0.119549\pi\)
\(620\) 59.2229 2.24078i 2.37845 0.0899920i
\(621\) −3.58815 7.04213i −0.143987 0.282591i
\(622\) 17.4428 + 3.84034i 0.699392 + 0.153984i
\(623\) 0.626703 0.455326i 0.0251083 0.0182423i
\(624\) 0.818845 3.36764i 0.0327801 0.134813i
\(625\) −26.8852 82.7440i −1.07541 3.30976i
\(626\) −1.61288 16.4986i −0.0644636 0.659416i
\(627\) 3.76039 2.61784i 0.150176 0.104546i
\(628\) 15.7502 23.4980i 0.628503 0.937672i
\(629\) 0.284588 0.558535i 0.0113473 0.0222702i
\(630\) −8.22881 31.6284i −0.327844 1.26011i
\(631\) −12.5398 17.2595i −0.499200 0.687090i 0.482851 0.875702i \(-0.339601\pi\)
−0.982052 + 0.188612i \(0.939601\pi\)
\(632\) −0.807649 + 37.0215i −0.0321265 + 1.47264i
\(633\) 6.58046 + 2.13812i 0.261550 + 0.0849826i
\(634\) 2.50662 41.9860i 0.0995506 1.66748i
\(635\) −5.55924 35.0996i −0.220612 1.39289i
\(636\) −0.884537 1.58485i −0.0350742 0.0628433i
\(637\) 6.92424 6.92424i 0.274348 0.274348i
\(638\) −9.37808 + 5.73060i −0.371282 + 0.226877i
\(639\) −2.19878 −0.0869822
\(640\) 10.1525 + 47.4220i 0.401312 + 1.87452i
\(641\) −28.5163 20.7183i −1.12633 0.818325i −0.141171 0.989985i \(-0.545087\pi\)
−0.985156 + 0.171660i \(0.945087\pi\)
\(642\) 2.84813 2.52722i 0.112407 0.0997413i
\(643\) −4.71118 9.24621i −0.185791 0.364635i 0.779259 0.626702i \(-0.215596\pi\)
−0.965050 + 0.262067i \(0.915596\pi\)
\(644\) 1.88641 15.7424i 0.0743350 0.620338i
\(645\) 0.649440 + 0.102861i 0.0255717 + 0.00405015i
\(646\) 23.3693 6.08002i 0.919453 0.239215i
\(647\) 15.9948 5.19703i 0.628821 0.204316i 0.0227685 0.999741i \(-0.492752\pi\)
0.606053 + 0.795424i \(0.292752\pi\)
\(648\) 22.0003 6.62144i 0.864253 0.260115i
\(649\) −39.8676 + 5.49249i −1.56494 + 0.215599i
\(650\) −40.3336 33.1500i −1.58201 1.30025i
\(651\) −1.83045 + 3.59246i −0.0717409 + 0.140799i
\(652\) −13.5891 + 4.99089i −0.532190 + 0.195458i
\(653\) 0.129647 0.818559i 0.00507348 0.0320327i −0.985022 0.172430i \(-0.944838\pi\)
0.990095 + 0.140398i \(0.0448381\pi\)
\(654\) −1.64281 0.361693i −0.0642388 0.0141433i
\(655\) −9.55110 + 29.3953i −0.373192 + 1.14857i
\(656\) 9.26960 + 5.71750i 0.361917 + 0.223231i
\(657\) −32.5007 23.6131i −1.26797 0.921237i
\(658\) −18.4155 + 8.03920i −0.717912 + 0.313401i
\(659\) 16.7384 16.7384i 0.652037 0.652037i −0.301446 0.953483i \(-0.597469\pi\)
0.953483 + 0.301446i \(0.0974694\pi\)
\(660\) 1.55154 + 8.78934i 0.0603934 + 0.342124i
\(661\) −12.9151 12.9151i −0.502338 0.502338i 0.409826 0.912164i \(-0.365589\pi\)
−0.912164 + 0.409826i \(0.865589\pi\)
\(662\) 9.29854 23.7069i 0.361398 0.921394i
\(663\) 1.97583 2.71950i 0.0767348 0.105616i
\(664\) 1.16822 + 8.58363i 0.0453357 + 0.333109i
\(665\) 33.3376 + 10.8320i 1.29278 + 0.420048i
\(666\) 0.357041 + 0.558645i 0.0138350 + 0.0216471i
\(667\) −9.87410 1.56390i −0.382327 0.0605546i
\(668\) 0.394662 0.852829i 0.0152699 0.0329970i
\(669\) −2.36834 1.20673i −0.0915654 0.0466549i
\(670\) −62.0810 + 6.06896i −2.39840 + 0.234464i
\(671\) 6.16310 + 6.41691i 0.237924 + 0.247722i
\(672\) −3.15374 0.969187i −0.121658 0.0373872i
\(673\) 14.2340 + 43.8078i 0.548681 + 1.68867i 0.712072 + 0.702106i \(0.247757\pi\)
−0.163391 + 0.986561i \(0.552243\pi\)
\(674\) −10.0410 5.89493i −0.386765 0.227064i
\(675\) −3.87572 + 24.4704i −0.149177 + 0.941865i
\(676\) 10.6853 + 1.28042i 0.410975 + 0.0492471i
\(677\) −43.0470 + 21.9335i −1.65443 + 0.842974i −0.658525 + 0.752559i \(0.728819\pi\)
−0.995904 + 0.0904146i \(0.971181\pi\)
\(678\) 0.297878 4.98946i 0.0114399 0.191619i
\(679\) 11.3643 15.6417i 0.436123 0.600272i
\(680\) −8.36980 + 46.2868i −0.320967 + 1.77502i
\(681\) 0.757524i 0.0290284i
\(682\) −16.9768 + 27.6251i −0.650074 + 1.05782i
\(683\) 14.3941 + 14.3941i 0.550774 + 0.550774i 0.926664 0.375890i \(-0.122663\pi\)
−0.375890 + 0.926664i \(0.622663\pi\)
\(684\) −6.96807 + 24.5703i −0.266431 + 0.939470i
\(685\) 38.6885 6.12766i 1.47821 0.234126i
\(686\) −18.3953 20.7312i −0.702337 0.791522i
\(687\) 1.09259 3.36264i 0.0416848 0.128293i
\(688\) −1.27380 + 1.48269i −0.0485633 + 0.0565272i
\(689\) −6.45601 + 4.69057i −0.245955 + 0.178696i
\(690\) −4.11035 + 7.00127i −0.156478 + 0.266534i
\(691\) 11.0787 + 5.64488i 0.421453 + 0.214741i 0.651838 0.758359i \(-0.273998\pi\)
−0.230384 + 0.973100i \(0.573998\pi\)
\(692\) 0.0795974 0.118752i 0.00302584 0.00451429i
\(693\) 16.8903 + 5.86722i 0.641608 + 0.222877i
\(694\) 5.35993 + 4.40530i 0.203460 + 0.167223i
\(695\) 89.6504 29.1292i 3.40063 1.10493i
\(696\) −0.685857 + 1.96402i −0.0259973 + 0.0744460i
\(697\) 6.20899 + 8.54594i 0.235182 + 0.323701i
\(698\) −21.9940 34.4130i −0.832484 1.30255i
\(699\) −6.00543 + 3.05992i −0.227146 + 0.115737i
\(700\) −33.7899 + 36.4475i −1.27714 + 1.37759i
\(701\) −5.07542 + 0.803868i −0.191696 + 0.0303617i −0.251544 0.967846i \(-0.580938\pi\)
0.0598481 + 0.998207i \(0.480938\pi\)
\(702\) 2.89311 + 6.62729i 0.109193 + 0.250131i
\(703\) −0.711112 −0.0268201
\(704\) −24.6603 9.79127i −0.929420 0.369022i
\(705\) 10.2891 0.387512
\(706\) −9.32813 21.3681i −0.351069 0.804199i
\(707\) 13.1698 2.08590i 0.495303 0.0784483i
\(708\) −5.17901 + 5.58633i −0.194639 + 0.209947i
\(709\) 30.5622 15.5722i 1.14779 0.584828i 0.226617 0.973984i \(-0.427233\pi\)
0.921172 + 0.389156i \(0.127233\pi\)
\(710\) 2.47396 + 3.87088i 0.0928459 + 0.145272i
\(711\) −22.3279 30.7318i −0.837363 1.15253i
\(712\) 0.388767 1.11327i 0.0145697 0.0417217i
\(713\) −28.0509 + 9.11429i −1.05051 + 0.341333i
\(714\) −2.47218 2.03187i −0.0925191 0.0760409i
\(715\) 37.5587 11.3712i 1.40462 0.425260i
\(716\) −8.36190 + 12.4752i −0.312499 + 0.466221i
\(717\) −0.0538339 0.0274297i −0.00201046 0.00102438i
\(718\) 19.6232 33.4248i 0.732333 1.24740i
\(719\) 36.1437 26.2599i 1.34793 0.979329i 0.348819 0.937190i \(-0.386583\pi\)
0.999112 0.0421391i \(-0.0134173\pi\)
\(720\) −37.7355 32.4191i −1.40632 1.20819i
\(721\) 0.833694 2.56585i 0.0310484 0.0955571i
\(722\) −0.346960 0.391019i −0.0129125 0.0145522i
\(723\) −6.47531 + 1.02559i −0.240819 + 0.0381420i
\(724\) 1.62367 5.72527i 0.0603431 0.212778i
\(725\) 22.1595 + 22.1595i 0.822982 + 0.822982i
\(726\) −4.47029 1.96495i −0.165908 0.0729262i
\(727\) 28.8346i 1.06941i 0.845037 + 0.534707i \(0.179578\pi\)
−0.845037 + 0.534707i \(0.820422\pi\)
\(728\) −2.58124 + 14.2748i −0.0956673 + 0.529060i
\(729\) −12.8278 + 17.6560i −0.475104 + 0.653925i
\(730\) −5.00208 + 83.7850i −0.185135 + 3.10102i
\(731\) −1.68927 + 0.860726i −0.0624799 + 0.0318351i
\(732\) 1.67216 + 0.200375i 0.0618050 + 0.00740608i
\(733\) −5.85166 + 36.9459i −0.216136 + 1.36463i 0.606057 + 0.795421i \(0.292750\pi\)
−0.822193 + 0.569208i \(0.807250\pi\)
\(734\) −11.0414 6.48225i −0.407545 0.239264i
\(735\) 1.47506 + 4.53977i 0.0544085 + 0.167452i
\(736\) −11.3000 21.3265i −0.416522 0.786106i
\(737\) 16.1036 30.0887i 0.593184 1.10833i
\(738\) −11.1193 + 1.08701i −0.409307 + 0.0400133i
\(739\) −31.3018 15.9491i −1.15146 0.586696i −0.229239 0.973370i \(-0.573624\pi\)
−0.922216 + 0.386674i \(0.873624\pi\)
\(740\) 0.581754 1.25712i 0.0213857 0.0462126i
\(741\) −3.76634 0.596529i −0.138360 0.0219141i
\(742\) 4.09108 + 6.40112i 0.150188 + 0.234993i
\(743\) −0.273279 0.0887937i −0.0100256 0.00325752i 0.304000 0.952672i \(-0.401678\pi\)
−0.314026 + 0.949415i \(0.601678\pi\)
\(744\) 0.827681 + 6.08149i 0.0303443 + 0.222958i
\(745\) 3.29441 4.53437i 0.120698 0.166126i
\(746\) −9.50044 + 24.2216i −0.347836 + 0.886816i
\(747\) −6.28368 6.28368i −0.229908 0.229908i
\(748\) −18.5154 17.8732i −0.676990 0.653511i
\(749\) −11.2696 + 11.2696i −0.411782 + 0.411782i
\(750\) 14.6044 6.37546i 0.533276 0.232799i
\(751\) −14.7185 10.6936i −0.537085 0.390215i 0.285916 0.958255i \(-0.407702\pi\)
−0.823001 + 0.568040i \(0.807702\pi\)
\(752\) −16.0577 + 26.0338i −0.585563 + 0.949354i
\(753\) 0.0839992 0.258523i 0.00306110 0.00942110i
\(754\) 8.93283 + 1.96672i 0.325314 + 0.0716237i
\(755\) 12.7728 80.6443i 0.464850 2.93495i
\(756\) 6.46191 2.37327i 0.235017 0.0863151i
\(757\) 2.08254 4.08722i 0.0756912 0.148552i −0.850060 0.526687i \(-0.823434\pi\)
0.925751 + 0.378134i \(0.123434\pi\)
\(758\) −6.35939 5.22675i −0.230983 0.189844i
\(759\) −1.93629 3.99755i −0.0702830 0.145102i
\(760\) 51.0955 15.3782i 1.85343 0.557828i
\(761\) 38.5096 12.5125i 1.39597 0.453579i 0.488087 0.872795i \(-0.337695\pi\)
0.907886 + 0.419216i \(0.137695\pi\)
\(762\) 3.56169 0.926649i 0.129026 0.0335689i
\(763\) 6.95415 + 1.10143i 0.251757 + 0.0398744i
\(764\) 2.31924 19.3544i 0.0839071 0.700218i
\(765\) −21.9060 42.9930i −0.792013 1.55441i
\(766\) 9.89063 8.77619i 0.357363 0.317097i
\(767\)