# Properties

 Label 176.2.w.a.5.8 Level $176$ Weight $2$ Character 176.5 Analytic conductor $1.405$ Analytic rank $0$ Dimension $176$ CM no Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [176,2,Mod(5,176)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(176, base_ring=CyclotomicField(20))

chi = DirichletCharacter(H, H._module([0, 5, 8]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("176.5");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$176 = 2^{4} \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 176.w (of order $$20$$, degree $$8$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.40536707557$$ Analytic rank: $$0$$ Dimension: $$176$$ Relative dimension: $$22$$ over $$\Q(\zeta_{20})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

## Embedding invariants

 Embedding label 5.8 Character $$\chi$$ $$=$$ 176.5 Dual form 176.2.w.a.141.8

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-0.592330 + 1.28419i) q^{2} +(-2.54744 + 0.403475i) q^{3} +(-1.29829 - 1.52133i) q^{4} +(2.98748 - 1.52220i) q^{5} +(0.990787 - 3.51039i) q^{6} +(-1.07945 - 1.48574i) q^{7} +(2.72269 - 0.766123i) q^{8} +(3.47349 - 1.12860i) q^{9} +O(q^{10})$$ $$q+(-0.592330 + 1.28419i) q^{2} +(-2.54744 + 0.403475i) q^{3} +(-1.29829 - 1.52133i) q^{4} +(2.98748 - 1.52220i) q^{5} +(0.990787 - 3.51039i) q^{6} +(-1.07945 - 1.48574i) q^{7} +(2.72269 - 0.766123i) q^{8} +(3.47349 - 1.12860i) q^{9} +(0.185217 + 4.73814i) q^{10} +(2.49806 + 2.18167i) q^{11} +(3.92113 + 3.35167i) q^{12} +(-0.239578 - 0.122071i) q^{13} +(2.54736 - 0.506174i) q^{14} +(-6.99626 + 5.08308i) q^{15} +(-0.628885 + 3.95025i) q^{16} +(0.795847 - 2.44936i) q^{17} +(-0.608108 + 5.12913i) q^{18} +(7.60003 - 1.20373i) q^{19} +(-6.19438 - 2.56869i) q^{20} +(3.34930 + 3.34930i) q^{21} +(-4.28136 + 1.91571i) q^{22} -8.81473i q^{23} +(-6.62678 + 3.05019i) q^{24} +(3.66902 - 5.04998i) q^{25} +(0.298672 - 0.235357i) q^{26} +(-1.49890 + 0.763730i) q^{27} +(-0.858854 + 3.57112i) q^{28} +(-0.431069 + 2.72166i) q^{29} +(-2.38355 - 11.9954i) q^{30} +(0.117071 + 0.360306i) q^{31} +(-4.70037 - 3.14746i) q^{32} +(-7.24391 - 4.54978i) q^{33} +(2.67405 + 2.47285i) q^{34} +(-5.48642 - 2.79547i) q^{35} +(-6.22658 - 3.81906i) q^{36} +(-3.78700 - 0.599802i) q^{37} +(-2.95591 + 10.4729i) q^{38} +(0.659563 + 0.214305i) q^{39} +(6.96780 - 6.43325i) q^{40} +(-4.74691 + 6.53356i) q^{41} +(-6.28502 + 2.31724i) q^{42} +(3.43159 + 3.43159i) q^{43} +(0.0758384 - 6.63282i) q^{44} +(8.65902 - 8.65902i) q^{45} +(11.3198 + 5.22123i) q^{46} +(-1.53564 - 1.11571i) q^{47} +(0.00821849 - 10.3168i) q^{48} +(1.12092 - 3.44983i) q^{49} +(4.31186 + 7.70298i) q^{50} +(-1.03911 + 6.56071i) q^{51} +(0.125331 + 0.522961i) q^{52} +(2.83693 - 5.56780i) q^{53} +(-0.0929285 - 2.37726i) q^{54} +(10.7838 + 2.71517i) q^{55} +(-4.07727 - 3.21821i) q^{56} +(-18.8749 + 6.13284i) q^{57} +(-3.23980 - 2.16570i) q^{58} +(-3.17332 - 0.502605i) q^{59} +(16.8162 + 4.04430i) q^{60} +(3.28137 + 6.44005i) q^{61} +(-0.532046 - 0.0630793i) q^{62} +(-5.42627 - 3.94242i) q^{63} +(6.82611 - 4.17183i) q^{64} -0.901551 q^{65} +(10.1336 - 6.60758i) q^{66} +(-8.94455 + 8.94455i) q^{67} +(-4.75953 + 1.96924i) q^{68} +(3.55652 + 22.4550i) q^{69} +(6.83969 - 5.38977i) q^{70} +(-9.72039 - 3.15835i) q^{71} +(8.59259 - 5.73396i) q^{72} +(3.84361 + 5.29028i) q^{73} +(3.01341 - 4.50795i) q^{74} +(-7.30908 + 14.3449i) q^{75} +(-11.6983 - 9.99936i) q^{76} +(0.544861 - 6.06647i) q^{77} +(-0.665888 + 0.720065i) q^{78} +(-0.453364 - 1.39531i) q^{79} +(4.13428 + 12.7586i) q^{80} +(-5.35396 + 3.88988i) q^{81} +(-5.57860 - 9.96595i) q^{82} +(0.578259 + 1.13490i) q^{83} +(0.747023 - 9.44374i) q^{84} +(-1.35084 - 8.52886i) q^{85} +(-6.43946 + 2.37418i) q^{86} -7.10719i q^{87} +(8.47288 + 4.02621i) q^{88} -5.92126i q^{89} +(5.99083 + 16.2488i) q^{90} +(0.0772472 + 0.487720i) q^{91} +(-13.4101 + 11.4441i) q^{92} +(-0.443605 - 0.870624i) q^{93} +(2.34238 - 1.31118i) q^{94} +(20.8726 - 15.1648i) q^{95} +(13.2438 + 6.12149i) q^{96} +(3.20268 + 9.85684i) q^{97} +(3.76629 + 3.48291i) q^{98} +(11.1392 + 4.75870i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8}+O(q^{10})$$ 176 * q - 6 * q^2 - 6 * q^3 - 10 * q^4 - 6 * q^5 - 6 * q^6 - 6 * q^8 $$176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8} - 16 q^{10} - 12 q^{11} - 6 q^{13} - 12 q^{15} + 14 q^{16} - 12 q^{17} - 44 q^{18} - 6 q^{19} + 2 q^{20} - 28 q^{21} + 50 q^{22} - 38 q^{24} - 68 q^{26} - 18 q^{27} - 46 q^{28} - 22 q^{29} + 26 q^{30} - 12 q^{31} - 16 q^{32} - 16 q^{33} + 12 q^{34} - 26 q^{35} - 22 q^{36} + 18 q^{37} - 34 q^{38} + 14 q^{40} - 10 q^{42} - 40 q^{43} + 2 q^{44} - 24 q^{45} + 38 q^{46} - 12 q^{47} - 26 q^{48} + 8 q^{49} - 62 q^{50} + 6 q^{51} + 74 q^{52} - 30 q^{53} - 52 q^{54} - 96 q^{56} - 26 q^{58} + 10 q^{59} + 118 q^{60} - 6 q^{61} - 42 q^{62} - 28 q^{63} - 106 q^{64} - 32 q^{65} + 6 q^{66} + 24 q^{67} + 116 q^{68} + 12 q^{69} + 52 q^{70} - 98 q^{72} + 96 q^{74} - 46 q^{75} + 112 q^{76} - 14 q^{77} + 44 q^{78} - 52 q^{79} - 28 q^{80} + 66 q^{82} + 54 q^{83} + 120 q^{84} + 14 q^{85} + 86 q^{86} + 142 q^{88} + 228 q^{90} - 122 q^{91} + 146 q^{92} + 6 q^{93} + 56 q^{94} + 52 q^{95} + 86 q^{96} - 12 q^{97} + 140 q^{98} + 92 q^{99}+O(q^{100})$$ 176 * q - 6 * q^2 - 6 * q^3 - 10 * q^4 - 6 * q^5 - 6 * q^6 - 6 * q^8 - 16 * q^10 - 12 * q^11 - 6 * q^13 - 12 * q^15 + 14 * q^16 - 12 * q^17 - 44 * q^18 - 6 * q^19 + 2 * q^20 - 28 * q^21 + 50 * q^22 - 38 * q^24 - 68 * q^26 - 18 * q^27 - 46 * q^28 - 22 * q^29 + 26 * q^30 - 12 * q^31 - 16 * q^32 - 16 * q^33 + 12 * q^34 - 26 * q^35 - 22 * q^36 + 18 * q^37 - 34 * q^38 + 14 * q^40 - 10 * q^42 - 40 * q^43 + 2 * q^44 - 24 * q^45 + 38 * q^46 - 12 * q^47 - 26 * q^48 + 8 * q^49 - 62 * q^50 + 6 * q^51 + 74 * q^52 - 30 * q^53 - 52 * q^54 - 96 * q^56 - 26 * q^58 + 10 * q^59 + 118 * q^60 - 6 * q^61 - 42 * q^62 - 28 * q^63 - 106 * q^64 - 32 * q^65 + 6 * q^66 + 24 * q^67 + 116 * q^68 + 12 * q^69 + 52 * q^70 - 98 * q^72 + 96 * q^74 - 46 * q^75 + 112 * q^76 - 14 * q^77 + 44 * q^78 - 52 * q^79 - 28 * q^80 + 66 * q^82 + 54 * q^83 + 120 * q^84 + 14 * q^85 + 86 * q^86 + 142 * q^88 + 228 * q^90 - 122 * q^91 + 146 * q^92 + 6 * q^93 + 56 * q^94 + 52 * q^95 + 86 * q^96 - 12 * q^97 + 140 * q^98 + 92 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/176\mathbb{Z}\right)^\times$$.

 $$n$$ $$111$$ $$133$$ $$145$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{4}\right)$$ $$e\left(\frac{2}{5}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.592330 + 1.28419i −0.418841 + 0.908060i
$$3$$ −2.54744 + 0.403475i −1.47077 + 0.232946i −0.839813 0.542876i $$-0.817336\pi$$
−0.630952 + 0.775822i $$0.717336\pi$$
$$4$$ −1.29829 1.52133i −0.649145 0.760665i
$$5$$ 2.98748 1.52220i 1.33604 0.680747i 0.367599 0.929984i $$-0.380180\pi$$
0.968442 + 0.249237i $$0.0801799\pi$$
$$6$$ 0.990787 3.51039i 0.404487 1.43311i
$$7$$ −1.07945 1.48574i −0.407994 0.561556i 0.554734 0.832028i $$-0.312820\pi$$
−0.962728 + 0.270472i $$0.912820\pi$$
$$8$$ 2.72269 0.766123i 0.962617 0.270865i
$$9$$ 3.47349 1.12860i 1.15783 0.376202i
$$10$$ 0.185217 + 4.73814i 0.0585707 + 1.49833i
$$11$$ 2.49806 + 2.18167i 0.753193 + 0.657799i
$$12$$ 3.92113 + 3.35167i 1.13193 + 0.967543i
$$13$$ −0.239578 0.122071i −0.0664470 0.0338564i 0.420451 0.907315i $$-0.361872\pi$$
−0.486898 + 0.873459i $$0.661872\pi$$
$$14$$ 2.54736 0.506174i 0.680811 0.135281i
$$15$$ −6.99626 + 5.08308i −1.80643 + 1.31245i
$$16$$ −0.628885 + 3.95025i −0.157221 + 0.987563i
$$17$$ 0.795847 2.44936i 0.193021 0.594058i −0.806973 0.590589i $$-0.798896\pi$$
0.999994 0.00346949i $$-0.00110437\pi$$
$$18$$ −0.608108 + 5.12913i −0.143332 + 1.20895i
$$19$$ 7.60003 1.20373i 1.74357 0.276154i 0.798254 0.602321i $$-0.205757\pi$$
0.945312 + 0.326168i $$0.105757\pi$$
$$20$$ −6.19438 2.56869i −1.38511 0.574376i
$$21$$ 3.34930 + 3.34930i 0.730876 + 0.730876i
$$22$$ −4.28136 + 1.91571i −0.912789 + 0.408431i
$$23$$ 8.81473i 1.83800i −0.394259 0.918999i $$-0.628999\pi$$
0.394259 0.918999i $$-0.371001\pi$$
$$24$$ −6.62678 + 3.05019i −1.35269 + 0.622617i
$$25$$ 3.66902 5.04998i 0.733805 1.01000i
$$26$$ 0.298672 0.235357i 0.0585744 0.0461574i
$$27$$ −1.49890 + 0.763730i −0.288464 + 0.146980i
$$28$$ −0.858854 + 3.57112i −0.162308 + 0.674878i
$$29$$ −0.431069 + 2.72166i −0.0800475 + 0.505400i 0.914791 + 0.403928i $$0.132355\pi$$
−0.994838 + 0.101472i $$0.967645\pi$$
$$30$$ −2.38355 11.9954i −0.435174 2.19005i
$$31$$ 0.117071 + 0.360306i 0.0210265 + 0.0647129i 0.961019 0.276482i $$-0.0891685\pi$$
−0.939993 + 0.341195i $$0.889168\pi$$
$$32$$ −4.70037 3.14746i −0.830916 0.556398i
$$33$$ −7.24391 4.54978i −1.26100 0.792015i
$$34$$ 2.67405 + 2.47285i 0.458595 + 0.424090i
$$35$$ −5.48642 2.79547i −0.927375 0.472521i
$$36$$ −6.22658 3.81906i −1.03776 0.636510i
$$37$$ −3.78700 0.599802i −0.622579 0.0986068i −0.162828 0.986655i $$-0.552061\pi$$
−0.459751 + 0.888048i $$0.652061\pi$$
$$38$$ −2.95591 + 10.4729i −0.479512 + 1.69893i
$$39$$ 0.659563 + 0.214305i 0.105615 + 0.0343163i
$$40$$ 6.96780 6.43325i 1.10171 1.01719i
$$41$$ −4.74691 + 6.53356i −0.741342 + 1.02037i 0.257198 + 0.966359i $$0.417201\pi$$
−0.998540 + 0.0540114i $$0.982799\pi$$
$$42$$ −6.28502 + 2.31724i −0.969800 + 0.357559i
$$43$$ 3.43159 + 3.43159i 0.523313 + 0.523313i 0.918570 0.395257i $$-0.129345\pi$$
−0.395257 + 0.918570i $$0.629345\pi$$
$$44$$ 0.0758384 6.63282i 0.0114331 0.999935i
$$45$$ 8.65902 8.65902i 1.29081 1.29081i
$$46$$ 11.3198 + 5.22123i 1.66901 + 0.769828i
$$47$$ −1.53564 1.11571i −0.223996 0.162742i 0.470128 0.882598i $$-0.344208\pi$$
−0.694123 + 0.719856i $$0.744208\pi$$
$$48$$ 0.00821849 10.3168i 0.00118624 1.48910i
$$49$$ 1.12092 3.44983i 0.160131 0.492833i
$$50$$ 4.31186 + 7.70298i 0.609789 + 1.08937i
$$51$$ −1.03911 + 6.56071i −0.145505 + 0.918683i
$$52$$ 0.125331 + 0.522961i 0.0173803 + 0.0725216i
$$53$$ 2.83693 5.56780i 0.389683 0.764796i −0.609935 0.792452i $$-0.708804\pi$$
0.999617 + 0.0276561i $$0.00880433\pi$$
$$54$$ −0.0929285 2.37726i −0.0126460 0.323504i
$$55$$ 10.7838 + 2.71517i 1.45409 + 0.366113i
$$56$$ −4.07727 3.21821i −0.544848 0.430052i
$$57$$ −18.8749 + 6.13284i −2.50005 + 0.812314i
$$58$$ −3.23980 2.16570i −0.425406 0.284370i
$$59$$ −3.17332 0.502605i −0.413132 0.0654336i −0.0535908 0.998563i $$-0.517067\pi$$
−0.359541 + 0.933129i $$0.617067\pi$$
$$60$$ 16.8162 + 4.04430i 2.17096 + 0.522117i
$$61$$ 3.28137 + 6.44005i 0.420136 + 0.824564i 0.999952 + 0.00981617i $$0.00312463\pi$$
−0.579815 + 0.814748i $$0.696875\pi$$
$$62$$ −0.532046 0.0630793i −0.0675700 0.00801108i
$$63$$ −5.42627 3.94242i −0.683646 0.496698i
$$64$$ 6.82611 4.17183i 0.853264 0.521479i
$$65$$ −0.901551 −0.111824
$$66$$ 10.1336 6.60758i 1.24736 0.813337i
$$67$$ −8.94455 + 8.94455i −1.09275 + 1.09275i −0.0975171 + 0.995234i $$0.531090\pi$$
−0.995234 + 0.0975171i $$0.968910\pi$$
$$68$$ −4.75953 + 1.96924i −0.577178 + 0.238806i
$$69$$ 3.55652 + 22.4550i 0.428155 + 2.70326i
$$70$$ 6.83969 5.38977i 0.817500 0.644201i
$$71$$ −9.72039 3.15835i −1.15360 0.374827i −0.331101 0.943595i $$-0.607420\pi$$
−0.822498 + 0.568769i $$0.807420\pi$$
$$72$$ 8.59259 5.73396i 1.01265 0.675754i
$$73$$ 3.84361 + 5.29028i 0.449861 + 0.619180i 0.972368 0.233455i $$-0.0750032\pi$$
−0.522507 + 0.852635i $$0.675003\pi$$
$$74$$ 3.01341 4.50795i 0.350302 0.524039i
$$75$$ −7.30908 + 14.3449i −0.843980 + 1.65640i
$$76$$ −11.6983 9.99936i −1.34189 1.14700i
$$77$$ 0.544861 6.06647i 0.0620927 0.691339i
$$78$$ −0.665888 + 0.720065i −0.0753969 + 0.0815313i
$$79$$ −0.453364 1.39531i −0.0510074 0.156985i 0.922308 0.386455i $$-0.126301\pi$$
−0.973316 + 0.229470i $$0.926301\pi$$
$$80$$ 4.13428 + 12.7586i 0.462227 + 1.42645i
$$81$$ −5.35396 + 3.88988i −0.594884 + 0.432209i
$$82$$ −5.57860 9.96595i −0.616053 1.10056i
$$83$$ 0.578259 + 1.13490i 0.0634722 + 0.124571i 0.920563 0.390594i $$-0.127730\pi$$
−0.857091 + 0.515165i $$0.827730\pi$$
$$84$$ 0.747023 9.44374i 0.0815069 1.03040i
$$85$$ −1.35084 8.52886i −0.146519 0.925085i
$$86$$ −6.43946 + 2.37418i −0.694385 + 0.256015i
$$87$$ 7.10719i 0.761971i
$$88$$ 8.47288 + 4.02621i 0.903212 + 0.429195i
$$89$$ 5.92126i 0.627652i −0.949480 0.313826i $$-0.898389\pi$$
0.949480 0.313826i $$-0.101611\pi$$
$$90$$ 5.99083 + 16.2488i 0.631489 + 1.71278i
$$91$$ 0.0772472 + 0.487720i 0.00809771 + 0.0511269i
$$92$$ −13.4101 + 11.4441i −1.39810 + 1.19313i
$$93$$ −0.443605 0.870624i −0.0459997 0.0902795i
$$94$$ 2.34238 1.31118i 0.241598 0.135238i
$$95$$ 20.8726 15.1648i 2.14149 1.55588i
$$96$$ 13.2438 + 6.12149i 1.35169 + 0.624772i
$$97$$ 3.20268 + 9.85684i 0.325183 + 1.00081i 0.971358 + 0.237621i $$0.0763677\pi$$
−0.646175 + 0.763189i $$0.723632\pi$$
$$98$$ 3.76629 + 3.48291i 0.380453 + 0.351827i
$$99$$ 11.1392 + 4.75870i 1.11953 + 0.478267i
$$100$$ −12.4461 + 0.974545i −1.24461 + 0.0974545i
$$101$$ −0.557671 + 1.09449i −0.0554903 + 0.108906i −0.917086 0.398689i $$-0.869465\pi$$
0.861596 + 0.507595i $$0.169465\pi$$
$$102$$ −7.80971 5.22053i −0.773276 0.516909i
$$103$$ 6.12564 + 8.43123i 0.603578 + 0.830753i 0.996030 0.0890190i $$-0.0283732\pi$$
−0.392452 + 0.919772i $$0.628373\pi$$
$$104$$ −0.745819 0.148816i −0.0731335 0.0145926i
$$105$$ 15.1042 + 4.90766i 1.47402 + 0.478939i
$$106$$ 5.46971 + 6.94114i 0.531265 + 0.674183i
$$107$$ 1.31103 + 8.27750i 0.126742 + 0.800216i 0.966389 + 0.257084i $$0.0827617\pi$$
−0.839647 + 0.543132i $$0.817238\pi$$
$$108$$ 3.10790 + 1.28878i 0.299057 + 0.124013i
$$109$$ 10.2673 10.2673i 0.983429 0.983429i −0.0164355 0.999865i $$-0.505232\pi$$
0.999865 + 0.0164355i $$0.00523183\pi$$
$$110$$ −9.87438 + 12.2402i −0.941486 + 1.16706i
$$111$$ 9.88916 0.938638
$$112$$ 6.54789 3.32975i 0.618718 0.314632i
$$113$$ −9.03988 6.56786i −0.850400 0.617852i 0.0748561 0.997194i $$-0.476150\pi$$
−0.925256 + 0.379342i $$0.876150\pi$$
$$114$$ 3.30446 27.8717i 0.309491 2.61042i
$$115$$ −13.4178 26.3338i −1.25121 2.45564i
$$116$$ 4.70020 2.87771i 0.436402 0.267189i
$$117$$ −0.969941 0.153624i −0.0896711 0.0142025i
$$118$$ 2.52510 3.77744i 0.232454 0.347742i
$$119$$ −4.49819 + 1.46155i −0.412348 + 0.133980i
$$120$$ −15.1544 + 19.1997i −1.38340 + 1.75268i
$$121$$ 1.48060 + 10.8999i 0.134600 + 0.990900i
$$122$$ −10.2139 + 0.399268i −0.924724 + 0.0361480i
$$123$$ 9.45633 18.5591i 0.852649 1.67342i
$$124$$ 0.396153 0.645885i 0.0355756 0.0580022i
$$125$$ 0.651507 4.11346i 0.0582726 0.367919i
$$126$$ 8.27696 4.63316i 0.737370 0.412754i
$$127$$ −4.97304 + 15.3055i −0.441286 + 1.35814i 0.445219 + 0.895421i $$0.353126\pi$$
−0.886506 + 0.462718i $$0.846874\pi$$
$$128$$ 1.31412 + 11.2371i 0.116153 + 0.993231i
$$129$$ −10.1263 7.35722i −0.891575 0.647767i
$$130$$ 0.534015 1.15776i 0.0468363 0.101543i
$$131$$ 0.626171 0.626171i 0.0547088 0.0547088i −0.679223 0.733932i $$-0.737683\pi$$
0.733932 + 0.679223i $$0.237683\pi$$
$$132$$ 2.48298 + 16.9273i 0.216116 + 1.47333i
$$133$$ −9.99228 9.99228i −0.866441 0.866441i
$$134$$ −6.18838 16.7846i −0.534595 1.44997i
$$135$$ −3.31540 + 4.56325i −0.285344 + 0.392742i
$$136$$ 0.290332 7.27858i 0.0248957 0.624133i
$$137$$ 10.4979 + 3.41096i 0.896894 + 0.291418i 0.720954 0.692983i $$-0.243704\pi$$
0.175939 + 0.984401i $$0.443704\pi$$
$$138$$ −30.9431 8.73352i −2.63405 0.743446i
$$139$$ −8.81397 1.39600i −0.747591 0.118407i −0.228997 0.973427i $$-0.573545\pi$$
−0.518595 + 0.855020i $$0.673545\pi$$
$$140$$ 2.87014 + 11.9760i 0.242571 + 1.01216i
$$141$$ 4.36210 + 2.22260i 0.367355 + 0.187177i
$$142$$ 9.81360 10.6120i 0.823539 0.890543i
$$143$$ −0.332161 0.827622i −0.0277767 0.0692092i
$$144$$ 2.27385 + 14.4309i 0.189488 + 1.20258i
$$145$$ 2.85510 + 8.78708i 0.237103 + 0.729727i
$$146$$ −9.07041 + 1.80234i −0.750672 + 0.149163i
$$147$$ −1.46355 + 9.24050i −0.120712 + 0.762144i
$$148$$ 4.00413 + 6.53999i 0.329137 + 0.537584i
$$149$$ 9.11712 4.64541i 0.746904 0.380566i −0.0387370 0.999249i $$-0.512333\pi$$
0.785641 + 0.618683i $$0.212333\pi$$
$$150$$ −14.0922 17.8832i −1.15062 1.46015i
$$151$$ 1.93490 2.66316i 0.157460 0.216725i −0.722997 0.690851i $$-0.757236\pi$$
0.880457 + 0.474126i $$0.157236\pi$$
$$152$$ 19.7703 9.09993i 1.60359 0.738102i
$$153$$ 9.40604i 0.760433i
$$154$$ 7.46777 + 4.29306i 0.601770 + 0.345945i
$$155$$ 0.898203 + 0.898203i 0.0721454 + 0.0721454i
$$156$$ −0.530276 1.28164i −0.0424560 0.102614i
$$157$$ −14.1306 + 2.23807i −1.12774 + 0.178617i −0.692308 0.721602i $$-0.743406\pi$$
−0.435437 + 0.900219i $$0.643406\pi$$
$$158$$ 2.06039 + 0.244279i 0.163916 + 0.0194338i
$$159$$ −4.98045 + 15.3283i −0.394976 + 1.21561i
$$160$$ −18.8333 2.24809i −1.48890 0.177727i
$$161$$ −13.0964 + 9.51507i −1.03214 + 0.749893i
$$162$$ −1.82403 9.17959i −0.143310 0.721217i
$$163$$ −4.27788 2.17969i −0.335070 0.170727i 0.278358 0.960477i $$-0.410210\pi$$
−0.613428 + 0.789751i $$0.710210\pi$$
$$164$$ 16.1026 1.26085i 1.25740 0.0984555i
$$165$$ −28.5667 2.56572i −2.22391 0.199741i
$$166$$ −1.79995 + 0.0703610i −0.139703 + 0.00546107i
$$167$$ 11.6997 3.80145i 0.905347 0.294165i 0.180905 0.983501i $$-0.442097\pi$$
0.724442 + 0.689335i $$0.242097\pi$$
$$168$$ 11.6851 + 6.55313i 0.901523 + 0.505585i
$$169$$ −7.59871 10.4587i −0.584516 0.804518i
$$170$$ 11.7528 + 3.31717i 0.901400 + 0.254415i
$$171$$ 25.0401 12.7586i 1.91486 0.975671i
$$172$$ 0.765379 9.67579i 0.0583596 0.737772i
$$173$$ −12.8034 + 2.02786i −0.973426 + 0.154176i −0.622835 0.782353i $$-0.714019\pi$$
−0.350591 + 0.936529i $$0.614019\pi$$
$$174$$ 9.12699 + 4.20980i 0.691915 + 0.319144i
$$175$$ −11.4635 −0.866557
$$176$$ −10.1892 + 8.49595i −0.768037 + 0.640406i
$$177$$ 8.28664 0.622862
$$178$$ 7.60403 + 3.50734i 0.569946 + 0.262886i
$$179$$ 12.2243 1.93614i 0.913686 0.144714i 0.318148 0.948041i $$-0.396939\pi$$
0.595538 + 0.803327i $$0.296939\pi$$
$$180$$ −24.4151 1.93130i −1.81980 0.143950i
$$181$$ −13.1655 + 6.70817i −0.978586 + 0.498614i −0.868705 0.495330i $$-0.835047\pi$$
−0.109881 + 0.993945i $$0.535047\pi$$
$$182$$ −0.672081 0.189691i −0.0498180 0.0140608i
$$183$$ −10.9575 15.0817i −0.810001 1.11487i
$$184$$ −6.75317 23.9998i −0.497850 1.76929i
$$185$$ −12.2266 + 3.97266i −0.898918 + 0.292076i
$$186$$ 1.38081 0.0539766i 0.101246 0.00395776i
$$187$$ 7.33179 4.38238i 0.536153 0.320471i
$$188$$ 0.296347 + 3.78472i 0.0216133 + 0.276029i
$$189$$ 2.75270 + 1.40257i 0.200229 + 0.102022i
$$190$$ 7.11107 + 35.7870i 0.515891 + 2.59626i
$$191$$ 12.6788 9.21171i 0.917408 0.666536i −0.0254697 0.999676i $$-0.508108\pi$$
0.942877 + 0.333140i $$0.108108\pi$$
$$192$$ −15.7059 + 13.3817i −1.13347 + 0.965738i
$$193$$ −1.62567 + 5.00330i −0.117018 + 0.360145i −0.992363 0.123355i $$-0.960635\pi$$
0.875344 + 0.483500i $$0.160635\pi$$
$$194$$ −14.5551 1.72565i −1.04500 0.123894i
$$195$$ 2.29665 0.363753i 0.164466 0.0260489i
$$196$$ −6.70361 + 2.77360i −0.478829 + 0.198114i
$$197$$ 4.53352 + 4.53352i 0.323000 + 0.323000i 0.849917 0.526917i $$-0.176652\pi$$
−0.526917 + 0.849917i $$0.676652\pi$$
$$198$$ −12.7092 + 11.4862i −0.903202 + 0.816287i
$$199$$ 18.4465i 1.30764i 0.756652 + 0.653818i $$0.226834\pi$$
−0.756652 + 0.653818i $$0.773166\pi$$
$$200$$ 6.12072 16.5605i 0.432800 1.17100i
$$201$$ 19.1768 26.3946i 1.35263 1.86173i
$$202$$ −1.07521 1.36446i −0.0756515 0.0960028i
$$203$$ 4.50899 2.29745i 0.316469 0.161249i
$$204$$ 11.3301 6.93687i 0.793264 0.485678i
$$205$$ −4.23593 + 26.7446i −0.295850 + 1.86792i
$$206$$ −14.4557 + 2.87243i −1.00718 + 0.200131i
$$207$$ −9.94835 30.6179i −0.691458 2.12809i
$$208$$ 0.632879 0.869625i 0.0438822 0.0602977i
$$209$$ 21.6115 + 13.5738i 1.49490 + 0.938919i
$$210$$ −15.2491 + 16.4898i −1.05229 + 1.13790i
$$211$$ 1.89226 + 0.964157i 0.130269 + 0.0663753i 0.517910 0.855435i $$-0.326710\pi$$
−0.387641 + 0.921810i $$0.626710\pi$$
$$212$$ −12.1536 + 2.91271i −0.834714 + 0.200045i
$$213$$ 26.0364 + 4.12376i 1.78399 + 0.282556i
$$214$$ −11.4064 3.21940i −0.779729 0.220074i
$$215$$ 15.4754 + 5.02826i 1.05541 + 0.342924i
$$216$$ −3.49594 + 3.22775i −0.237869 + 0.219620i
$$217$$ 0.408949 0.562869i 0.0277612 0.0382101i
$$218$$ 7.10354 + 19.2668i 0.481113 + 1.30491i
$$219$$ −11.9259 11.9259i −0.805875 0.805875i
$$220$$ −9.86989 19.9308i −0.665428 1.34374i
$$221$$ −0.489664 + 0.489664i −0.0329384 + 0.0329384i
$$222$$ −5.85765 + 12.6996i −0.393140 + 0.852339i
$$223$$ 6.52139 + 4.73807i 0.436705 + 0.317284i 0.784324 0.620351i $$-0.213010\pi$$
−0.347620 + 0.937636i $$0.613010\pi$$
$$224$$ 0.397520 + 10.3810i 0.0265604 + 0.693613i
$$225$$ 7.04488 21.6819i 0.469659 1.44546i
$$226$$ 13.7890 7.71859i 0.917229 0.513433i
$$227$$ −2.81338 + 17.7630i −0.186731 + 1.17897i 0.699121 + 0.715003i $$0.253575\pi$$
−0.885852 + 0.463968i $$0.846425\pi$$
$$228$$ 33.8352 + 20.7528i 2.24079 + 1.37439i
$$229$$ 0.0408598 0.0801919i 0.00270009 0.00529923i −0.889653 0.456638i $$-0.849053\pi$$
0.892353 + 0.451339i $$0.149053\pi$$
$$230$$ 41.7654 1.63264i 2.75393 0.107653i
$$231$$ 1.05967 + 15.6738i 0.0697210 + 1.03126i
$$232$$ 0.911459 + 7.74050i 0.0598402 + 0.508189i
$$233$$ −24.8760 + 8.08271i −1.62968 + 0.529516i −0.974198 0.225694i $$-0.927535\pi$$
−0.655484 + 0.755209i $$0.727535\pi$$
$$234$$ 0.771807 1.15459i 0.0504546 0.0754781i
$$235$$ −6.28601 0.995605i −0.410054 0.0649461i
$$236$$ 3.35527 + 5.48020i 0.218409 + 0.356730i
$$237$$ 1.71789 + 3.37155i 0.111589 + 0.219006i
$$238$$ 0.787504 6.64225i 0.0510463 0.430553i
$$239$$ −16.6103 12.0681i −1.07443 0.780619i −0.0977262 0.995213i $$-0.531157\pi$$
−0.976703 + 0.214595i $$0.931157\pi$$
$$240$$ −15.6796 30.8337i −1.01211 1.99030i
$$241$$ 10.6597 0.686650 0.343325 0.939217i $$-0.388447\pi$$
0.343325 + 0.939217i $$0.388447\pi$$
$$242$$ −14.8746 4.55497i −0.956172 0.292804i
$$243$$ 15.6380 15.6380i 1.00318 1.00318i
$$244$$ 5.53727 13.3531i 0.354487 0.854845i
$$245$$ −1.90260 12.0126i −0.121553 0.767455i
$$246$$ 18.2321 + 23.1368i 1.16244 + 1.47515i
$$247$$ −1.96774 0.639357i −0.125204 0.0406813i
$$248$$ 0.594786 + 0.891313i 0.0377690 + 0.0565984i
$$249$$ −1.93098 2.65777i −0.122371 0.168429i
$$250$$ 4.89655 + 3.27318i 0.309685 + 0.207014i
$$251$$ 1.98552 3.89681i 0.125325 0.245965i −0.819816 0.572627i $$-0.805924\pi$$
0.945141 + 0.326663i $$0.105924\pi$$
$$252$$ 1.04716 + 13.3736i 0.0659650 + 0.842454i
$$253$$ 19.2309 22.0197i 1.20903 1.38437i
$$254$$ −16.7094 15.4522i −1.04844 0.969558i
$$255$$ 6.88236 + 21.1817i 0.430990 + 1.32645i
$$256$$ −15.2090 4.96851i −0.950563 0.310532i
$$257$$ 3.57650 2.59848i 0.223096 0.162089i −0.470623 0.882334i $$-0.655971\pi$$
0.693719 + 0.720246i $$0.255971\pi$$
$$258$$ 15.4462 8.64625i 0.961639 0.538292i
$$259$$ 3.19674 + 6.27395i 0.198635 + 0.389844i
$$260$$ 1.17047 + 1.37156i 0.0725897 + 0.0850602i
$$261$$ 1.57437 + 9.94017i 0.0974509 + 0.615281i
$$262$$ 0.433223 + 1.17502i 0.0267646 + 0.0725932i
$$263$$ 19.1746i 1.18235i −0.806542 0.591177i $$-0.798663\pi$$
0.806542 0.591177i $$-0.201337\pi$$
$$264$$ −23.2086 6.83793i −1.42839 0.420845i
$$265$$ 20.9520i 1.28707i
$$266$$ 18.7507 6.91326i 1.14968 0.423879i
$$267$$ 2.38908 + 15.0841i 0.146209 + 0.923129i
$$268$$ 25.2202 + 1.99498i 1.54057 + 0.121863i
$$269$$ 7.44131 + 14.6044i 0.453705 + 0.890445i 0.998648 + 0.0519729i $$0.0165510\pi$$
−0.544944 + 0.838473i $$0.683449\pi$$
$$270$$ −3.89628 6.96055i −0.237120 0.423606i
$$271$$ −0.372230 + 0.270441i −0.0226114 + 0.0164281i −0.599034 0.800724i $$-0.704448\pi$$
0.576422 + 0.817152i $$0.304448\pi$$
$$272$$ 9.17511 + 4.68416i 0.556323 + 0.284019i
$$273$$ −0.393565 1.21127i −0.0238197 0.0733094i
$$274$$ −10.5985 + 11.4608i −0.640281 + 0.692375i
$$275$$ 20.1828 4.61053i 1.21707 0.278025i
$$276$$ 29.5440 34.5637i 1.77834 2.08049i
$$277$$ 4.43522 8.70461i 0.266486 0.523009i −0.718524 0.695502i $$-0.755182\pi$$
0.985011 + 0.172493i $$0.0551821\pi$$
$$278$$ 7.01351 10.4919i 0.420642 0.629264i
$$279$$ 0.813287 + 1.11939i 0.0486902 + 0.0670163i
$$280$$ −17.0795 3.40794i −1.02070 0.203663i
$$281$$ −30.4477 9.89307i −1.81636 0.590171i −0.999919 0.0127410i $$-0.995944\pi$$
−0.816440 0.577430i $$-0.804056\pi$$
$$282$$ −5.43805 + 4.28525i −0.323831 + 0.255183i
$$283$$ 3.30056 + 20.8389i 0.196198 + 1.23875i 0.867453 + 0.497519i $$0.165755\pi$$
−0.671255 + 0.741226i $$0.734245\pi$$
$$284$$ 7.81500 + 18.8884i 0.463735 + 1.12082i
$$285$$ −47.0531 + 47.0531i −2.78719 + 2.78719i
$$286$$ 1.25957 + 0.0636677i 0.0744801 + 0.00376475i
$$287$$ 14.8312 0.875458
$$288$$ −19.8789 5.62781i −1.17138 0.331622i
$$289$$ 8.38728 + 6.09371i 0.493369 + 0.358454i
$$290$$ −12.9754 1.53837i −0.761944 0.0903359i
$$291$$ −12.1356 23.8175i −0.711403 1.39621i
$$292$$ 3.05813 12.7157i 0.178963 0.744131i
$$293$$ 25.5204 + 4.04204i 1.49092 + 0.236139i 0.848083 0.529864i $$-0.177757\pi$$
0.642837 + 0.766003i $$0.277757\pi$$
$$294$$ −10.9997 7.35291i −0.641513 0.428830i
$$295$$ −10.2453 + 3.32890i −0.596505 + 0.193816i
$$296$$ −10.7704 + 1.26823i −0.626015 + 0.0737145i
$$297$$ −5.41056 1.36228i −0.313952 0.0790474i
$$298$$ 0.565240 + 14.4597i 0.0327435 + 0.837630i
$$299$$ −1.07602 + 2.11182i −0.0622281 + 0.122129i
$$300$$ 31.3126 7.50430i 1.80783 0.433261i
$$301$$ 1.39421 8.80269i 0.0803609 0.507379i
$$302$$ 2.27391 + 4.06225i 0.130849 + 0.233756i
$$303$$ 0.979034 3.01316i 0.0562440 0.173101i
$$304$$ −0.0245190 + 30.7790i −0.00140626 + 1.76530i
$$305$$ 19.6061 + 14.2446i 1.12264 + 0.815645i
$$306$$ 12.0791 + 5.57148i 0.690518 + 0.318500i
$$307$$ −14.1017 + 14.1017i −0.804829 + 0.804829i −0.983846 0.179017i $$-0.942708\pi$$
0.179017 + 0.983846i $$0.442708\pi$$
$$308$$ −9.93649 + 7.04713i −0.566184 + 0.401547i
$$309$$ −19.0065 19.0065i −1.08124 1.08124i
$$310$$ −1.68550 + 0.621431i −0.0957298 + 0.0352949i
$$311$$ 0.0384605 0.0529363i 0.00218089 0.00300174i −0.807925 0.589285i $$-0.799409\pi$$
0.810106 + 0.586283i $$0.199409\pi$$
$$312$$ 1.95997 + 0.0781803i 0.110962 + 0.00442609i
$$313$$ 9.86642 + 3.20580i 0.557683 + 0.181202i 0.574278 0.818660i $$-0.305283\pi$$
−0.0165952 + 0.999862i $$0.505283\pi$$
$$314$$ 5.49587 19.4721i 0.310150 1.09887i
$$315$$ −22.2120 3.51804i −1.25151 0.198219i
$$316$$ −1.53413 + 2.50123i −0.0863015 + 0.140705i
$$317$$ −30.1703 15.3725i −1.69453 0.863407i −0.987763 0.155961i $$-0.950153\pi$$
−0.706768 0.707446i $$-0.749847\pi$$
$$318$$ −16.7343 15.4752i −0.938415 0.867808i
$$319$$ −7.01461 + 5.85842i −0.392743 + 0.328009i
$$320$$ 14.0425 22.8540i 0.785000 1.27758i
$$321$$ −6.67953 20.5575i −0.372815 1.14741i
$$322$$ −4.46179 22.4543i −0.248646 1.25133i
$$323$$ 3.10009 19.5732i 0.172494 1.08908i
$$324$$ 12.8688 + 3.09494i 0.714932 + 0.171941i
$$325$$ −1.49547 + 0.761982i −0.0829540 + 0.0422672i
$$326$$ 5.33306 4.20252i 0.295371 0.232756i
$$327$$ −22.0127 + 30.2979i −1.21731 + 1.67548i
$$328$$ −7.91886 + 21.4256i −0.437246 + 1.18303i
$$329$$ 3.48590i 0.192184i
$$330$$ 20.2158 35.1653i 1.11284 1.93579i
$$331$$ −2.45221 2.45221i −0.134786 0.134786i 0.636495 0.771281i $$-0.280384\pi$$
−0.771281 + 0.636495i $$0.780384\pi$$
$$332$$ 0.975805 2.35315i 0.0535542 0.129146i
$$333$$ −13.8310 + 2.19062i −0.757937 + 0.120045i
$$334$$ −2.04828 + 17.2763i −0.112077 + 0.945318i
$$335$$ −13.1063 + 40.3370i −0.716074 + 2.20385i
$$336$$ −15.3369 + 11.1242i −0.836696 + 0.606877i
$$337$$ 22.9929 16.7053i 1.25250 0.909997i 0.254139 0.967168i $$-0.418208\pi$$
0.998364 + 0.0571709i $$0.0182080\pi$$
$$338$$ 17.9319 3.56317i 0.975369 0.193811i
$$339$$ 25.6785 + 13.0839i 1.39467 + 0.710617i
$$340$$ −11.2214 + 13.1280i −0.608567 + 0.711966i
$$341$$ −0.493622 + 1.15548i −0.0267311 + 0.0625726i
$$342$$ 1.55243 + 39.7135i 0.0839456 + 2.14746i
$$343$$ −18.5616 + 6.03104i −1.00223 + 0.325646i
$$344$$ 11.9722 + 6.71415i 0.645498 + 0.362003i
$$345$$ 44.8060 + 61.6701i 2.41227 + 3.32021i
$$346$$ 4.97969 17.6432i 0.267710 0.948504i
$$347$$ −24.6523 + 12.5610i −1.32341 + 0.674309i −0.965733 0.259538i $$-0.916430\pi$$
−0.357673 + 0.933847i $$0.616430\pi$$
$$348$$ −10.8124 + 9.22720i −0.579605 + 0.494630i
$$349$$ −5.70841 + 0.904123i −0.305564 + 0.0483966i −0.307334 0.951602i $$-0.599437\pi$$
0.00176944 + 0.999998i $$0.499437\pi$$
$$350$$ 6.79016 14.7213i 0.362949 0.786886i
$$351$$ 0.452334 0.0241438
$$352$$ −4.87507 18.1172i −0.259842 0.965651i
$$353$$ −4.28008 −0.227805 −0.113903 0.993492i $$-0.536335\pi$$
−0.113903 + 0.993492i $$0.536335\pi$$
$$354$$ −4.90843 + 10.6416i −0.260880 + 0.565596i
$$355$$ −33.8471 + 5.36085i −1.79642 + 0.284525i
$$356$$ −9.00819 + 7.68752i −0.477433 + 0.407438i
$$357$$ 10.8692 5.53812i 0.575257 0.293108i
$$358$$ −4.75444 + 16.8451i −0.251280 + 0.890293i
$$359$$ 6.05478 + 8.33369i 0.319559 + 0.439835i 0.938332 0.345734i $$-0.112370\pi$$
−0.618774 + 0.785569i $$0.712370\pi$$
$$360$$ 16.9420 30.2097i 0.892920 1.59219i
$$361$$ 38.2414 12.4254i 2.01270 0.653967i
$$362$$ −0.816232 20.8805i −0.0429002 1.09745i
$$363$$ −8.16957 27.1695i −0.428791 1.42603i
$$364$$ 0.641693 0.750720i 0.0336339 0.0393484i
$$365$$ 19.5355 + 9.95386i 1.02254 + 0.521009i
$$366$$ 25.8582 5.13817i 1.35163 0.268576i
$$367$$ −3.87317 + 2.81402i −0.202178 + 0.146891i −0.684268 0.729231i $$-0.739878\pi$$
0.482090 + 0.876122i $$0.339878\pi$$
$$368$$ 34.8204 + 5.54345i 1.81514 + 0.288972i
$$369$$ −9.11452 + 28.0516i −0.474483 + 1.46031i
$$370$$ 2.14053 18.0544i 0.111281 0.938605i
$$371$$ −11.3346 + 1.79523i −0.588464 + 0.0932035i
$$372$$ −0.748577 + 1.80519i −0.0388119 + 0.0935948i
$$373$$ 13.4297 + 13.4297i 0.695366 + 0.695366i 0.963407 0.268041i $$-0.0863764\pi$$
−0.268041 + 0.963407i $$0.586376\pi$$
$$374$$ 1.28497 + 12.0112i 0.0664443 + 0.621086i
$$375$$ 10.7416i 0.554696i
$$376$$ −5.03583 1.86124i −0.259703 0.0959859i
$$377$$ 0.435511 0.599429i 0.0224299 0.0308722i
$$378$$ −3.43167 + 2.70420i −0.176506 + 0.139089i
$$379$$ −7.52997 + 3.83671i −0.386789 + 0.197079i −0.636562 0.771226i $$-0.719644\pi$$
0.249773 + 0.968304i $$0.419644\pi$$
$$380$$ −50.1694 12.0658i −2.57364 0.618960i
$$381$$ 6.49316 40.9962i 0.332655 2.10030i
$$382$$ 4.31954 + 21.7384i 0.221007 + 1.11223i
$$383$$ −7.44327 22.9080i −0.380334 1.17055i −0.939809 0.341700i $$-0.888997\pi$$
0.559476 0.828847i $$-0.311003\pi$$
$$384$$ −7.88154 28.0957i −0.402203 1.43375i
$$385$$ −7.60660 18.9528i −0.387668 0.965926i
$$386$$ −5.46226 5.05128i −0.278022 0.257103i
$$387$$ 15.7925 + 8.04669i 0.802779 + 0.409036i
$$388$$ 10.8375 17.6694i 0.550190 0.897027i
$$389$$ −15.0587 2.38506i −0.763506 0.120927i −0.237476 0.971393i $$-0.576320\pi$$
−0.526030 + 0.850466i $$0.676320\pi$$
$$390$$ −0.893244 + 3.16479i −0.0452312 + 0.160256i
$$391$$ −21.5905 7.01517i −1.09188 0.354773i
$$392$$ 0.408921 10.2516i 0.0206536 0.517784i
$$393$$ −1.34249 + 1.84778i −0.0677196 + 0.0932081i
$$394$$ −8.50724 + 3.13656i −0.428588 + 0.158018i
$$395$$ −3.47835 3.47835i −0.175015 0.175015i
$$396$$ −7.22240 23.1246i −0.362939 1.16206i
$$397$$ 13.7124 13.7124i 0.688206 0.688206i −0.273630 0.961835i $$-0.588224\pi$$
0.961835 + 0.273630i $$0.0882242\pi$$
$$398$$ −23.6888 10.9264i −1.18741 0.547691i
$$399$$ 29.4864 + 21.4231i 1.47616 + 1.07250i
$$400$$ 17.6413 + 17.6694i 0.882065 + 0.883472i
$$401$$ −2.92003 + 8.98692i −0.145819 + 0.448785i −0.997115 0.0759000i $$-0.975817\pi$$
0.851296 + 0.524685i $$0.175817\pi$$
$$402$$ 22.5367 + 40.2610i 1.12403 + 2.00804i
$$403$$ 0.0159354 0.100612i 0.000793801 0.00501186i
$$404$$ 2.38910 0.572566i 0.118862 0.0284862i
$$405$$ −10.0737 + 19.7707i −0.500565 + 0.982414i
$$406$$ 0.279547 + 7.15125i 0.0138737 + 0.354911i
$$407$$ −8.15158 9.76034i −0.404059 0.483802i
$$408$$ 2.19712 + 18.6589i 0.108774 + 0.923753i
$$409$$ −11.0789 + 3.59976i −0.547817 + 0.177997i −0.569832 0.821761i $$-0.692992\pi$$
0.0220151 + 0.999758i $$0.492992\pi$$
$$410$$ −31.8361 21.2814i −1.57227 1.05101i
$$411$$ −28.1189 4.45360i −1.38700 0.219680i
$$412$$ 4.87381 20.2653i 0.240115 0.998400i
$$413$$ 2.67871 + 5.25726i 0.131811 + 0.258693i
$$414$$ 45.2119 + 5.36031i 2.22204 + 0.263445i
$$415$$ 3.45508 + 2.51026i 0.169603 + 0.123224i
$$416$$ 0.741891 + 1.32784i 0.0363742 + 0.0651028i
$$417$$ 23.0163 1.12711
$$418$$ −30.2325 + 19.7131i −1.47872 + 0.964197i
$$419$$ −6.25507 + 6.25507i −0.305580 + 0.305580i −0.843192 0.537612i $$-0.819326\pi$$
0.537612 + 0.843192i $$0.319326\pi$$
$$420$$ −12.1435 29.3501i −0.592543 1.43214i
$$421$$ 0.478812 + 3.02310i 0.0233359 + 0.147337i 0.996605 0.0823303i $$-0.0262362\pi$$
−0.973269 + 0.229667i $$0.926236\pi$$
$$422$$ −2.35901 + 1.85893i −0.114835 + 0.0904913i
$$423$$ −6.59321 2.14226i −0.320573 0.104160i
$$424$$ 3.45848 17.3328i 0.167959 0.841757i
$$425$$ −9.44926 13.0058i −0.458356 0.630873i
$$426$$ −20.7179 + 30.9931i −1.00378 + 1.50162i
$$427$$ 6.02615 11.8270i 0.291626 0.572347i
$$428$$ 10.8907 12.7411i 0.526422 0.615864i
$$429$$ 1.18008 + 1.97430i 0.0569750 + 0.0953200i
$$430$$ −15.6238 + 16.8950i −0.753445 + 0.814747i
$$431$$ −1.75534 5.40237i −0.0845516 0.260223i 0.899839 0.436223i $$-0.143684\pi$$
−0.984390 + 0.176000i $$0.943684\pi$$
$$432$$ −2.07429 6.40135i −0.0997992 0.307985i
$$433$$ −0.469489 + 0.341104i −0.0225622 + 0.0163924i −0.599009 0.800742i $$-0.704439\pi$$
0.576447 + 0.817135i $$0.304439\pi$$
$$434$$ 0.480599 + 0.858572i 0.0230695 + 0.0412128i
$$435$$ −10.8185 21.2326i −0.518710 1.01803i
$$436$$ −28.9499 2.29001i −1.38645 0.109672i
$$437$$ −10.6105 66.9922i −0.507570 3.20467i
$$438$$ 22.3791 8.25103i 1.06932 0.394249i
$$439$$ 6.19652i 0.295744i 0.989007 + 0.147872i $$0.0472423\pi$$
−0.989007 + 0.147872i $$0.952758\pi$$
$$440$$ 31.4412 0.869176i 1.49890 0.0414363i
$$441$$ 13.2480i 0.630858i
$$442$$ −0.338779 0.918864i −0.0161141 0.0437059i
$$443$$ −5.39726 34.0770i −0.256432 1.61905i −0.694079 0.719899i $$-0.744188\pi$$
0.437648 0.899147i $$-0.355812\pi$$
$$444$$ −12.8390 15.0447i −0.609312 0.713989i
$$445$$ −9.01333 17.6896i −0.427273 0.838570i
$$446$$ −9.94739 + 5.56821i −0.471023 + 0.263662i
$$447$$ −21.3510 + 15.5124i −1.00987 + 0.733712i
$$448$$ −13.5667 5.63852i −0.640967 0.266395i
$$449$$ 0.177404 + 0.545993i 0.00837220 + 0.0257670i 0.955155 0.296105i $$-0.0956879\pi$$
−0.946783 + 0.321872i $$0.895688\pi$$
$$450$$ 23.6708 + 21.8898i 1.11585 + 1.03190i
$$451$$ −26.1121 + 5.96501i −1.22957 + 0.280881i
$$452$$ 1.74451 + 22.2796i 0.0820551 + 1.04794i
$$453$$ −3.85452 + 7.56493i −0.181101 + 0.355431i
$$454$$ −21.1446 14.1345i −0.992366 0.663364i
$$455$$ 0.973180 + 1.33947i 0.0456234 + 0.0627952i
$$456$$ −46.6921 + 31.1584i −2.18656 + 1.45912i
$$457$$ −7.79927 2.53414i −0.364835 0.118542i 0.120862 0.992669i $$-0.461434\pi$$
−0.485697 + 0.874127i $$0.661434\pi$$
$$458$$ 0.0787792 + 0.0999719i 0.00368111 + 0.00467138i
$$459$$ 0.677754 + 4.27917i 0.0316349 + 0.199735i
$$460$$ −22.6423 + 54.6018i −1.05570 + 2.54582i
$$461$$ −10.3464 + 10.3464i −0.481881 + 0.481881i −0.905732 0.423851i $$-0.860678\pi$$
0.423851 + 0.905732i $$0.360678\pi$$
$$462$$ −20.7558 7.92325i −0.965649 0.368623i
$$463$$ 11.4253 0.530977 0.265489 0.964114i $$-0.414467\pi$$
0.265489 + 0.964114i $$0.414467\pi$$
$$464$$ −10.4802 3.41444i −0.486529 0.158512i
$$465$$ −2.65052 1.92572i −0.122915 0.0893030i
$$466$$ 4.35508 36.7332i 0.201745 1.70163i
$$467$$ 17.6380 + 34.6166i 0.816190 + 1.60186i 0.798481 + 0.602020i $$0.205637\pi$$
0.0177090 + 0.999843i $$0.494363\pi$$
$$468$$ 1.02555 + 1.67505i 0.0474062 + 0.0774291i
$$469$$ 22.9445 + 3.63405i 1.05948 + 0.167805i
$$470$$ 5.00194 7.48270i 0.230722 0.345151i
$$471$$ 35.0938 11.4027i 1.61704 0.525408i
$$472$$ −9.02504 + 1.06272i −0.415411 + 0.0489155i
$$473$$ 1.08571 + 16.0589i 0.0499208 + 0.738391i
$$474$$ −5.34727 + 0.209028i −0.245608 + 0.00960099i
$$475$$ 21.8059 42.7965i 1.00052 1.96364i
$$476$$ 8.06346 + 4.94571i 0.369588 + 0.226686i
$$477$$ 3.57022 22.5415i 0.163469 1.03210i
$$478$$ 25.3365 14.1825i 1.15886 0.648691i
$$479$$ 2.26638 6.97519i 0.103553 0.318705i −0.885835 0.464001i $$-0.846413\pi$$
0.989388 + 0.145296i $$0.0464135\pi$$
$$480$$ 48.8838 1.87190i 2.23123 0.0854401i
$$481$$ 0.834064 + 0.605983i 0.0380300 + 0.0276304i
$$482$$ −6.31404 + 13.6890i −0.287597 + 0.623519i
$$483$$ 29.5231 29.5231i 1.34335 1.34335i
$$484$$ 14.6601 16.4037i 0.666368 0.745623i
$$485$$ 24.5720 + 24.5720i 1.11576 + 1.11576i
$$486$$ 10.8193 + 29.3451i 0.490775 + 1.33112i
$$487$$ 15.6467 21.5359i 0.709020 0.975883i −0.290797 0.956785i $$-0.593921\pi$$
0.999818 0.0190981i $$-0.00607947\pi$$
$$488$$ 13.8680 + 15.0203i 0.627776 + 0.679939i
$$489$$ 11.7771 + 3.82661i 0.532579 + 0.173045i
$$490$$ 16.5534 + 4.67210i 0.747806 + 0.211064i
$$491$$ 4.12033 + 0.652597i 0.185948 + 0.0294513i 0.248714 0.968577i $$-0.419992\pi$$
−0.0627658 + 0.998028i $$0.519992\pi$$
$$492$$ −40.5116 + 9.70890i −1.82640 + 0.437711i
$$493$$ 6.32328 + 3.22187i 0.284786 + 0.145106i
$$494$$ 1.98661 2.14824i 0.0893817 0.0966540i
$$495$$ 40.5219 2.73958i 1.82132 0.123135i
$$496$$ −1.49693 + 0.235867i −0.0672139 + 0.0105908i
$$497$$ 5.80022 + 17.8512i 0.260175 + 0.800737i
$$498$$ 4.55686 0.905473i 0.204198 0.0405752i
$$499$$ −1.84552 + 11.6522i −0.0826170 + 0.521623i 0.911322 + 0.411693i $$0.135063\pi$$
−0.993939 + 0.109930i $$0.964937\pi$$
$$500$$ −7.10377 + 4.34930i −0.317690 + 0.194507i
$$501$$ −28.2704 + 14.4045i −1.26303 + 0.643545i
$$502$$ 3.82816 + 4.85799i 0.170859 + 0.216823i
$$503$$ −12.9229 + 17.7868i −0.576204 + 0.793076i −0.993273 0.115798i $$-0.963057\pi$$
0.417069 + 0.908875i $$0.363057\pi$$
$$504$$ −17.7945 6.57680i −0.792628 0.292954i
$$505$$ 4.11865i 0.183278i
$$506$$ 16.8865 + 37.7390i 0.750696 + 1.67770i
$$507$$ 23.5771 + 23.5771i 1.04710 + 1.04710i
$$508$$ 29.7411 12.3053i 1.31955 0.545959i
$$509$$ 32.3933 5.13060i 1.43581 0.227410i 0.610467 0.792042i $$-0.290982\pi$$
0.825343 + 0.564632i $$0.190982\pi$$
$$510$$ −31.2780 3.70831i −1.38501 0.164207i
$$511$$ 3.71097 11.4212i 0.164164 0.505244i
$$512$$ 15.3893 16.5883i 0.680116 0.733105i
$$513$$ −10.4724 + 7.60863i −0.462367 + 0.335929i
$$514$$ 1.21847 + 6.13206i 0.0537446 + 0.270474i
$$515$$ 31.1342 + 15.8637i 1.37194 + 0.699037i
$$516$$ 1.95418 + 24.9573i 0.0860280 + 1.09868i
$$517$$ −1.40201 6.13735i −0.0616601 0.269921i
$$518$$ −9.95046 + 0.388970i −0.437198 + 0.0170904i
$$519$$ 31.7978 10.3317i 1.39577 0.453512i
$$520$$ −2.45465 + 0.690699i −0.107643 + 0.0302891i
$$521$$ 6.37188 + 8.77014i 0.279157 + 0.384227i 0.925454 0.378859i $$-0.123683\pi$$
−0.646297 + 0.763086i $$0.723683\pi$$
$$522$$ −13.6976 3.86607i −0.599528 0.169213i
$$523$$ −22.4156 + 11.4213i −0.980164 + 0.499419i −0.869229 0.494409i $$-0.835385\pi$$
−0.110935 + 0.993828i $$0.535385\pi$$
$$524$$ −1.76556 0.139661i −0.0771291 0.00610110i
$$525$$ 29.2025 4.62523i 1.27450 0.201861i
$$526$$ 24.6238 + 11.3577i 1.07365 + 0.495218i
$$527$$ 0.975692 0.0425018
$$528$$ 22.5284 25.7540i 0.980421 1.12080i
$$529$$ −54.6995 −2.37824
$$530$$ 26.9064 + 12.4105i 1.16874 + 0.539079i
$$531$$ −11.5897 + 1.83564i −0.502952 + 0.0796598i
$$532$$ −2.22867 + 28.1744i −0.0966250 + 1.22152i
$$533$$ 1.93481 0.985836i 0.0838060 0.0427013i
$$534$$ −20.7859 5.86671i −0.899495 0.253877i
$$535$$ 16.5167 + 22.7332i 0.714077 + 0.982843i
$$536$$ −17.5006 + 31.2059i −0.755912 + 1.34789i
$$537$$ −30.3594 + 9.86438i −1.31011 + 0.425679i
$$538$$ −23.1625 + 0.905438i −0.998608 + 0.0390362i
$$539$$ 10.3265 6.17241i 0.444795 0.265864i
$$540$$ 11.2466 0.880616i 0.483975 0.0378957i
$$541$$ −23.3128 11.8785i −1.00230 0.510696i −0.125776 0.992059i $$-0.540142\pi$$
−0.876522 + 0.481362i $$0.840142\pi$$
$$542$$ −0.126815 0.638205i −0.00544716 0.0274132i
$$543$$ 30.8318 22.4006i 1.32312 0.961302i
$$544$$ −11.4501 + 9.00802i −0.490917 + 0.386216i
$$545$$ 15.0445 46.3022i 0.644436 1.98337i
$$546$$ 1.78862 + 0.212059i 0.0765459 + 0.00907527i
$$547$$ 14.6467 2.31981i 0.626247 0.0991878i 0.164759 0.986334i $$-0.447315\pi$$
0.461489 + 0.887146i $$0.347315\pi$$
$$548$$ −8.44008 20.3991i −0.360542 0.871408i
$$549$$ 18.6661 + 18.6661i 0.796649 + 0.796649i
$$550$$ −6.03411 + 28.6496i −0.257295 + 1.22162i
$$551$$ 21.2036i 0.903303i
$$552$$ 26.8866 + 58.4133i 1.14437 + 2.48624i
$$553$$ −1.58368 + 2.17975i −0.0673450 + 0.0926924i
$$554$$ 8.55126 + 10.8517i 0.363308 + 0.461043i
$$555$$ 29.5437 15.0533i 1.25406 0.638975i
$$556$$ 9.31932 + 15.2214i 0.395227 + 0.645530i
$$557$$ 0.335302 2.11701i 0.0142072 0.0897006i −0.979566 0.201123i $$-0.935541\pi$$
0.993773 + 0.111423i $$0.0355408\pi$$
$$558$$ −1.91925 + 0.381365i −0.0812483 + 0.0161445i
$$559$$ −0.403236 1.24103i −0.0170551 0.0524901i
$$560$$ 14.4932 19.9147i 0.612448 0.841551i
$$561$$ −16.9091 + 14.1220i −0.713903 + 0.596233i
$$562$$ 30.7397 33.2407i 1.29668 1.40218i
$$563$$ 2.42768 + 1.23696i 0.102314 + 0.0521318i 0.504399 0.863471i $$-0.331714\pi$$
−0.402084 + 0.915603i $$0.631714\pi$$
$$564$$ −2.28196 9.52177i −0.0960880 0.400939i
$$565$$ −37.0040 5.86086i −1.55677 0.246568i
$$566$$ −28.7162 8.10497i −1.20703 0.340677i
$$567$$ 11.5587 + 3.75564i 0.485419 + 0.157722i
$$568$$ −28.8853 1.15219i −1.21200 0.0483449i
$$569$$ 19.3553 26.6403i 0.811417 1.11682i −0.179686 0.983724i $$-0.557508\pi$$
0.991103 0.133096i $$-0.0424918\pi$$
$$570$$ −32.5542 88.2961i −1.36354 3.69832i
$$571$$ 32.6222 + 32.6222i 1.36520 + 1.36520i 0.867151 + 0.498045i $$0.165948\pi$$
0.498045 + 0.867151i $$0.334052\pi$$
$$572$$ −0.827844 + 1.57982i −0.0346139 + 0.0660556i
$$573$$ −28.5819 + 28.5819i −1.19402 + 1.19402i
$$574$$ −8.78497 + 19.0461i −0.366677 + 0.794969i
$$575$$ −44.5142 32.3415i −1.85637 1.34873i
$$576$$ 19.0021 22.1948i 0.791753 0.924783i
$$577$$ 3.20173 9.85392i 0.133290 0.410224i −0.862030 0.506857i $$-0.830807\pi$$
0.995320 + 0.0966328i $$0.0308073\pi$$
$$578$$ −12.7935 + 7.16137i −0.532140 + 0.297874i
$$579$$ 2.12259 13.4015i 0.0882119 0.556948i
$$580$$ 9.66130 15.7517i 0.401164 0.654055i
$$581$$ 1.06196 2.08421i 0.0440574 0.0864675i
$$582$$ 37.7745 1.47663i 1.56580 0.0612083i
$$583$$ 19.2339 7.71942i 0.796589 0.319706i
$$584$$ 14.5180 + 11.4591i 0.600758 + 0.474182i
$$585$$ −3.13153 + 1.01749i −0.129473 + 0.0420682i
$$586$$ −20.3073 + 30.3789i −0.838886 + 1.25494i
$$587$$ −27.7663 4.39775i −1.14604 0.181514i −0.445602 0.895231i $$-0.647010\pi$$
−0.700434 + 0.713717i $$0.747010\pi$$
$$588$$ 15.9580 9.77031i 0.658095 0.402921i
$$589$$ 1.32345 + 2.59742i 0.0545318 + 0.107025i
$$590$$ 1.79366 15.1287i 0.0738437 0.622840i
$$591$$ −13.3780 9.71970i −0.550298 0.399815i
$$592$$ 4.75096 14.5824i 0.195263 0.599333i
$$593$$ −7.98238 −0.327797 −0.163898 0.986477i $$-0.552407\pi$$
−0.163898 + 0.986477i $$0.552407\pi$$
$$594$$ 4.95426 6.14127i 0.203276 0.251979i
$$595$$ −11.2135 + 11.2135i −0.459708 + 0.459708i
$$596$$ −18.9039 7.83906i −0.774332 0.321100i
$$597$$ −7.44269 46.9913i −0.304609 1.92322i
$$598$$ −2.07461 2.63271i −0.0848372 0.107660i
$$599$$ −35.0547 11.3900i −1.43229 0.465381i −0.512808 0.858503i $$-0.671395\pi$$
−0.919486 + 0.393122i $$0.871395\pi$$
$$600$$ −8.91044 + 44.6564i −0.363767 + 1.82309i
$$601$$ −7.15577 9.84907i −0.291890 0.401752i 0.637737 0.770254i $$-0.279871\pi$$
−0.929627 + 0.368502i $$0.879871\pi$$
$$602$$ 10.4785 + 7.00453i 0.427072 + 0.285483i
$$603$$ −20.9739 + 41.1637i −0.854125 + 1.67631i
$$604$$ −6.56361 + 0.513937i −0.267069 + 0.0209118i
$$605$$ 21.0151 + 30.3095i 0.854383 + 1.23226i
$$606$$ 3.28956 + 3.04205i 0.133629 + 0.123575i
$$607$$ −1.82308 5.61087i −0.0739966 0.227738i 0.907217 0.420663i $$-0.138203\pi$$
−0.981214 + 0.192925i $$0.938203\pi$$
$$608$$ −39.5116 18.2628i −1.60241 0.740656i
$$609$$ −10.5594 + 7.67187i −0.427890 + 0.310880i
$$610$$ −29.9061 + 16.7404i −1.21086 + 0.677798i
$$611$$ 0.231709 + 0.454755i 0.00937396 + 0.0183974i
$$612$$ −14.3097 + 12.2118i −0.578434 + 0.493631i
$$613$$ 5.13248 + 32.4052i 0.207299 + 1.30883i 0.843425 + 0.537248i $$0.180536\pi$$
−0.636126 + 0.771585i $$0.719464\pi$$
$$614$$ −9.75644 26.4622i −0.393738 1.06793i
$$615$$ 69.8393i 2.81619i
$$616$$ −3.16417 16.9346i −0.127488 0.682313i
$$617$$ 25.0549i 1.00867i 0.863507 + 0.504337i $$0.168263\pi$$
−0.863507 + 0.504337i $$0.831737\pi$$
$$618$$ 35.6661 13.1498i 1.43470 0.528964i
$$619$$ 3.14934 + 19.8841i 0.126583 + 0.799211i 0.966532 + 0.256546i $$0.0825845\pi$$
−0.839950 + 0.542665i $$0.817415\pi$$
$$620$$ 0.200334 2.53259i 0.00804562 0.101711i
$$621$$ 6.73207 + 13.2124i 0.270149 + 0.530197i
$$622$$ 0.0451990 + 0.0807463i 0.00181231 + 0.00323763i
$$623$$ −8.79744 + 6.39171i −0.352462 + 0.256079i
$$624$$ −1.26135 + 2.47067i −0.0504944 + 0.0989059i
$$625$$ 5.32948 + 16.4024i 0.213179 + 0.656098i
$$626$$ −9.96103 + 10.7715i −0.398123 + 0.430515i
$$627$$ −60.5306 25.8588i −2.41736 1.03270i
$$628$$ 21.7505 + 18.5916i 0.867938 + 0.741887i
$$629$$ −4.48301 + 8.79839i −0.178749 + 0.350815i
$$630$$ 17.6747 26.4406i 0.704176 1.05342i
$$631$$ −3.13716 4.31794i −0.124889 0.171894i 0.741994 0.670406i $$-0.233880\pi$$
−0.866883 + 0.498512i $$0.833880\pi$$
$$632$$ −2.30335 3.45167i −0.0916224 0.137300i
$$633$$ −5.20944 1.69265i −0.207057 0.0672768i
$$634$$ 37.6120 29.6388i 1.49376 1.17711i
$$635$$ 8.44105 + 53.2947i 0.334973 + 2.11493i
$$636$$ 29.7854 12.3236i 1.18107 0.488663i
$$637$$ −0.689672 + 0.689672i −0.0273258 + 0.0273258i
$$638$$ −3.36836 12.4782i −0.133355 0.494017i
$$639$$ −37.3282 −1.47668
$$640$$ 21.0310 + 31.5703i 0.831324 + 1.24793i
$$641$$ −11.4700 8.33345i −0.453038 0.329152i 0.337756 0.941234i $$-0.390332\pi$$
−0.790794 + 0.612082i $$0.790332\pi$$
$$642$$ 30.3562 + 3.59902i 1.19806 + 0.142042i
$$643$$ −5.99315 11.7622i −0.236347 0.463857i 0.742118 0.670269i $$-0.233821\pi$$
−0.978465 + 0.206412i $$0.933821\pi$$
$$644$$ 31.4785 + 7.57057i 1.24042 + 0.298322i
$$645$$ −41.4514 6.56525i −1.63215 0.258507i
$$646$$ 23.2995 + 15.5749i 0.916705 + 0.612787i
$$647$$ 32.4623 10.5476i 1.27622 0.414670i 0.408975 0.912546i $$-0.365886\pi$$
0.867249 + 0.497875i $$0.165886\pi$$
$$648$$ −11.5971 + 14.6927i −0.455575 + 0.577185i
$$649$$ −6.83063 8.17869i −0.268126 0.321042i
$$650$$ −0.0927159 2.37182i −0.00363662 0.0930304i
$$651$$ −0.814668 + 1.59888i −0.0319294 + 0.0626649i
$$652$$ 2.23791 + 9.33794i 0.0876432 + 0.365702i
$$653$$ −3.66897 + 23.1650i −0.143578 + 0.906516i 0.805756 + 0.592248i $$0.201759\pi$$
−0.949334 + 0.314269i $$0.898241\pi$$
$$654$$ −25.8695 46.2149i −1.01158 1.80715i
$$655$$ 0.917518 2.82383i 0.0358504 0.110336i
$$656$$ −22.8239 22.8603i −0.891125 0.892546i
$$657$$ 19.3214 + 14.0378i 0.753798 + 0.547667i
$$658$$ −4.47656 2.06480i −0.174515 0.0804945i
$$659$$ 14.6296 14.6296i 0.569888 0.569888i −0.362209 0.932097i $$-0.617977\pi$$
0.932097 + 0.362209i $$0.117977\pi$$
$$660$$ 33.1845 + 46.7904i 1.29171 + 1.82131i
$$661$$ 22.2770 + 22.2770i 0.866473 + 0.866473i 0.992080 0.125607i $$-0.0400878\pi$$
−0.125607 + 0.992080i $$0.540088\pi$$
$$662$$ 4.60162 1.69659i 0.178847 0.0659398i
$$663$$ 1.04982 1.44496i 0.0407717 0.0561175i
$$664$$ 2.44389 + 2.64696i 0.0948415 + 0.102722i
$$665$$ −45.0620 14.6415i −1.74743 0.567774i
$$666$$ 5.37937 19.0593i 0.208446 0.738532i
$$667$$ 23.9907 + 3.79976i 0.928924 + 0.147127i
$$668$$ −20.9728 12.8637i −0.811463 0.497710i
$$669$$ −18.5245 9.43872i −0.716200 0.364922i
$$670$$ −44.0372 40.7238i −1.70130 1.57330i
$$671$$ −5.85304 + 23.2465i −0.225954 + 0.897421i
$$672$$ −5.20115 26.2847i −0.200639 1.01395i
$$673$$ −3.29641 10.1453i −0.127067 0.391073i 0.867205 0.497952i $$-0.165914\pi$$
−0.994272 + 0.106879i $$0.965914\pi$$
$$674$$ 7.83343 + 39.4223i 0.301732 + 1.51849i
$$675$$ −1.64270 + 10.3716i −0.0632274 + 0.399202i
$$676$$ −6.04584 + 25.1386i −0.232532 + 0.966870i
$$677$$ 14.4670 7.37128i 0.556010 0.283301i −0.153321 0.988176i $$-0.548997\pi$$
0.709331 + 0.704875i $$0.248997\pi$$
$$678$$ −32.0123 + 25.2261i −1.22943 + 0.968804i
$$679$$ 11.1875 15.3983i 0.429338 0.590934i
$$680$$ −10.2121 22.1866i −0.391615 0.850816i
$$681$$ 46.3853i 1.77749i
$$682$$ −1.19146 1.31833i −0.0456236 0.0504814i
$$683$$ 0.877528 + 0.877528i 0.0335777 + 0.0335777i 0.723696 0.690119i $$-0.242442\pi$$
−0.690119 + 0.723696i $$0.742442\pi$$
$$684$$ −51.9192 21.5299i −1.98518 0.823216i
$$685$$ 36.5543 5.78964i 1.39667 0.221211i
$$686$$ 3.24961 27.4091i 0.124071 1.04648i
$$687$$ −0.0717325 + 0.220770i −0.00273677 + 0.00842290i
$$688$$ −15.7137 + 11.3976i −0.599081 + 0.434529i
$$689$$ −1.35933 + 0.987614i −0.0517865 + 0.0376251i
$$690$$ −105.736 + 21.0103i −4.02530 + 0.799849i
$$691$$ −7.81669 3.98280i −0.297361 0.151513i 0.298945 0.954270i $$-0.403365\pi$$
−0.596306 + 0.802757i $$0.703365\pi$$
$$692$$ 19.7076 + 16.8455i 0.749171 + 0.640369i
$$693$$ −4.95408 21.6868i −0.188190 0.823812i
$$694$$ −1.52839 39.0985i −0.0580167 1.48416i
$$695$$ −28.4565 + 9.24609i −1.07942 + 0.350724i
$$696$$ −5.44499 19.3507i −0.206392 0.733487i
$$697$$ 12.2252 + 16.8266i 0.463064 + 0.637353i
$$698$$ 2.22020 7.86623i 0.0840357 0.297741i
$$699$$ 60.1090 30.6271i 2.27353 1.15842i
$$700$$ 14.8829 + 17.4397i 0.562522 + 0.659160i
$$701$$ 4.66214 0.738410i 0.176086 0.0278894i −0.0677685 0.997701i $$-0.521588\pi$$
0.243855 + 0.969812i $$0.421588\pi$$
$$702$$ −0.267931 + 0.580883i −0.0101124 + 0.0219240i
$$703$$ −29.5033 −1.11274
$$704$$ 26.1536 + 4.47086i 0.985701 + 0.168502i
$$705$$ 16.4149 0.618222
$$706$$ 2.53522 5.49643i 0.0954142 0.206861i
$$707$$ 2.22810 0.352897i 0.0837965 0.0132721i
$$708$$ −10.7585 12.6067i −0.404328 0.473789i
$$709$$ 20.8955 10.6468i 0.784748 0.399849i −0.0152260 0.999884i $$-0.504847\pi$$
0.799974 + 0.600035i $$0.204847\pi$$
$$710$$ 13.1643 46.6415i 0.494047 1.75042i
$$711$$ −3.14951 4.33493i −0.118116 0.162573i
$$712$$ −4.53641 16.1218i −0.170009 0.604189i
$$713$$ 3.17600 1.03195i 0.118942 0.0386467i
$$714$$ 0.673863 + 17.2385i 0.0252187 + 0.645134i
$$715$$ −2.25213 1.96689i −0.0842248 0.0735575i
$$716$$ −18.8162 16.0835i −0.703193 0.601068i
$$717$$ 47.1828 + 24.0409i 1.76208 + 0.897822i
$$718$$ −14.2885 + 2.83919i −0.533241 + 0.105958i
$$719$$ 34.6287 25.1592i 1.29143 0.938280i 0.291599 0.956541i $$-0.405813\pi$$
0.999833 + 0.0182603i $$0.00581274\pi$$
$$720$$ 28.7598 + 39.6508i 1.07181 + 1.47770i
$$721$$ 5.91425 18.2022i 0.220258 0.677885i
$$722$$ −6.69497 + 56.4691i −0.249161 + 2.10156i
$$723$$ −27.1549 + 4.30091i −1.00990 + 0.159953i
$$724$$ 27.2980 + 11.3199i 1.01452 + 0.420702i
$$725$$ 12.1627 + 12.1627i 0.451713 + 0.451713i
$$726$$ 39.7298 + 5.60200i 1.47451 + 0.207910i
$$727$$ 33.4566i 1.24084i −0.784271 0.620418i $$-0.786963\pi$$
0.784271 0.620418i $$-0.213037\pi$$
$$728$$ 0.583974 + 1.26873i 0.0216435 + 0.0470223i
$$729$$ −21.8577 + 30.0846i −0.809546 + 1.11424i
$$730$$ −24.3541 + 19.1914i −0.901387 + 0.710305i
$$731$$ 11.1362 5.67420i 0.411889 0.209868i
$$732$$ −8.71821 + 36.2504i −0.322234 + 1.33985i
$$733$$ 0.0346885 0.219015i 0.00128125 0.00808949i −0.987039 0.160478i $$-0.948696\pi$$
0.988321 + 0.152388i $$0.0486965\pi$$
$$734$$ −1.31955 6.64072i −0.0487054 0.245114i
$$735$$ 9.69353 + 29.8336i 0.357551 + 1.10043i
$$736$$ −27.7440 + 41.4325i −1.02266 + 1.52722i
$$737$$ −41.8581 + 2.82992i −1.54186 + 0.104242i
$$738$$ −30.6248 28.3206i −1.12731 1.04250i
$$739$$ 21.4021 + 10.9049i 0.787289 + 0.401144i 0.800926 0.598763i $$-0.204341\pi$$
−0.0136369 + 0.999907i $$0.504341\pi$$
$$740$$ 21.9174 + 13.4430i 0.805700 + 0.494175i
$$741$$ 5.27066 + 0.834791i 0.193623 + 0.0306668i
$$742$$ 4.40842 15.6192i 0.161838 0.573398i
$$743$$ −5.87623 1.90930i −0.215578 0.0700455i 0.199237 0.979951i $$-0.436154\pi$$
−0.414815 + 0.909906i $$0.636154\pi$$
$$744$$ −1.87480 2.03058i −0.0687337 0.0744449i
$$745$$ 20.1660 27.7561i 0.738825 1.01691i
$$746$$ −25.2012 + 9.29151i −0.922681 + 0.340186i
$$747$$ 3.28943 + 3.28943i 0.120354 + 0.120354i
$$748$$ −16.1858 5.46446i −0.591812 0.199800i
$$749$$ 10.8830 10.8830i 0.397656 0.397656i
$$750$$ −13.7943 6.36260i −0.503697 0.232329i
$$751$$ 2.49090 + 1.80974i 0.0908942 + 0.0660385i 0.632304 0.774720i $$-0.282109\pi$$
−0.541410 + 0.840759i $$0.682109\pi$$
$$752$$ 5.37306 5.36450i 0.195935 0.195623i
$$753$$ −3.48574 + 10.7280i −0.127027 + 0.390950i
$$754$$ 0.511815 + 0.914339i 0.0186392 + 0.0332982i
$$755$$ 1.72662 10.9014i 0.0628381 0.396744i
$$756$$ −1.44003 6.00870i −0.0523734 0.218534i
$$757$$ 0.413901 0.812326i 0.0150435 0.0295245i −0.883362 0.468690i $$-0.844726\pi$$
0.898406 + 0.439166i $$0.144726\pi$$
$$758$$ −0.466841 11.9425i −0.0169564 0.433772i
$$759$$ −40.1051 + 63.8531i −1.45572 + 2.31772i
$$760$$ 45.2116 57.2802i 1.64000 2.07777i
$$761$$ 19.2077 6.24095i 0.696278 0.226234i 0.0605698 0.998164i $$-0.480708\pi$$
0.635708 + 0.771930i $$0.280708\pi$$
$$762$$ 48.8009 + 32.6217i 1.76787 + 1.18176i
$$763$$ −26.3376 4.17146i −0.953484 0.151017i
$$764$$ −30.4748 7.32920i −1.10254 0.265161i
$$765$$ −14.3178 28.1003i −0.517663 1.01597i
$$766$$ 33.8272 + 4.01054i 1.22223 + 0.144907i
$$767$$ 0.698905 + 0.507784i 0.0252360 + 0.0183350i