Properties

Label 176.2.w.a.5.8
Level $176$
Weight $2$
Character 176.5
Analytic conductor $1.405$
Analytic rank $0$
Dimension $176$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,2,Mod(5,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 5, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 176.w (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40536707557\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 5.8
Character \(\chi\) \(=\) 176.5
Dual form 176.2.w.a.141.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.592330 + 1.28419i) q^{2} +(-2.54744 + 0.403475i) q^{3} +(-1.29829 - 1.52133i) q^{4} +(2.98748 - 1.52220i) q^{5} +(0.990787 - 3.51039i) q^{6} +(-1.07945 - 1.48574i) q^{7} +(2.72269 - 0.766123i) q^{8} +(3.47349 - 1.12860i) q^{9} +O(q^{10})\) \(q+(-0.592330 + 1.28419i) q^{2} +(-2.54744 + 0.403475i) q^{3} +(-1.29829 - 1.52133i) q^{4} +(2.98748 - 1.52220i) q^{5} +(0.990787 - 3.51039i) q^{6} +(-1.07945 - 1.48574i) q^{7} +(2.72269 - 0.766123i) q^{8} +(3.47349 - 1.12860i) q^{9} +(0.185217 + 4.73814i) q^{10} +(2.49806 + 2.18167i) q^{11} +(3.92113 + 3.35167i) q^{12} +(-0.239578 - 0.122071i) q^{13} +(2.54736 - 0.506174i) q^{14} +(-6.99626 + 5.08308i) q^{15} +(-0.628885 + 3.95025i) q^{16} +(0.795847 - 2.44936i) q^{17} +(-0.608108 + 5.12913i) q^{18} +(7.60003 - 1.20373i) q^{19} +(-6.19438 - 2.56869i) q^{20} +(3.34930 + 3.34930i) q^{21} +(-4.28136 + 1.91571i) q^{22} -8.81473i q^{23} +(-6.62678 + 3.05019i) q^{24} +(3.66902 - 5.04998i) q^{25} +(0.298672 - 0.235357i) q^{26} +(-1.49890 + 0.763730i) q^{27} +(-0.858854 + 3.57112i) q^{28} +(-0.431069 + 2.72166i) q^{29} +(-2.38355 - 11.9954i) q^{30} +(0.117071 + 0.360306i) q^{31} +(-4.70037 - 3.14746i) q^{32} +(-7.24391 - 4.54978i) q^{33} +(2.67405 + 2.47285i) q^{34} +(-5.48642 - 2.79547i) q^{35} +(-6.22658 - 3.81906i) q^{36} +(-3.78700 - 0.599802i) q^{37} +(-2.95591 + 10.4729i) q^{38} +(0.659563 + 0.214305i) q^{39} +(6.96780 - 6.43325i) q^{40} +(-4.74691 + 6.53356i) q^{41} +(-6.28502 + 2.31724i) q^{42} +(3.43159 + 3.43159i) q^{43} +(0.0758384 - 6.63282i) q^{44} +(8.65902 - 8.65902i) q^{45} +(11.3198 + 5.22123i) q^{46} +(-1.53564 - 1.11571i) q^{47} +(0.00821849 - 10.3168i) q^{48} +(1.12092 - 3.44983i) q^{49} +(4.31186 + 7.70298i) q^{50} +(-1.03911 + 6.56071i) q^{51} +(0.125331 + 0.522961i) q^{52} +(2.83693 - 5.56780i) q^{53} +(-0.0929285 - 2.37726i) q^{54} +(10.7838 + 2.71517i) q^{55} +(-4.07727 - 3.21821i) q^{56} +(-18.8749 + 6.13284i) q^{57} +(-3.23980 - 2.16570i) q^{58} +(-3.17332 - 0.502605i) q^{59} +(16.8162 + 4.04430i) q^{60} +(3.28137 + 6.44005i) q^{61} +(-0.532046 - 0.0630793i) q^{62} +(-5.42627 - 3.94242i) q^{63} +(6.82611 - 4.17183i) q^{64} -0.901551 q^{65} +(10.1336 - 6.60758i) q^{66} +(-8.94455 + 8.94455i) q^{67} +(-4.75953 + 1.96924i) q^{68} +(3.55652 + 22.4550i) q^{69} +(6.83969 - 5.38977i) q^{70} +(-9.72039 - 3.15835i) q^{71} +(8.59259 - 5.73396i) q^{72} +(3.84361 + 5.29028i) q^{73} +(3.01341 - 4.50795i) q^{74} +(-7.30908 + 14.3449i) q^{75} +(-11.6983 - 9.99936i) q^{76} +(0.544861 - 6.06647i) q^{77} +(-0.665888 + 0.720065i) q^{78} +(-0.453364 - 1.39531i) q^{79} +(4.13428 + 12.7586i) q^{80} +(-5.35396 + 3.88988i) q^{81} +(-5.57860 - 9.96595i) q^{82} +(0.578259 + 1.13490i) q^{83} +(0.747023 - 9.44374i) q^{84} +(-1.35084 - 8.52886i) q^{85} +(-6.43946 + 2.37418i) q^{86} -7.10719i q^{87} +(8.47288 + 4.02621i) q^{88} -5.92126i q^{89} +(5.99083 + 16.2488i) q^{90} +(0.0772472 + 0.487720i) q^{91} +(-13.4101 + 11.4441i) q^{92} +(-0.443605 - 0.870624i) q^{93} +(2.34238 - 1.31118i) q^{94} +(20.8726 - 15.1648i) q^{95} +(13.2438 + 6.12149i) q^{96} +(3.20268 + 9.85684i) q^{97} +(3.76629 + 3.48291i) q^{98} +(11.1392 + 4.75870i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8} - 16 q^{10} - 12 q^{11} - 6 q^{13} - 12 q^{15} + 14 q^{16} - 12 q^{17} - 44 q^{18} - 6 q^{19} + 2 q^{20} - 28 q^{21} + 50 q^{22} - 38 q^{24} - 68 q^{26} - 18 q^{27} - 46 q^{28} - 22 q^{29} + 26 q^{30} - 12 q^{31} - 16 q^{32} - 16 q^{33} + 12 q^{34} - 26 q^{35} - 22 q^{36} + 18 q^{37} - 34 q^{38} + 14 q^{40} - 10 q^{42} - 40 q^{43} + 2 q^{44} - 24 q^{45} + 38 q^{46} - 12 q^{47} - 26 q^{48} + 8 q^{49} - 62 q^{50} + 6 q^{51} + 74 q^{52} - 30 q^{53} - 52 q^{54} - 96 q^{56} - 26 q^{58} + 10 q^{59} + 118 q^{60} - 6 q^{61} - 42 q^{62} - 28 q^{63} - 106 q^{64} - 32 q^{65} + 6 q^{66} + 24 q^{67} + 116 q^{68} + 12 q^{69} + 52 q^{70} - 98 q^{72} + 96 q^{74} - 46 q^{75} + 112 q^{76} - 14 q^{77} + 44 q^{78} - 52 q^{79} - 28 q^{80} + 66 q^{82} + 54 q^{83} + 120 q^{84} + 14 q^{85} + 86 q^{86} + 142 q^{88} + 228 q^{90} - 122 q^{91} + 146 q^{92} + 6 q^{93} + 56 q^{94} + 52 q^{95} + 86 q^{96} - 12 q^{97} + 140 q^{98} + 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.592330 + 1.28419i −0.418841 + 0.908060i
\(3\) −2.54744 + 0.403475i −1.47077 + 0.232946i −0.839813 0.542876i \(-0.817336\pi\)
−0.630952 + 0.775822i \(0.717336\pi\)
\(4\) −1.29829 1.52133i −0.649145 0.760665i
\(5\) 2.98748 1.52220i 1.33604 0.680747i 0.367599 0.929984i \(-0.380180\pi\)
0.968442 + 0.249237i \(0.0801799\pi\)
\(6\) 0.990787 3.51039i 0.404487 1.43311i
\(7\) −1.07945 1.48574i −0.407994 0.561556i 0.554734 0.832028i \(-0.312820\pi\)
−0.962728 + 0.270472i \(0.912820\pi\)
\(8\) 2.72269 0.766123i 0.962617 0.270865i
\(9\) 3.47349 1.12860i 1.15783 0.376202i
\(10\) 0.185217 + 4.73814i 0.0585707 + 1.49833i
\(11\) 2.49806 + 2.18167i 0.753193 + 0.657799i
\(12\) 3.92113 + 3.35167i 1.13193 + 0.967543i
\(13\) −0.239578 0.122071i −0.0664470 0.0338564i 0.420451 0.907315i \(-0.361872\pi\)
−0.486898 + 0.873459i \(0.661872\pi\)
\(14\) 2.54736 0.506174i 0.680811 0.135281i
\(15\) −6.99626 + 5.08308i −1.80643 + 1.31245i
\(16\) −0.628885 + 3.95025i −0.157221 + 0.987563i
\(17\) 0.795847 2.44936i 0.193021 0.594058i −0.806973 0.590589i \(-0.798896\pi\)
0.999994 0.00346949i \(-0.00110437\pi\)
\(18\) −0.608108 + 5.12913i −0.143332 + 1.20895i
\(19\) 7.60003 1.20373i 1.74357 0.276154i 0.798254 0.602321i \(-0.205757\pi\)
0.945312 + 0.326168i \(0.105757\pi\)
\(20\) −6.19438 2.56869i −1.38511 0.574376i
\(21\) 3.34930 + 3.34930i 0.730876 + 0.730876i
\(22\) −4.28136 + 1.91571i −0.912789 + 0.408431i
\(23\) 8.81473i 1.83800i −0.394259 0.918999i \(-0.628999\pi\)
0.394259 0.918999i \(-0.371001\pi\)
\(24\) −6.62678 + 3.05019i −1.35269 + 0.622617i
\(25\) 3.66902 5.04998i 0.733805 1.01000i
\(26\) 0.298672 0.235357i 0.0585744 0.0461574i
\(27\) −1.49890 + 0.763730i −0.288464 + 0.146980i
\(28\) −0.858854 + 3.57112i −0.162308 + 0.674878i
\(29\) −0.431069 + 2.72166i −0.0800475 + 0.505400i 0.914791 + 0.403928i \(0.132355\pi\)
−0.994838 + 0.101472i \(0.967645\pi\)
\(30\) −2.38355 11.9954i −0.435174 2.19005i
\(31\) 0.117071 + 0.360306i 0.0210265 + 0.0647129i 0.961019 0.276482i \(-0.0891685\pi\)
−0.939993 + 0.341195i \(0.889168\pi\)
\(32\) −4.70037 3.14746i −0.830916 0.556398i
\(33\) −7.24391 4.54978i −1.26100 0.792015i
\(34\) 2.67405 + 2.47285i 0.458595 + 0.424090i
\(35\) −5.48642 2.79547i −0.927375 0.472521i
\(36\) −6.22658 3.81906i −1.03776 0.636510i
\(37\) −3.78700 0.599802i −0.622579 0.0986068i −0.162828 0.986655i \(-0.552061\pi\)
−0.459751 + 0.888048i \(0.652061\pi\)
\(38\) −2.95591 + 10.4729i −0.479512 + 1.69893i
\(39\) 0.659563 + 0.214305i 0.105615 + 0.0343163i
\(40\) 6.96780 6.43325i 1.10171 1.01719i
\(41\) −4.74691 + 6.53356i −0.741342 + 1.02037i 0.257198 + 0.966359i \(0.417201\pi\)
−0.998540 + 0.0540114i \(0.982799\pi\)
\(42\) −6.28502 + 2.31724i −0.969800 + 0.357559i
\(43\) 3.43159 + 3.43159i 0.523313 + 0.523313i 0.918570 0.395257i \(-0.129345\pi\)
−0.395257 + 0.918570i \(0.629345\pi\)
\(44\) 0.0758384 6.63282i 0.0114331 0.999935i
\(45\) 8.65902 8.65902i 1.29081 1.29081i
\(46\) 11.3198 + 5.22123i 1.66901 + 0.769828i
\(47\) −1.53564 1.11571i −0.223996 0.162742i 0.470128 0.882598i \(-0.344208\pi\)
−0.694123 + 0.719856i \(0.744208\pi\)
\(48\) 0.00821849 10.3168i 0.00118624 1.48910i
\(49\) 1.12092 3.44983i 0.160131 0.492833i
\(50\) 4.31186 + 7.70298i 0.609789 + 1.08937i
\(51\) −1.03911 + 6.56071i −0.145505 + 0.918683i
\(52\) 0.125331 + 0.522961i 0.0173803 + 0.0725216i
\(53\) 2.83693 5.56780i 0.389683 0.764796i −0.609935 0.792452i \(-0.708804\pi\)
0.999617 + 0.0276561i \(0.00880433\pi\)
\(54\) −0.0929285 2.37726i −0.0126460 0.323504i
\(55\) 10.7838 + 2.71517i 1.45409 + 0.366113i
\(56\) −4.07727 3.21821i −0.544848 0.430052i
\(57\) −18.8749 + 6.13284i −2.50005 + 0.812314i
\(58\) −3.23980 2.16570i −0.425406 0.284370i
\(59\) −3.17332 0.502605i −0.413132 0.0654336i −0.0535908 0.998563i \(-0.517067\pi\)
−0.359541 + 0.933129i \(0.617067\pi\)
\(60\) 16.8162 + 4.04430i 2.17096 + 0.522117i
\(61\) 3.28137 + 6.44005i 0.420136 + 0.824564i 0.999952 + 0.00981617i \(0.00312463\pi\)
−0.579815 + 0.814748i \(0.696875\pi\)
\(62\) −0.532046 0.0630793i −0.0675700 0.00801108i
\(63\) −5.42627 3.94242i −0.683646 0.496698i
\(64\) 6.82611 4.17183i 0.853264 0.521479i
\(65\) −0.901551 −0.111824
\(66\) 10.1336 6.60758i 1.24736 0.813337i
\(67\) −8.94455 + 8.94455i −1.09275 + 1.09275i −0.0975171 + 0.995234i \(0.531090\pi\)
−0.995234 + 0.0975171i \(0.968910\pi\)
\(68\) −4.75953 + 1.96924i −0.577178 + 0.238806i
\(69\) 3.55652 + 22.4550i 0.428155 + 2.70326i
\(70\) 6.83969 5.38977i 0.817500 0.644201i
\(71\) −9.72039 3.15835i −1.15360 0.374827i −0.331101 0.943595i \(-0.607420\pi\)
−0.822498 + 0.568769i \(0.807420\pi\)
\(72\) 8.59259 5.73396i 1.01265 0.675754i
\(73\) 3.84361 + 5.29028i 0.449861 + 0.619180i 0.972368 0.233455i \(-0.0750032\pi\)
−0.522507 + 0.852635i \(0.675003\pi\)
\(74\) 3.01341 4.50795i 0.350302 0.524039i
\(75\) −7.30908 + 14.3449i −0.843980 + 1.65640i
\(76\) −11.6983 9.99936i −1.34189 1.14700i
\(77\) 0.544861 6.06647i 0.0620927 0.691339i
\(78\) −0.665888 + 0.720065i −0.0753969 + 0.0815313i
\(79\) −0.453364 1.39531i −0.0510074 0.156985i 0.922308 0.386455i \(-0.126301\pi\)
−0.973316 + 0.229470i \(0.926301\pi\)
\(80\) 4.13428 + 12.7586i 0.462227 + 1.42645i
\(81\) −5.35396 + 3.88988i −0.594884 + 0.432209i
\(82\) −5.57860 9.96595i −0.616053 1.10056i
\(83\) 0.578259 + 1.13490i 0.0634722 + 0.124571i 0.920563 0.390594i \(-0.127730\pi\)
−0.857091 + 0.515165i \(0.827730\pi\)
\(84\) 0.747023 9.44374i 0.0815069 1.03040i
\(85\) −1.35084 8.52886i −0.146519 0.925085i
\(86\) −6.43946 + 2.37418i −0.694385 + 0.256015i
\(87\) 7.10719i 0.761971i
\(88\) 8.47288 + 4.02621i 0.903212 + 0.429195i
\(89\) 5.92126i 0.627652i −0.949480 0.313826i \(-0.898389\pi\)
0.949480 0.313826i \(-0.101611\pi\)
\(90\) 5.99083 + 16.2488i 0.631489 + 1.71278i
\(91\) 0.0772472 + 0.487720i 0.00809771 + 0.0511269i
\(92\) −13.4101 + 11.4441i −1.39810 + 1.19313i
\(93\) −0.443605 0.870624i −0.0459997 0.0902795i
\(94\) 2.34238 1.31118i 0.241598 0.135238i
\(95\) 20.8726 15.1648i 2.14149 1.55588i
\(96\) 13.2438 + 6.12149i 1.35169 + 0.624772i
\(97\) 3.20268 + 9.85684i 0.325183 + 1.00081i 0.971358 + 0.237621i \(0.0763677\pi\)
−0.646175 + 0.763189i \(0.723632\pi\)
\(98\) 3.76629 + 3.48291i 0.380453 + 0.351827i
\(99\) 11.1392 + 4.75870i 1.11953 + 0.478267i
\(100\) −12.4461 + 0.974545i −1.24461 + 0.0974545i
\(101\) −0.557671 + 1.09449i −0.0554903 + 0.108906i −0.917086 0.398689i \(-0.869465\pi\)
0.861596 + 0.507595i \(0.169465\pi\)
\(102\) −7.80971 5.22053i −0.773276 0.516909i
\(103\) 6.12564 + 8.43123i 0.603578 + 0.830753i 0.996030 0.0890190i \(-0.0283732\pi\)
−0.392452 + 0.919772i \(0.628373\pi\)
\(104\) −0.745819 0.148816i −0.0731335 0.0145926i
\(105\) 15.1042 + 4.90766i 1.47402 + 0.478939i
\(106\) 5.46971 + 6.94114i 0.531265 + 0.674183i
\(107\) 1.31103 + 8.27750i 0.126742 + 0.800216i 0.966389 + 0.257084i \(0.0827617\pi\)
−0.839647 + 0.543132i \(0.817238\pi\)
\(108\) 3.10790 + 1.28878i 0.299057 + 0.124013i
\(109\) 10.2673 10.2673i 0.983429 0.983429i −0.0164355 0.999865i \(-0.505232\pi\)
0.999865 + 0.0164355i \(0.00523183\pi\)
\(110\) −9.87438 + 12.2402i −0.941486 + 1.16706i
\(111\) 9.88916 0.938638
\(112\) 6.54789 3.32975i 0.618718 0.314632i
\(113\) −9.03988 6.56786i −0.850400 0.617852i 0.0748561 0.997194i \(-0.476150\pi\)
−0.925256 + 0.379342i \(0.876150\pi\)
\(114\) 3.30446 27.8717i 0.309491 2.61042i
\(115\) −13.4178 26.3338i −1.25121 2.45564i
\(116\) 4.70020 2.87771i 0.436402 0.267189i
\(117\) −0.969941 0.153624i −0.0896711 0.0142025i
\(118\) 2.52510 3.77744i 0.232454 0.347742i
\(119\) −4.49819 + 1.46155i −0.412348 + 0.133980i
\(120\) −15.1544 + 19.1997i −1.38340 + 1.75268i
\(121\) 1.48060 + 10.8999i 0.134600 + 0.990900i
\(122\) −10.2139 + 0.399268i −0.924724 + 0.0361480i
\(123\) 9.45633 18.5591i 0.852649 1.67342i
\(124\) 0.396153 0.645885i 0.0355756 0.0580022i
\(125\) 0.651507 4.11346i 0.0582726 0.367919i
\(126\) 8.27696 4.63316i 0.737370 0.412754i
\(127\) −4.97304 + 15.3055i −0.441286 + 1.35814i 0.445219 + 0.895421i \(0.353126\pi\)
−0.886506 + 0.462718i \(0.846874\pi\)
\(128\) 1.31412 + 11.2371i 0.116153 + 0.993231i
\(129\) −10.1263 7.35722i −0.891575 0.647767i
\(130\) 0.534015 1.15776i 0.0468363 0.101543i
\(131\) 0.626171 0.626171i 0.0547088 0.0547088i −0.679223 0.733932i \(-0.737683\pi\)
0.733932 + 0.679223i \(0.237683\pi\)
\(132\) 2.48298 + 16.9273i 0.216116 + 1.47333i
\(133\) −9.99228 9.99228i −0.866441 0.866441i
\(134\) −6.18838 16.7846i −0.534595 1.44997i
\(135\) −3.31540 + 4.56325i −0.285344 + 0.392742i
\(136\) 0.290332 7.27858i 0.0248957 0.624133i
\(137\) 10.4979 + 3.41096i 0.896894 + 0.291418i 0.720954 0.692983i \(-0.243704\pi\)
0.175939 + 0.984401i \(0.443704\pi\)
\(138\) −30.9431 8.73352i −2.63405 0.743446i
\(139\) −8.81397 1.39600i −0.747591 0.118407i −0.228997 0.973427i \(-0.573545\pi\)
−0.518595 + 0.855020i \(0.673545\pi\)
\(140\) 2.87014 + 11.9760i 0.242571 + 1.01216i
\(141\) 4.36210 + 2.22260i 0.367355 + 0.187177i
\(142\) 9.81360 10.6120i 0.823539 0.890543i
\(143\) −0.332161 0.827622i −0.0277767 0.0692092i
\(144\) 2.27385 + 14.4309i 0.189488 + 1.20258i
\(145\) 2.85510 + 8.78708i 0.237103 + 0.729727i
\(146\) −9.07041 + 1.80234i −0.750672 + 0.149163i
\(147\) −1.46355 + 9.24050i −0.120712 + 0.762144i
\(148\) 4.00413 + 6.53999i 0.329137 + 0.537584i
\(149\) 9.11712 4.64541i 0.746904 0.380566i −0.0387370 0.999249i \(-0.512333\pi\)
0.785641 + 0.618683i \(0.212333\pi\)
\(150\) −14.0922 17.8832i −1.15062 1.46015i
\(151\) 1.93490 2.66316i 0.157460 0.216725i −0.722997 0.690851i \(-0.757236\pi\)
0.880457 + 0.474126i \(0.157236\pi\)
\(152\) 19.7703 9.09993i 1.60359 0.738102i
\(153\) 9.40604i 0.760433i
\(154\) 7.46777 + 4.29306i 0.601770 + 0.345945i
\(155\) 0.898203 + 0.898203i 0.0721454 + 0.0721454i
\(156\) −0.530276 1.28164i −0.0424560 0.102614i
\(157\) −14.1306 + 2.23807i −1.12774 + 0.178617i −0.692308 0.721602i \(-0.743406\pi\)
−0.435437 + 0.900219i \(0.643406\pi\)
\(158\) 2.06039 + 0.244279i 0.163916 + 0.0194338i
\(159\) −4.98045 + 15.3283i −0.394976 + 1.21561i
\(160\) −18.8333 2.24809i −1.48890 0.177727i
\(161\) −13.0964 + 9.51507i −1.03214 + 0.749893i
\(162\) −1.82403 9.17959i −0.143310 0.721217i
\(163\) −4.27788 2.17969i −0.335070 0.170727i 0.278358 0.960477i \(-0.410210\pi\)
−0.613428 + 0.789751i \(0.710210\pi\)
\(164\) 16.1026 1.26085i 1.25740 0.0984555i
\(165\) −28.5667 2.56572i −2.22391 0.199741i
\(166\) −1.79995 + 0.0703610i −0.139703 + 0.00546107i
\(167\) 11.6997 3.80145i 0.905347 0.294165i 0.180905 0.983501i \(-0.442097\pi\)
0.724442 + 0.689335i \(0.242097\pi\)
\(168\) 11.6851 + 6.55313i 0.901523 + 0.505585i
\(169\) −7.59871 10.4587i −0.584516 0.804518i
\(170\) 11.7528 + 3.31717i 0.901400 + 0.254415i
\(171\) 25.0401 12.7586i 1.91486 0.975671i
\(172\) 0.765379 9.67579i 0.0583596 0.737772i
\(173\) −12.8034 + 2.02786i −0.973426 + 0.154176i −0.622835 0.782353i \(-0.714019\pi\)
−0.350591 + 0.936529i \(0.614019\pi\)
\(174\) 9.12699 + 4.20980i 0.691915 + 0.319144i
\(175\) −11.4635 −0.866557
\(176\) −10.1892 + 8.49595i −0.768037 + 0.640406i
\(177\) 8.28664 0.622862
\(178\) 7.60403 + 3.50734i 0.569946 + 0.262886i
\(179\) 12.2243 1.93614i 0.913686 0.144714i 0.318148 0.948041i \(-0.396939\pi\)
0.595538 + 0.803327i \(0.296939\pi\)
\(180\) −24.4151 1.93130i −1.81980 0.143950i
\(181\) −13.1655 + 6.70817i −0.978586 + 0.498614i −0.868705 0.495330i \(-0.835047\pi\)
−0.109881 + 0.993945i \(0.535047\pi\)
\(182\) −0.672081 0.189691i −0.0498180 0.0140608i
\(183\) −10.9575 15.0817i −0.810001 1.11487i
\(184\) −6.75317 23.9998i −0.497850 1.76929i
\(185\) −12.2266 + 3.97266i −0.898918 + 0.292076i
\(186\) 1.38081 0.0539766i 0.101246 0.00395776i
\(187\) 7.33179 4.38238i 0.536153 0.320471i
\(188\) 0.296347 + 3.78472i 0.0216133 + 0.276029i
\(189\) 2.75270 + 1.40257i 0.200229 + 0.102022i
\(190\) 7.11107 + 35.7870i 0.515891 + 2.59626i
\(191\) 12.6788 9.21171i 0.917408 0.666536i −0.0254697 0.999676i \(-0.508108\pi\)
0.942877 + 0.333140i \(0.108108\pi\)
\(192\) −15.7059 + 13.3817i −1.13347 + 0.965738i
\(193\) −1.62567 + 5.00330i −0.117018 + 0.360145i −0.992363 0.123355i \(-0.960635\pi\)
0.875344 + 0.483500i \(0.160635\pi\)
\(194\) −14.5551 1.72565i −1.04500 0.123894i
\(195\) 2.29665 0.363753i 0.164466 0.0260489i
\(196\) −6.70361 + 2.77360i −0.478829 + 0.198114i
\(197\) 4.53352 + 4.53352i 0.323000 + 0.323000i 0.849917 0.526917i \(-0.176652\pi\)
−0.526917 + 0.849917i \(0.676652\pi\)
\(198\) −12.7092 + 11.4862i −0.903202 + 0.816287i
\(199\) 18.4465i 1.30764i 0.756652 + 0.653818i \(0.226834\pi\)
−0.756652 + 0.653818i \(0.773166\pi\)
\(200\) 6.12072 16.5605i 0.432800 1.17100i
\(201\) 19.1768 26.3946i 1.35263 1.86173i
\(202\) −1.07521 1.36446i −0.0756515 0.0960028i
\(203\) 4.50899 2.29745i 0.316469 0.161249i
\(204\) 11.3301 6.93687i 0.793264 0.485678i
\(205\) −4.23593 + 26.7446i −0.295850 + 1.86792i
\(206\) −14.4557 + 2.87243i −1.00718 + 0.200131i
\(207\) −9.94835 30.6179i −0.691458 2.12809i
\(208\) 0.632879 0.869625i 0.0438822 0.0602977i
\(209\) 21.6115 + 13.5738i 1.49490 + 0.938919i
\(210\) −15.2491 + 16.4898i −1.05229 + 1.13790i
\(211\) 1.89226 + 0.964157i 0.130269 + 0.0663753i 0.517910 0.855435i \(-0.326710\pi\)
−0.387641 + 0.921810i \(0.626710\pi\)
\(212\) −12.1536 + 2.91271i −0.834714 + 0.200045i
\(213\) 26.0364 + 4.12376i 1.78399 + 0.282556i
\(214\) −11.4064 3.21940i −0.779729 0.220074i
\(215\) 15.4754 + 5.02826i 1.05541 + 0.342924i
\(216\) −3.49594 + 3.22775i −0.237869 + 0.219620i
\(217\) 0.408949 0.562869i 0.0277612 0.0382101i
\(218\) 7.10354 + 19.2668i 0.481113 + 1.30491i
\(219\) −11.9259 11.9259i −0.805875 0.805875i
\(220\) −9.86989 19.9308i −0.665428 1.34374i
\(221\) −0.489664 + 0.489664i −0.0329384 + 0.0329384i
\(222\) −5.85765 + 12.6996i −0.393140 + 0.852339i
\(223\) 6.52139 + 4.73807i 0.436705 + 0.317284i 0.784324 0.620351i \(-0.213010\pi\)
−0.347620 + 0.937636i \(0.613010\pi\)
\(224\) 0.397520 + 10.3810i 0.0265604 + 0.693613i
\(225\) 7.04488 21.6819i 0.469659 1.44546i
\(226\) 13.7890 7.71859i 0.917229 0.513433i
\(227\) −2.81338 + 17.7630i −0.186731 + 1.17897i 0.699121 + 0.715003i \(0.253575\pi\)
−0.885852 + 0.463968i \(0.846425\pi\)
\(228\) 33.8352 + 20.7528i 2.24079 + 1.37439i
\(229\) 0.0408598 0.0801919i 0.00270009 0.00529923i −0.889653 0.456638i \(-0.849053\pi\)
0.892353 + 0.451339i \(0.149053\pi\)
\(230\) 41.7654 1.63264i 2.75393 0.107653i
\(231\) 1.05967 + 15.6738i 0.0697210 + 1.03126i
\(232\) 0.911459 + 7.74050i 0.0598402 + 0.508189i
\(233\) −24.8760 + 8.08271i −1.62968 + 0.529516i −0.974198 0.225694i \(-0.927535\pi\)
−0.655484 + 0.755209i \(0.727535\pi\)
\(234\) 0.771807 1.15459i 0.0504546 0.0754781i
\(235\) −6.28601 0.995605i −0.410054 0.0649461i
\(236\) 3.35527 + 5.48020i 0.218409 + 0.356730i
\(237\) 1.71789 + 3.37155i 0.111589 + 0.219006i
\(238\) 0.787504 6.64225i 0.0510463 0.430553i
\(239\) −16.6103 12.0681i −1.07443 0.780619i −0.0977262 0.995213i \(-0.531157\pi\)
−0.976703 + 0.214595i \(0.931157\pi\)
\(240\) −15.6796 30.8337i −1.01211 1.99030i
\(241\) 10.6597 0.686650 0.343325 0.939217i \(-0.388447\pi\)
0.343325 + 0.939217i \(0.388447\pi\)
\(242\) −14.8746 4.55497i −0.956172 0.292804i
\(243\) 15.6380 15.6380i 1.00318 1.00318i
\(244\) 5.53727 13.3531i 0.354487 0.854845i
\(245\) −1.90260 12.0126i −0.121553 0.767455i
\(246\) 18.2321 + 23.1368i 1.16244 + 1.47515i
\(247\) −1.96774 0.639357i −0.125204 0.0406813i
\(248\) 0.594786 + 0.891313i 0.0377690 + 0.0565984i
\(249\) −1.93098 2.65777i −0.122371 0.168429i
\(250\) 4.89655 + 3.27318i 0.309685 + 0.207014i
\(251\) 1.98552 3.89681i 0.125325 0.245965i −0.819816 0.572627i \(-0.805924\pi\)
0.945141 + 0.326663i \(0.105924\pi\)
\(252\) 1.04716 + 13.3736i 0.0659650 + 0.842454i
\(253\) 19.2309 22.0197i 1.20903 1.38437i
\(254\) −16.7094 15.4522i −1.04844 0.969558i
\(255\) 6.88236 + 21.1817i 0.430990 + 1.32645i
\(256\) −15.2090 4.96851i −0.950563 0.310532i
\(257\) 3.57650 2.59848i 0.223096 0.162089i −0.470623 0.882334i \(-0.655971\pi\)
0.693719 + 0.720246i \(0.255971\pi\)
\(258\) 15.4462 8.64625i 0.961639 0.538292i
\(259\) 3.19674 + 6.27395i 0.198635 + 0.389844i
\(260\) 1.17047 + 1.37156i 0.0725897 + 0.0850602i
\(261\) 1.57437 + 9.94017i 0.0974509 + 0.615281i
\(262\) 0.433223 + 1.17502i 0.0267646 + 0.0725932i
\(263\) 19.1746i 1.18235i −0.806542 0.591177i \(-0.798663\pi\)
0.806542 0.591177i \(-0.201337\pi\)
\(264\) −23.2086 6.83793i −1.42839 0.420845i
\(265\) 20.9520i 1.28707i
\(266\) 18.7507 6.91326i 1.14968 0.423879i
\(267\) 2.38908 + 15.0841i 0.146209 + 0.923129i
\(268\) 25.2202 + 1.99498i 1.54057 + 0.121863i
\(269\) 7.44131 + 14.6044i 0.453705 + 0.890445i 0.998648 + 0.0519729i \(0.0165510\pi\)
−0.544944 + 0.838473i \(0.683449\pi\)
\(270\) −3.89628 6.96055i −0.237120 0.423606i
\(271\) −0.372230 + 0.270441i −0.0226114 + 0.0164281i −0.599034 0.800724i \(-0.704448\pi\)
0.576422 + 0.817152i \(0.304448\pi\)
\(272\) 9.17511 + 4.68416i 0.556323 + 0.284019i
\(273\) −0.393565 1.21127i −0.0238197 0.0733094i
\(274\) −10.5985 + 11.4608i −0.640281 + 0.692375i
\(275\) 20.1828 4.61053i 1.21707 0.278025i
\(276\) 29.5440 34.5637i 1.77834 2.08049i
\(277\) 4.43522 8.70461i 0.266486 0.523009i −0.718524 0.695502i \(-0.755182\pi\)
0.985011 + 0.172493i \(0.0551821\pi\)
\(278\) 7.01351 10.4919i 0.420642 0.629264i
\(279\) 0.813287 + 1.11939i 0.0486902 + 0.0670163i
\(280\) −17.0795 3.40794i −1.02070 0.203663i
\(281\) −30.4477 9.89307i −1.81636 0.590171i −0.999919 0.0127410i \(-0.995944\pi\)
−0.816440 0.577430i \(-0.804056\pi\)
\(282\) −5.43805 + 4.28525i −0.323831 + 0.255183i
\(283\) 3.30056 + 20.8389i 0.196198 + 1.23875i 0.867453 + 0.497519i \(0.165755\pi\)
−0.671255 + 0.741226i \(0.734245\pi\)
\(284\) 7.81500 + 18.8884i 0.463735 + 1.12082i
\(285\) −47.0531 + 47.0531i −2.78719 + 2.78719i
\(286\) 1.25957 + 0.0636677i 0.0744801 + 0.00376475i
\(287\) 14.8312 0.875458
\(288\) −19.8789 5.62781i −1.17138 0.331622i
\(289\) 8.38728 + 6.09371i 0.493369 + 0.358454i
\(290\) −12.9754 1.53837i −0.761944 0.0903359i
\(291\) −12.1356 23.8175i −0.711403 1.39621i
\(292\) 3.05813 12.7157i 0.178963 0.744131i
\(293\) 25.5204 + 4.04204i 1.49092 + 0.236139i 0.848083 0.529864i \(-0.177757\pi\)
0.642837 + 0.766003i \(0.277757\pi\)
\(294\) −10.9997 7.35291i −0.641513 0.428830i
\(295\) −10.2453 + 3.32890i −0.596505 + 0.193816i
\(296\) −10.7704 + 1.26823i −0.626015 + 0.0737145i
\(297\) −5.41056 1.36228i −0.313952 0.0790474i
\(298\) 0.565240 + 14.4597i 0.0327435 + 0.837630i
\(299\) −1.07602 + 2.11182i −0.0622281 + 0.122129i
\(300\) 31.3126 7.50430i 1.80783 0.433261i
\(301\) 1.39421 8.80269i 0.0803609 0.507379i
\(302\) 2.27391 + 4.06225i 0.130849 + 0.233756i
\(303\) 0.979034 3.01316i 0.0562440 0.173101i
\(304\) −0.0245190 + 30.7790i −0.00140626 + 1.76530i
\(305\) 19.6061 + 14.2446i 1.12264 + 0.815645i
\(306\) 12.0791 + 5.57148i 0.690518 + 0.318500i
\(307\) −14.1017 + 14.1017i −0.804829 + 0.804829i −0.983846 0.179017i \(-0.942708\pi\)
0.179017 + 0.983846i \(0.442708\pi\)
\(308\) −9.93649 + 7.04713i −0.566184 + 0.401547i
\(309\) −19.0065 19.0065i −1.08124 1.08124i
\(310\) −1.68550 + 0.621431i −0.0957298 + 0.0352949i
\(311\) 0.0384605 0.0529363i 0.00218089 0.00300174i −0.807925 0.589285i \(-0.799409\pi\)
0.810106 + 0.586283i \(0.199409\pi\)
\(312\) 1.95997 + 0.0781803i 0.110962 + 0.00442609i
\(313\) 9.86642 + 3.20580i 0.557683 + 0.181202i 0.574278 0.818660i \(-0.305283\pi\)
−0.0165952 + 0.999862i \(0.505283\pi\)
\(314\) 5.49587 19.4721i 0.310150 1.09887i
\(315\) −22.2120 3.51804i −1.25151 0.198219i
\(316\) −1.53413 + 2.50123i −0.0863015 + 0.140705i
\(317\) −30.1703 15.3725i −1.69453 0.863407i −0.987763 0.155961i \(-0.950153\pi\)
−0.706768 0.707446i \(-0.749847\pi\)
\(318\) −16.7343 15.4752i −0.938415 0.867808i
\(319\) −7.01461 + 5.85842i −0.392743 + 0.328009i
\(320\) 14.0425 22.8540i 0.785000 1.27758i
\(321\) −6.67953 20.5575i −0.372815 1.14741i
\(322\) −4.46179 22.4543i −0.248646 1.25133i
\(323\) 3.10009 19.5732i 0.172494 1.08908i
\(324\) 12.8688 + 3.09494i 0.714932 + 0.171941i
\(325\) −1.49547 + 0.761982i −0.0829540 + 0.0422672i
\(326\) 5.33306 4.20252i 0.295371 0.232756i
\(327\) −22.0127 + 30.2979i −1.21731 + 1.67548i
\(328\) −7.91886 + 21.4256i −0.437246 + 1.18303i
\(329\) 3.48590i 0.192184i
\(330\) 20.2158 35.1653i 1.11284 1.93579i
\(331\) −2.45221 2.45221i −0.134786 0.134786i 0.636495 0.771281i \(-0.280384\pi\)
−0.771281 + 0.636495i \(0.780384\pi\)
\(332\) 0.975805 2.35315i 0.0535542 0.129146i
\(333\) −13.8310 + 2.19062i −0.757937 + 0.120045i
\(334\) −2.04828 + 17.2763i −0.112077 + 0.945318i
\(335\) −13.1063 + 40.3370i −0.716074 + 2.20385i
\(336\) −15.3369 + 11.1242i −0.836696 + 0.606877i
\(337\) 22.9929 16.7053i 1.25250 0.909997i 0.254139 0.967168i \(-0.418208\pi\)
0.998364 + 0.0571709i \(0.0182080\pi\)
\(338\) 17.9319 3.56317i 0.975369 0.193811i
\(339\) 25.6785 + 13.0839i 1.39467 + 0.710617i
\(340\) −11.2214 + 13.1280i −0.608567 + 0.711966i
\(341\) −0.493622 + 1.15548i −0.0267311 + 0.0625726i
\(342\) 1.55243 + 39.7135i 0.0839456 + 2.14746i
\(343\) −18.5616 + 6.03104i −1.00223 + 0.325646i
\(344\) 11.9722 + 6.71415i 0.645498 + 0.362003i
\(345\) 44.8060 + 61.6701i 2.41227 + 3.32021i
\(346\) 4.97969 17.6432i 0.267710 0.948504i
\(347\) −24.6523 + 12.5610i −1.32341 + 0.674309i −0.965733 0.259538i \(-0.916430\pi\)
−0.357673 + 0.933847i \(0.616430\pi\)
\(348\) −10.8124 + 9.22720i −0.579605 + 0.494630i
\(349\) −5.70841 + 0.904123i −0.305564 + 0.0483966i −0.307334 0.951602i \(-0.599437\pi\)
0.00176944 + 0.999998i \(0.499437\pi\)
\(350\) 6.79016 14.7213i 0.362949 0.786886i
\(351\) 0.452334 0.0241438
\(352\) −4.87507 18.1172i −0.259842 0.965651i
\(353\) −4.28008 −0.227805 −0.113903 0.993492i \(-0.536335\pi\)
−0.113903 + 0.993492i \(0.536335\pi\)
\(354\) −4.90843 + 10.6416i −0.260880 + 0.565596i
\(355\) −33.8471 + 5.36085i −1.79642 + 0.284525i
\(356\) −9.00819 + 7.68752i −0.477433 + 0.407438i
\(357\) 10.8692 5.53812i 0.575257 0.293108i
\(358\) −4.75444 + 16.8451i −0.251280 + 0.890293i
\(359\) 6.05478 + 8.33369i 0.319559 + 0.439835i 0.938332 0.345734i \(-0.112370\pi\)
−0.618774 + 0.785569i \(0.712370\pi\)
\(360\) 16.9420 30.2097i 0.892920 1.59219i
\(361\) 38.2414 12.4254i 2.01270 0.653967i
\(362\) −0.816232 20.8805i −0.0429002 1.09745i
\(363\) −8.16957 27.1695i −0.428791 1.42603i
\(364\) 0.641693 0.750720i 0.0336339 0.0393484i
\(365\) 19.5355 + 9.95386i 1.02254 + 0.521009i
\(366\) 25.8582 5.13817i 1.35163 0.268576i
\(367\) −3.87317 + 2.81402i −0.202178 + 0.146891i −0.684268 0.729231i \(-0.739878\pi\)
0.482090 + 0.876122i \(0.339878\pi\)
\(368\) 34.8204 + 5.54345i 1.81514 + 0.288972i
\(369\) −9.11452 + 28.0516i −0.474483 + 1.46031i
\(370\) 2.14053 18.0544i 0.111281 0.938605i
\(371\) −11.3346 + 1.79523i −0.588464 + 0.0932035i
\(372\) −0.748577 + 1.80519i −0.0388119 + 0.0935948i
\(373\) 13.4297 + 13.4297i 0.695366 + 0.695366i 0.963407 0.268041i \(-0.0863764\pi\)
−0.268041 + 0.963407i \(0.586376\pi\)
\(374\) 1.28497 + 12.0112i 0.0664443 + 0.621086i
\(375\) 10.7416i 0.554696i
\(376\) −5.03583 1.86124i −0.259703 0.0959859i
\(377\) 0.435511 0.599429i 0.0224299 0.0308722i
\(378\) −3.43167 + 2.70420i −0.176506 + 0.139089i
\(379\) −7.52997 + 3.83671i −0.386789 + 0.197079i −0.636562 0.771226i \(-0.719644\pi\)
0.249773 + 0.968304i \(0.419644\pi\)
\(380\) −50.1694 12.0658i −2.57364 0.618960i
\(381\) 6.49316 40.9962i 0.332655 2.10030i
\(382\) 4.31954 + 21.7384i 0.221007 + 1.11223i
\(383\) −7.44327 22.9080i −0.380334 1.17055i −0.939809 0.341700i \(-0.888997\pi\)
0.559476 0.828847i \(-0.311003\pi\)
\(384\) −7.88154 28.0957i −0.402203 1.43375i
\(385\) −7.60660 18.9528i −0.387668 0.965926i
\(386\) −5.46226 5.05128i −0.278022 0.257103i
\(387\) 15.7925 + 8.04669i 0.802779 + 0.409036i
\(388\) 10.8375 17.6694i 0.550190 0.897027i
\(389\) −15.0587 2.38506i −0.763506 0.120927i −0.237476 0.971393i \(-0.576320\pi\)
−0.526030 + 0.850466i \(0.676320\pi\)
\(390\) −0.893244 + 3.16479i −0.0452312 + 0.160256i
\(391\) −21.5905 7.01517i −1.09188 0.354773i
\(392\) 0.408921 10.2516i 0.0206536 0.517784i
\(393\) −1.34249 + 1.84778i −0.0677196 + 0.0932081i
\(394\) −8.50724 + 3.13656i −0.428588 + 0.158018i
\(395\) −3.47835 3.47835i −0.175015 0.175015i
\(396\) −7.22240 23.1246i −0.362939 1.16206i
\(397\) 13.7124 13.7124i 0.688206 0.688206i −0.273630 0.961835i \(-0.588224\pi\)
0.961835 + 0.273630i \(0.0882242\pi\)
\(398\) −23.6888 10.9264i −1.18741 0.547691i
\(399\) 29.4864 + 21.4231i 1.47616 + 1.07250i
\(400\) 17.6413 + 17.6694i 0.882065 + 0.883472i
\(401\) −2.92003 + 8.98692i −0.145819 + 0.448785i −0.997115 0.0759000i \(-0.975817\pi\)
0.851296 + 0.524685i \(0.175817\pi\)
\(402\) 22.5367 + 40.2610i 1.12403 + 2.00804i
\(403\) 0.0159354 0.100612i 0.000793801 0.00501186i
\(404\) 2.38910 0.572566i 0.118862 0.0284862i
\(405\) −10.0737 + 19.7707i −0.500565 + 0.982414i
\(406\) 0.279547 + 7.15125i 0.0138737 + 0.354911i
\(407\) −8.15158 9.76034i −0.404059 0.483802i
\(408\) 2.19712 + 18.6589i 0.108774 + 0.923753i
\(409\) −11.0789 + 3.59976i −0.547817 + 0.177997i −0.569832 0.821761i \(-0.692992\pi\)
0.0220151 + 0.999758i \(0.492992\pi\)
\(410\) −31.8361 21.2814i −1.57227 1.05101i
\(411\) −28.1189 4.45360i −1.38700 0.219680i
\(412\) 4.87381 20.2653i 0.240115 0.998400i
\(413\) 2.67871 + 5.25726i 0.131811 + 0.258693i
\(414\) 45.2119 + 5.36031i 2.22204 + 0.263445i
\(415\) 3.45508 + 2.51026i 0.169603 + 0.123224i
\(416\) 0.741891 + 1.32784i 0.0363742 + 0.0651028i
\(417\) 23.0163 1.12711
\(418\) −30.2325 + 19.7131i −1.47872 + 0.964197i
\(419\) −6.25507 + 6.25507i −0.305580 + 0.305580i −0.843192 0.537612i \(-0.819326\pi\)
0.537612 + 0.843192i \(0.319326\pi\)
\(420\) −12.1435 29.3501i −0.592543 1.43214i
\(421\) 0.478812 + 3.02310i 0.0233359 + 0.147337i 0.996605 0.0823303i \(-0.0262362\pi\)
−0.973269 + 0.229667i \(0.926236\pi\)
\(422\) −2.35901 + 1.85893i −0.114835 + 0.0904913i
\(423\) −6.59321 2.14226i −0.320573 0.104160i
\(424\) 3.45848 17.3328i 0.167959 0.841757i
\(425\) −9.44926 13.0058i −0.458356 0.630873i
\(426\) −20.7179 + 30.9931i −1.00378 + 1.50162i
\(427\) 6.02615 11.8270i 0.291626 0.572347i
\(428\) 10.8907 12.7411i 0.526422 0.615864i
\(429\) 1.18008 + 1.97430i 0.0569750 + 0.0953200i
\(430\) −15.6238 + 16.8950i −0.753445 + 0.814747i
\(431\) −1.75534 5.40237i −0.0845516 0.260223i 0.899839 0.436223i \(-0.143684\pi\)
−0.984390 + 0.176000i \(0.943684\pi\)
\(432\) −2.07429 6.40135i −0.0997992 0.307985i
\(433\) −0.469489 + 0.341104i −0.0225622 + 0.0163924i −0.599009 0.800742i \(-0.704439\pi\)
0.576447 + 0.817135i \(0.304439\pi\)
\(434\) 0.480599 + 0.858572i 0.0230695 + 0.0412128i
\(435\) −10.8185 21.2326i −0.518710 1.01803i
\(436\) −28.9499 2.29001i −1.38645 0.109672i
\(437\) −10.6105 66.9922i −0.507570 3.20467i
\(438\) 22.3791 8.25103i 1.06932 0.394249i
\(439\) 6.19652i 0.295744i 0.989007 + 0.147872i \(0.0472423\pi\)
−0.989007 + 0.147872i \(0.952758\pi\)
\(440\) 31.4412 0.869176i 1.49890 0.0414363i
\(441\) 13.2480i 0.630858i
\(442\) −0.338779 0.918864i −0.0161141 0.0437059i
\(443\) −5.39726 34.0770i −0.256432 1.61905i −0.694079 0.719899i \(-0.744188\pi\)
0.437648 0.899147i \(-0.355812\pi\)
\(444\) −12.8390 15.0447i −0.609312 0.713989i
\(445\) −9.01333 17.6896i −0.427273 0.838570i
\(446\) −9.94739 + 5.56821i −0.471023 + 0.263662i
\(447\) −21.3510 + 15.5124i −1.00987 + 0.733712i
\(448\) −13.5667 5.63852i −0.640967 0.266395i
\(449\) 0.177404 + 0.545993i 0.00837220 + 0.0257670i 0.955155 0.296105i \(-0.0956879\pi\)
−0.946783 + 0.321872i \(0.895688\pi\)
\(450\) 23.6708 + 21.8898i 1.11585 + 1.03190i
\(451\) −26.1121 + 5.96501i −1.22957 + 0.280881i
\(452\) 1.74451 + 22.2796i 0.0820551 + 1.04794i
\(453\) −3.85452 + 7.56493i −0.181101 + 0.355431i
\(454\) −21.1446 14.1345i −0.992366 0.663364i
\(455\) 0.973180 + 1.33947i 0.0456234 + 0.0627952i
\(456\) −46.6921 + 31.1584i −2.18656 + 1.45912i
\(457\) −7.79927 2.53414i −0.364835 0.118542i 0.120862 0.992669i \(-0.461434\pi\)
−0.485697 + 0.874127i \(0.661434\pi\)
\(458\) 0.0787792 + 0.0999719i 0.00368111 + 0.00467138i
\(459\) 0.677754 + 4.27917i 0.0316349 + 0.199735i
\(460\) −22.6423 + 54.6018i −1.05570 + 2.54582i
\(461\) −10.3464 + 10.3464i −0.481881 + 0.481881i −0.905732 0.423851i \(-0.860678\pi\)
0.423851 + 0.905732i \(0.360678\pi\)
\(462\) −20.7558 7.92325i −0.965649 0.368623i
\(463\) 11.4253 0.530977 0.265489 0.964114i \(-0.414467\pi\)
0.265489 + 0.964114i \(0.414467\pi\)
\(464\) −10.4802 3.41444i −0.486529 0.158512i
\(465\) −2.65052 1.92572i −0.122915 0.0893030i
\(466\) 4.35508 36.7332i 0.201745 1.70163i
\(467\) 17.6380 + 34.6166i 0.816190 + 1.60186i 0.798481 + 0.602020i \(0.205637\pi\)
0.0177090 + 0.999843i \(0.494363\pi\)
\(468\) 1.02555 + 1.67505i 0.0474062 + 0.0774291i
\(469\) 22.9445 + 3.63405i 1.05948 + 0.167805i
\(470\) 5.00194 7.48270i 0.230722 0.345151i
\(471\) 35.0938 11.4027i 1.61704 0.525408i
\(472\) −9.02504 + 1.06272i −0.415411 + 0.0489155i
\(473\) 1.08571 + 16.0589i 0.0499208 + 0.738391i
\(474\) −5.34727 + 0.209028i −0.245608 + 0.00960099i
\(475\) 21.8059 42.7965i 1.00052 1.96364i
\(476\) 8.06346 + 4.94571i 0.369588 + 0.226686i
\(477\) 3.57022 22.5415i 0.163469 1.03210i
\(478\) 25.3365 14.1825i 1.15886 0.648691i
\(479\) 2.26638 6.97519i 0.103553 0.318705i −0.885835 0.464001i \(-0.846413\pi\)
0.989388 + 0.145296i \(0.0464135\pi\)
\(480\) 48.8838 1.87190i 2.23123 0.0854401i
\(481\) 0.834064 + 0.605983i 0.0380300 + 0.0276304i
\(482\) −6.31404 + 13.6890i −0.287597 + 0.623519i
\(483\) 29.5231 29.5231i 1.34335 1.34335i
\(484\) 14.6601 16.4037i 0.666368 0.745623i
\(485\) 24.5720 + 24.5720i 1.11576 + 1.11576i
\(486\) 10.8193 + 29.3451i 0.490775 + 1.33112i
\(487\) 15.6467 21.5359i 0.709020 0.975883i −0.290797 0.956785i \(-0.593921\pi\)
0.999818 0.0190981i \(-0.00607947\pi\)
\(488\) 13.8680 + 15.0203i 0.627776 + 0.679939i
\(489\) 11.7771 + 3.82661i 0.532579 + 0.173045i
\(490\) 16.5534 + 4.67210i 0.747806 + 0.211064i
\(491\) 4.12033 + 0.652597i 0.185948 + 0.0294513i 0.248714 0.968577i \(-0.419992\pi\)
−0.0627658 + 0.998028i \(0.519992\pi\)
\(492\) −40.5116 + 9.70890i −1.82640 + 0.437711i
\(493\) 6.32328 + 3.22187i 0.284786 + 0.145106i
\(494\) 1.98661 2.14824i 0.0893817 0.0966540i
\(495\) 40.5219 2.73958i 1.82132 0.123135i
\(496\) −1.49693 + 0.235867i −0.0672139 + 0.0105908i
\(497\) 5.80022 + 17.8512i 0.260175 + 0.800737i
\(498\) 4.55686 0.905473i 0.204198 0.0405752i
\(499\) −1.84552 + 11.6522i −0.0826170 + 0.521623i 0.911322 + 0.411693i \(0.135063\pi\)
−0.993939 + 0.109930i \(0.964937\pi\)
\(500\) −7.10377 + 4.34930i −0.317690 + 0.194507i
\(501\) −28.2704 + 14.4045i −1.26303 + 0.643545i
\(502\) 3.82816 + 4.85799i 0.170859 + 0.216823i
\(503\) −12.9229 + 17.7868i −0.576204 + 0.793076i −0.993273 0.115798i \(-0.963057\pi\)
0.417069 + 0.908875i \(0.363057\pi\)
\(504\) −17.7945 6.57680i −0.792628 0.292954i
\(505\) 4.11865i 0.183278i
\(506\) 16.8865 + 37.7390i 0.750696 + 1.67770i
\(507\) 23.5771 + 23.5771i 1.04710 + 1.04710i
\(508\) 29.7411 12.3053i 1.31955 0.545959i
\(509\) 32.3933 5.13060i 1.43581 0.227410i 0.610467 0.792042i \(-0.290982\pi\)
0.825343 + 0.564632i \(0.190982\pi\)
\(510\) −31.2780 3.70831i −1.38501 0.164207i
\(511\) 3.71097 11.4212i 0.164164 0.505244i
\(512\) 15.3893 16.5883i 0.680116 0.733105i
\(513\) −10.4724 + 7.60863i −0.462367 + 0.335929i
\(514\) 1.21847 + 6.13206i 0.0537446 + 0.270474i
\(515\) 31.1342 + 15.8637i 1.37194 + 0.699037i
\(516\) 1.95418 + 24.9573i 0.0860280 + 1.09868i
\(517\) −1.40201 6.13735i −0.0616601 0.269921i
\(518\) −9.95046 + 0.388970i −0.437198 + 0.0170904i
\(519\) 31.7978 10.3317i 1.39577 0.453512i
\(520\) −2.45465 + 0.690699i −0.107643 + 0.0302891i
\(521\) 6.37188 + 8.77014i 0.279157 + 0.384227i 0.925454 0.378859i \(-0.123683\pi\)
−0.646297 + 0.763086i \(0.723683\pi\)
\(522\) −13.6976 3.86607i −0.599528 0.169213i
\(523\) −22.4156 + 11.4213i −0.980164 + 0.499419i −0.869229 0.494409i \(-0.835385\pi\)
−0.110935 + 0.993828i \(0.535385\pi\)
\(524\) −1.76556 0.139661i −0.0771291 0.00610110i
\(525\) 29.2025 4.62523i 1.27450 0.201861i
\(526\) 24.6238 + 11.3577i 1.07365 + 0.495218i
\(527\) 0.975692 0.0425018
\(528\) 22.5284 25.7540i 0.980421 1.12080i
\(529\) −54.6995 −2.37824
\(530\) 26.9064 + 12.4105i 1.16874 + 0.539079i
\(531\) −11.5897 + 1.83564i −0.502952 + 0.0796598i
\(532\) −2.22867 + 28.1744i −0.0966250 + 1.22152i
\(533\) 1.93481 0.985836i 0.0838060 0.0427013i
\(534\) −20.7859 5.86671i −0.899495 0.253877i
\(535\) 16.5167 + 22.7332i 0.714077 + 0.982843i
\(536\) −17.5006 + 31.2059i −0.755912 + 1.34789i
\(537\) −30.3594 + 9.86438i −1.31011 + 0.425679i
\(538\) −23.1625 + 0.905438i −0.998608 + 0.0390362i
\(539\) 10.3265 6.17241i 0.444795 0.265864i
\(540\) 11.2466 0.880616i 0.483975 0.0378957i
\(541\) −23.3128 11.8785i −1.00230 0.510696i −0.125776 0.992059i \(-0.540142\pi\)
−0.876522 + 0.481362i \(0.840142\pi\)
\(542\) −0.126815 0.638205i −0.00544716 0.0274132i
\(543\) 30.8318 22.4006i 1.32312 0.961302i
\(544\) −11.4501 + 9.00802i −0.490917 + 0.386216i
\(545\) 15.0445 46.3022i 0.644436 1.98337i
\(546\) 1.78862 + 0.212059i 0.0765459 + 0.00907527i
\(547\) 14.6467 2.31981i 0.626247 0.0991878i 0.164759 0.986334i \(-0.447315\pi\)
0.461489 + 0.887146i \(0.347315\pi\)
\(548\) −8.44008 20.3991i −0.360542 0.871408i
\(549\) 18.6661 + 18.6661i 0.796649 + 0.796649i
\(550\) −6.03411 + 28.6496i −0.257295 + 1.22162i
\(551\) 21.2036i 0.903303i
\(552\) 26.8866 + 58.4133i 1.14437 + 2.48624i
\(553\) −1.58368 + 2.17975i −0.0673450 + 0.0926924i
\(554\) 8.55126 + 10.8517i 0.363308 + 0.461043i
\(555\) 29.5437 15.0533i 1.25406 0.638975i
\(556\) 9.31932 + 15.2214i 0.395227 + 0.645530i
\(557\) 0.335302 2.11701i 0.0142072 0.0897006i −0.979566 0.201123i \(-0.935541\pi\)
0.993773 + 0.111423i \(0.0355408\pi\)
\(558\) −1.91925 + 0.381365i −0.0812483 + 0.0161445i
\(559\) −0.403236 1.24103i −0.0170551 0.0524901i
\(560\) 14.4932 19.9147i 0.612448 0.841551i
\(561\) −16.9091 + 14.1220i −0.713903 + 0.596233i
\(562\) 30.7397 33.2407i 1.29668 1.40218i
\(563\) 2.42768 + 1.23696i 0.102314 + 0.0521318i 0.504399 0.863471i \(-0.331714\pi\)
−0.402084 + 0.915603i \(0.631714\pi\)
\(564\) −2.28196 9.52177i −0.0960880 0.400939i
\(565\) −37.0040 5.86086i −1.55677 0.246568i
\(566\) −28.7162 8.10497i −1.20703 0.340677i
\(567\) 11.5587 + 3.75564i 0.485419 + 0.157722i
\(568\) −28.8853 1.15219i −1.21200 0.0483449i
\(569\) 19.3553 26.6403i 0.811417 1.11682i −0.179686 0.983724i \(-0.557508\pi\)
0.991103 0.133096i \(-0.0424918\pi\)
\(570\) −32.5542 88.2961i −1.36354 3.69832i
\(571\) 32.6222 + 32.6222i 1.36520 + 1.36520i 0.867151 + 0.498045i \(0.165948\pi\)
0.498045 + 0.867151i \(0.334052\pi\)
\(572\) −0.827844 + 1.57982i −0.0346139 + 0.0660556i
\(573\) −28.5819 + 28.5819i −1.19402 + 1.19402i
\(574\) −8.78497 + 19.0461i −0.366677 + 0.794969i
\(575\) −44.5142 32.3415i −1.85637 1.34873i
\(576\) 19.0021 22.1948i 0.791753 0.924783i
\(577\) 3.20173 9.85392i 0.133290 0.410224i −0.862030 0.506857i \(-0.830807\pi\)
0.995320 + 0.0966328i \(0.0308073\pi\)
\(578\) −12.7935 + 7.16137i −0.532140 + 0.297874i
\(579\) 2.12259 13.4015i 0.0882119 0.556948i
\(580\) 9.66130 15.7517i 0.401164 0.654055i
\(581\) 1.06196 2.08421i 0.0440574 0.0864675i
\(582\) 37.7745 1.47663i 1.56580 0.0612083i
\(583\) 19.2339 7.71942i 0.796589 0.319706i
\(584\) 14.5180 + 11.4591i 0.600758 + 0.474182i
\(585\) −3.13153 + 1.01749i −0.129473 + 0.0420682i
\(586\) −20.3073 + 30.3789i −0.838886 + 1.25494i
\(587\) −27.7663 4.39775i −1.14604 0.181514i −0.445602 0.895231i \(-0.647010\pi\)
−0.700434 + 0.713717i \(0.747010\pi\)
\(588\) 15.9580 9.77031i 0.658095 0.402921i
\(589\) 1.32345 + 2.59742i 0.0545318 + 0.107025i
\(590\) 1.79366 15.1287i 0.0738437 0.622840i
\(591\) −13.3780 9.71970i −0.550298 0.399815i
\(592\) 4.75096 14.5824i 0.195263 0.599333i
\(593\) −7.98238 −0.327797 −0.163898 0.986477i \(-0.552407\pi\)
−0.163898 + 0.986477i \(0.552407\pi\)
\(594\) 4.95426 6.14127i 0.203276 0.251979i
\(595\) −11.2135 + 11.2135i −0.459708 + 0.459708i
\(596\) −18.9039 7.83906i −0.774332 0.321100i
\(597\) −7.44269 46.9913i −0.304609 1.92322i
\(598\) −2.07461 2.63271i −0.0848372 0.107660i
\(599\) −35.0547 11.3900i −1.43229 0.465381i −0.512808 0.858503i \(-0.671395\pi\)
−0.919486 + 0.393122i \(0.871395\pi\)
\(600\) −8.91044 + 44.6564i −0.363767 + 1.82309i
\(601\) −7.15577 9.84907i −0.291890 0.401752i 0.637737 0.770254i \(-0.279871\pi\)
−0.929627 + 0.368502i \(0.879871\pi\)
\(602\) 10.4785 + 7.00453i 0.427072 + 0.285483i
\(603\) −20.9739 + 41.1637i −0.854125 + 1.67631i
\(604\) −6.56361 + 0.513937i −0.267069 + 0.0209118i
\(605\) 21.0151 + 30.3095i 0.854383 + 1.23226i
\(606\) 3.28956 + 3.04205i 0.133629 + 0.123575i
\(607\) −1.82308 5.61087i −0.0739966 0.227738i 0.907217 0.420663i \(-0.138203\pi\)
−0.981214 + 0.192925i \(0.938203\pi\)
\(608\) −39.5116 18.2628i −1.60241 0.740656i
\(609\) −10.5594 + 7.67187i −0.427890 + 0.310880i
\(610\) −29.9061 + 16.7404i −1.21086 + 0.677798i
\(611\) 0.231709 + 0.454755i 0.00937396 + 0.0183974i
\(612\) −14.3097 + 12.2118i −0.578434 + 0.493631i
\(613\) 5.13248 + 32.4052i 0.207299 + 1.30883i 0.843425 + 0.537248i \(0.180536\pi\)
−0.636126 + 0.771585i \(0.719464\pi\)
\(614\) −9.75644 26.4622i −0.393738 1.06793i
\(615\) 69.8393i 2.81619i
\(616\) −3.16417 16.9346i −0.127488 0.682313i
\(617\) 25.0549i 1.00867i 0.863507 + 0.504337i \(0.168263\pi\)
−0.863507 + 0.504337i \(0.831737\pi\)
\(618\) 35.6661 13.1498i 1.43470 0.528964i
\(619\) 3.14934 + 19.8841i 0.126583 + 0.799211i 0.966532 + 0.256546i \(0.0825845\pi\)
−0.839950 + 0.542665i \(0.817415\pi\)
\(620\) 0.200334 2.53259i 0.00804562 0.101711i
\(621\) 6.73207 + 13.2124i 0.270149 + 0.530197i
\(622\) 0.0451990 + 0.0807463i 0.00181231 + 0.00323763i
\(623\) −8.79744 + 6.39171i −0.352462 + 0.256079i
\(624\) −1.26135 + 2.47067i −0.0504944 + 0.0989059i
\(625\) 5.32948 + 16.4024i 0.213179 + 0.656098i
\(626\) −9.96103 + 10.7715i −0.398123 + 0.430515i
\(627\) −60.5306 25.8588i −2.41736 1.03270i
\(628\) 21.7505 + 18.5916i 0.867938 + 0.741887i
\(629\) −4.48301 + 8.79839i −0.178749 + 0.350815i
\(630\) 17.6747 26.4406i 0.704176 1.05342i
\(631\) −3.13716 4.31794i −0.124889 0.171894i 0.741994 0.670406i \(-0.233880\pi\)
−0.866883 + 0.498512i \(0.833880\pi\)
\(632\) −2.30335 3.45167i −0.0916224 0.137300i
\(633\) −5.20944 1.69265i −0.207057 0.0672768i
\(634\) 37.6120 29.6388i 1.49376 1.17711i
\(635\) 8.44105 + 53.2947i 0.334973 + 2.11493i
\(636\) 29.7854 12.3236i 1.18107 0.488663i
\(637\) −0.689672 + 0.689672i −0.0273258 + 0.0273258i
\(638\) −3.36836 12.4782i −0.133355 0.494017i
\(639\) −37.3282 −1.47668
\(640\) 21.0310 + 31.5703i 0.831324 + 1.24793i
\(641\) −11.4700 8.33345i −0.453038 0.329152i 0.337756 0.941234i \(-0.390332\pi\)
−0.790794 + 0.612082i \(0.790332\pi\)
\(642\) 30.3562 + 3.59902i 1.19806 + 0.142042i
\(643\) −5.99315 11.7622i −0.236347 0.463857i 0.742118 0.670269i \(-0.233821\pi\)
−0.978465 + 0.206412i \(0.933821\pi\)
\(644\) 31.4785 + 7.57057i 1.24042 + 0.298322i
\(645\) −41.4514 6.56525i −1.63215 0.258507i
\(646\) 23.2995 + 15.5749i 0.916705 + 0.612787i
\(647\) 32.4623 10.5476i 1.27622 0.414670i 0.408975 0.912546i \(-0.365886\pi\)
0.867249 + 0.497875i \(0.165886\pi\)
\(648\) −11.5971 + 14.6927i −0.455575 + 0.577185i
\(649\) −6.83063 8.17869i −0.268126 0.321042i
\(650\) −0.0927159 2.37182i −0.00363662 0.0930304i
\(651\) −0.814668 + 1.59888i −0.0319294 + 0.0626649i
\(652\) 2.23791 + 9.33794i 0.0876432 + 0.365702i
\(653\) −3.66897 + 23.1650i −0.143578 + 0.906516i 0.805756 + 0.592248i \(0.201759\pi\)
−0.949334 + 0.314269i \(0.898241\pi\)
\(654\) −25.8695 46.2149i −1.01158 1.80715i
\(655\) 0.917518 2.82383i 0.0358504 0.110336i
\(656\) −22.8239 22.8603i −0.891125 0.892546i
\(657\) 19.3214 + 14.0378i 0.753798 + 0.547667i
\(658\) −4.47656 2.06480i −0.174515 0.0804945i
\(659\) 14.6296 14.6296i 0.569888 0.569888i −0.362209 0.932097i \(-0.617977\pi\)
0.932097 + 0.362209i \(0.117977\pi\)
\(660\) 33.1845 + 46.7904i 1.29171 + 1.82131i
\(661\) 22.2770 + 22.2770i 0.866473 + 0.866473i 0.992080 0.125607i \(-0.0400878\pi\)
−0.125607 + 0.992080i \(0.540088\pi\)
\(662\) 4.60162 1.69659i 0.178847 0.0659398i
\(663\) 1.04982 1.44496i 0.0407717 0.0561175i
\(664\) 2.44389 + 2.64696i 0.0948415 + 0.102722i
\(665\) −45.0620 14.6415i −1.74743 0.567774i
\(666\) 5.37937 19.0593i 0.208446 0.738532i
\(667\) 23.9907 + 3.79976i 0.928924 + 0.147127i
\(668\) −20.9728 12.8637i −0.811463 0.497710i
\(669\) −18.5245 9.43872i −0.716200 0.364922i
\(670\) −44.0372 40.7238i −1.70130 1.57330i
\(671\) −5.85304 + 23.2465i −0.225954 + 0.897421i
\(672\) −5.20115 26.2847i −0.200639 1.01395i
\(673\) −3.29641 10.1453i −0.127067 0.391073i 0.867205 0.497952i \(-0.165914\pi\)
−0.994272 + 0.106879i \(0.965914\pi\)
\(674\) 7.83343 + 39.4223i 0.301732 + 1.51849i
\(675\) −1.64270 + 10.3716i −0.0632274 + 0.399202i
\(676\) −6.04584 + 25.1386i −0.232532 + 0.966870i
\(677\) 14.4670 7.37128i 0.556010 0.283301i −0.153321 0.988176i \(-0.548997\pi\)
0.709331 + 0.704875i \(0.248997\pi\)
\(678\) −32.0123 + 25.2261i −1.22943 + 0.968804i
\(679\) 11.1875 15.3983i 0.429338 0.590934i
\(680\) −10.2121 22.1866i −0.391615 0.850816i
\(681\) 46.3853i 1.77749i
\(682\) −1.19146 1.31833i −0.0456236 0.0504814i
\(683\) 0.877528 + 0.877528i 0.0335777 + 0.0335777i 0.723696 0.690119i \(-0.242442\pi\)
−0.690119 + 0.723696i \(0.742442\pi\)
\(684\) −51.9192 21.5299i −1.98518 0.823216i
\(685\) 36.5543 5.78964i 1.39667 0.221211i
\(686\) 3.24961 27.4091i 0.124071 1.04648i
\(687\) −0.0717325 + 0.220770i −0.00273677 + 0.00842290i
\(688\) −15.7137 + 11.3976i −0.599081 + 0.434529i
\(689\) −1.35933 + 0.987614i −0.0517865 + 0.0376251i
\(690\) −105.736 + 21.0103i −4.02530 + 0.799849i
\(691\) −7.81669 3.98280i −0.297361 0.151513i 0.298945 0.954270i \(-0.403365\pi\)
−0.596306 + 0.802757i \(0.703365\pi\)
\(692\) 19.7076 + 16.8455i 0.749171 + 0.640369i
\(693\) −4.95408 21.6868i −0.188190 0.823812i
\(694\) −1.52839 39.0985i −0.0580167 1.48416i
\(695\) −28.4565 + 9.24609i −1.07942 + 0.350724i
\(696\) −5.44499 19.3507i −0.206392 0.733487i
\(697\) 12.2252 + 16.8266i 0.463064 + 0.637353i
\(698\) 2.22020 7.86623i 0.0840357 0.297741i
\(699\) 60.1090 30.6271i 2.27353 1.15842i
\(700\) 14.8829 + 17.4397i 0.562522 + 0.659160i
\(701\) 4.66214 0.738410i 0.176086 0.0278894i −0.0677685 0.997701i \(-0.521588\pi\)
0.243855 + 0.969812i \(0.421588\pi\)
\(702\) −0.267931 + 0.580883i −0.0101124 + 0.0219240i
\(703\) −29.5033 −1.11274
\(704\) 26.1536 + 4.47086i 0.985701 + 0.168502i
\(705\) 16.4149 0.618222
\(706\) 2.53522 5.49643i 0.0954142 0.206861i
\(707\) 2.22810 0.352897i 0.0837965 0.0132721i
\(708\) −10.7585 12.6067i −0.404328 0.473789i
\(709\) 20.8955 10.6468i 0.784748 0.399849i −0.0152260 0.999884i \(-0.504847\pi\)
0.799974 + 0.600035i \(0.204847\pi\)
\(710\) 13.1643 46.6415i 0.494047 1.75042i
\(711\) −3.14951 4.33493i −0.118116 0.162573i
\(712\) −4.53641 16.1218i −0.170009 0.604189i
\(713\) 3.17600 1.03195i 0.118942 0.0386467i
\(714\) 0.673863 + 17.2385i 0.0252187 + 0.645134i
\(715\) −2.25213 1.96689i −0.0842248 0.0735575i
\(716\) −18.8162 16.0835i −0.703193 0.601068i
\(717\) 47.1828 + 24.0409i 1.76208 + 0.897822i
\(718\) −14.2885 + 2.83919i −0.533241 + 0.105958i
\(719\) 34.6287 25.1592i 1.29143 0.938280i 0.291599 0.956541i \(-0.405813\pi\)
0.999833 + 0.0182603i \(0.00581274\pi\)
\(720\) 28.7598 + 39.6508i 1.07181 + 1.47770i
\(721\) 5.91425 18.2022i 0.220258 0.677885i
\(722\) −6.69497 + 56.4691i −0.249161 + 2.10156i
\(723\) −27.1549 + 4.30091i −1.00990 + 0.159953i
\(724\) 27.2980 + 11.3199i 1.01452 + 0.420702i
\(725\) 12.1627 + 12.1627i 0.451713 + 0.451713i
\(726\) 39.7298 + 5.60200i 1.47451 + 0.207910i
\(727\) 33.4566i 1.24084i −0.784271 0.620418i \(-0.786963\pi\)
0.784271 0.620418i \(-0.213037\pi\)
\(728\) 0.583974 + 1.26873i 0.0216435 + 0.0470223i
\(729\) −21.8577 + 30.0846i −0.809546 + 1.11424i
\(730\) −24.3541 + 19.1914i −0.901387 + 0.710305i
\(731\) 11.1362 5.67420i 0.411889 0.209868i
\(732\) −8.71821 + 36.2504i −0.322234 + 1.33985i
\(733\) 0.0346885 0.219015i 0.00128125 0.00808949i −0.987039 0.160478i \(-0.948696\pi\)
0.988321 + 0.152388i \(0.0486965\pi\)
\(734\) −1.31955 6.64072i −0.0487054 0.245114i
\(735\) 9.69353 + 29.8336i 0.357551 + 1.10043i
\(736\) −27.7440 + 41.4325i −1.02266 + 1.52722i
\(737\) −41.8581 + 2.82992i −1.54186 + 0.104242i
\(738\) −30.6248 28.3206i −1.12731 1.04250i
\(739\) 21.4021 + 10.9049i 0.787289 + 0.401144i 0.800926 0.598763i \(-0.204341\pi\)
−0.0136369 + 0.999907i \(0.504341\pi\)
\(740\) 21.9174 + 13.4430i 0.805700 + 0.494175i
\(741\) 5.27066 + 0.834791i 0.193623 + 0.0306668i
\(742\) 4.40842 15.6192i 0.161838 0.573398i
\(743\) −5.87623 1.90930i −0.215578 0.0700455i 0.199237 0.979951i \(-0.436154\pi\)
−0.414815 + 0.909906i \(0.636154\pi\)
\(744\) −1.87480 2.03058i −0.0687337 0.0744449i
\(745\) 20.1660 27.7561i 0.738825 1.01691i
\(746\) −25.2012 + 9.29151i −0.922681 + 0.340186i
\(747\) 3.28943 + 3.28943i 0.120354 + 0.120354i
\(748\) −16.1858 5.46446i −0.591812 0.199800i
\(749\) 10.8830 10.8830i 0.397656 0.397656i
\(750\) −13.7943 6.36260i −0.503697 0.232329i
\(751\) 2.49090 + 1.80974i 0.0908942 + 0.0660385i 0.632304 0.774720i \(-0.282109\pi\)
−0.541410 + 0.840759i \(0.682109\pi\)
\(752\) 5.37306 5.36450i 0.195935 0.195623i
\(753\) −3.48574 + 10.7280i −0.127027 + 0.390950i
\(754\) 0.511815 + 0.914339i 0.0186392 + 0.0332982i
\(755\) 1.72662 10.9014i 0.0628381 0.396744i
\(756\) −1.44003 6.00870i −0.0523734 0.218534i
\(757\) 0.413901 0.812326i 0.0150435 0.0295245i −0.883362 0.468690i \(-0.844726\pi\)
0.898406 + 0.439166i \(0.144726\pi\)
\(758\) −0.466841 11.9425i −0.0169564 0.433772i
\(759\) −40.1051 + 63.8531i −1.45572 + 2.31772i
\(760\) 45.2116 57.2802i 1.64000 2.07777i
\(761\) 19.2077 6.24095i 0.696278 0.226234i 0.0605698 0.998164i \(-0.480708\pi\)
0.635708 + 0.771930i \(0.280708\pi\)
\(762\) 48.8009 + 32.6217i 1.76787 + 1.18176i
\(763\) −26.3376 4.17146i −0.953484 0.151017i
\(764\) −30.4748 7.32920i −1.10254 0.265161i
\(765\) −14.3178 28.1003i −0.517663 1.01597i
\(766\) 33.8272 + 4.01054i 1.22223 + 0.144907i
\(767\) 0.698905 + 0.507784i 0.0252360 + 0.0183350i