Properties

Label 176.2.w.a.5.7
Level $176$
Weight $2$
Character 176.5
Analytic conductor $1.405$
Analytic rank $0$
Dimension $176$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,2,Mod(5,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 5, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 176.w (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40536707557\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 5.7
Character \(\chi\) \(=\) 176.5
Dual form 176.2.w.a.141.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.779948 + 1.17970i) q^{2} +(1.33374 - 0.211244i) q^{3} +(-0.783362 - 1.84020i) q^{4} +(0.141837 - 0.0722696i) q^{5} +(-0.791046 + 1.73817i) q^{6} +(1.45574 + 2.00365i) q^{7} +(2.78186 + 0.511133i) q^{8} +(-1.11893 + 0.363561i) q^{9} +O(q^{10})\) \(q+(-0.779948 + 1.17970i) q^{2} +(1.33374 - 0.211244i) q^{3} +(-0.783362 - 1.84020i) q^{4} +(0.141837 - 0.0722696i) q^{5} +(-0.791046 + 1.73817i) q^{6} +(1.45574 + 2.00365i) q^{7} +(2.78186 + 0.511133i) q^{8} +(-1.11893 + 0.363561i) q^{9} +(-0.0253694 + 0.223691i) q^{10} +(2.80267 - 1.77343i) q^{11} +(-1.43353 - 2.28887i) q^{12} +(5.97781 + 3.04584i) q^{13} +(-3.49909 + 0.154583i) q^{14} +(0.173908 - 0.126351i) q^{15} +(-2.77269 + 2.88309i) q^{16} +(0.997950 - 3.07138i) q^{17} +(0.443813 - 1.60355i) q^{18} +(-7.96492 + 1.26152i) q^{19} +(-0.244101 - 0.204396i) q^{20} +(2.36483 + 2.36483i) q^{21} +(-0.0938250 + 4.68948i) q^{22} -3.93241i q^{23} +(3.81826 + 0.0940686i) q^{24} +(-2.92403 + 4.02458i) q^{25} +(-8.25555 + 4.67639i) q^{26} +(-5.02512 + 2.56042i) q^{27} +(2.54675 - 4.24843i) q^{28} +(0.321711 - 2.03120i) q^{29} +(0.0134171 + 0.303705i) q^{30} +(-1.33069 - 4.09543i) q^{31} +(-1.23862 - 5.51959i) q^{32} +(3.36341 - 2.95735i) q^{33} +(2.84494 + 3.57279i) q^{34} +(0.351280 + 0.178986i) q^{35} +(1.54555 + 1.77425i) q^{36} +(1.07714 + 0.170602i) q^{37} +(4.72402 - 10.3801i) q^{38} +(8.61627 + 2.79960i) q^{39} +(0.431510 - 0.128546i) q^{40} +(3.33302 - 4.58751i) q^{41} +(-4.63423 + 0.945337i) q^{42} +(-4.85094 - 4.85094i) q^{43} +(-5.45898 - 3.76823i) q^{44} +(-0.132431 + 0.132431i) q^{45} +(4.63905 + 3.06708i) q^{46} +(-4.29363 - 3.11950i) q^{47} +(-3.08901 + 4.43101i) q^{48} +(0.267678 - 0.823828i) q^{49} +(-2.46719 - 6.58843i) q^{50} +(0.682199 - 4.30723i) q^{51} +(0.922181 - 13.3864i) q^{52} +(-3.26044 + 6.39897i) q^{53} +(0.898808 - 7.92510i) q^{54} +(0.269357 - 0.454086i) q^{55} +(3.02552 + 6.31794i) q^{56} +(-10.3567 + 3.36508i) q^{57} +(2.14528 + 1.96375i) q^{58} +(-9.97559 - 1.57998i) q^{59} +(-0.368745 - 0.221046i) q^{60} +(3.72256 + 7.30593i) q^{61} +(5.86923 + 1.62442i) q^{62} +(-2.35731 - 1.71269i) q^{63} +(7.47749 + 2.84380i) q^{64} +1.06800 q^{65} +(0.865485 + 6.27437i) q^{66} +(2.66050 - 2.66050i) q^{67} +(-6.43371 + 0.569569i) q^{68} +(-0.830699 - 5.24482i) q^{69} +(-0.485130 + 0.274804i) q^{70} +(0.0749414 + 0.0243499i) q^{71} +(-3.29852 + 0.439456i) q^{72} +(3.33103 + 4.58477i) q^{73} +(-1.04137 + 1.13764i) q^{74} +(-3.04973 + 5.98544i) q^{75} +(8.56087 + 13.6688i) q^{76} +(7.63328 + 3.03391i) q^{77} +(-10.0229 + 7.98103i) q^{78} +(1.23948 + 3.81473i) q^{79} +(-0.184910 + 0.609310i) q^{80} +(-3.30589 + 2.40187i) q^{81} +(2.81228 + 7.50996i) q^{82} +(1.99285 + 3.91118i) q^{83} +(2.49925 - 6.20430i) q^{84} +(-0.0804208 - 0.507757i) q^{85} +(9.50611 - 1.93915i) q^{86} -2.77706i q^{87} +(8.70308 - 3.50090i) q^{88} -12.8156i q^{89} +(-0.0529389 - 0.259517i) q^{90} +(2.59931 + 16.4114i) q^{91} +(-7.23644 + 3.08050i) q^{92} +(-2.63993 - 5.18115i) q^{93} +(7.02887 - 2.63212i) q^{94} +(-1.03855 + 0.754553i) q^{95} +(-2.81797 - 7.10005i) q^{96} +(-2.40325 - 7.39643i) q^{97} +(0.763091 + 0.958322i) q^{98} +(-2.49123 + 3.00328i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8} - 16 q^{10} - 12 q^{11} - 6 q^{13} - 12 q^{15} + 14 q^{16} - 12 q^{17} - 44 q^{18} - 6 q^{19} + 2 q^{20} - 28 q^{21} + 50 q^{22} - 38 q^{24} - 68 q^{26} - 18 q^{27} - 46 q^{28} - 22 q^{29} + 26 q^{30} - 12 q^{31} - 16 q^{32} - 16 q^{33} + 12 q^{34} - 26 q^{35} - 22 q^{36} + 18 q^{37} - 34 q^{38} + 14 q^{40} - 10 q^{42} - 40 q^{43} + 2 q^{44} - 24 q^{45} + 38 q^{46} - 12 q^{47} - 26 q^{48} + 8 q^{49} - 62 q^{50} + 6 q^{51} + 74 q^{52} - 30 q^{53} - 52 q^{54} - 96 q^{56} - 26 q^{58} + 10 q^{59} + 118 q^{60} - 6 q^{61} - 42 q^{62} - 28 q^{63} - 106 q^{64} - 32 q^{65} + 6 q^{66} + 24 q^{67} + 116 q^{68} + 12 q^{69} + 52 q^{70} - 98 q^{72} + 96 q^{74} - 46 q^{75} + 112 q^{76} - 14 q^{77} + 44 q^{78} - 52 q^{79} - 28 q^{80} + 66 q^{82} + 54 q^{83} + 120 q^{84} + 14 q^{85} + 86 q^{86} + 142 q^{88} + 228 q^{90} - 122 q^{91} + 146 q^{92} + 6 q^{93} + 56 q^{94} + 52 q^{95} + 86 q^{96} - 12 q^{97} + 140 q^{98} + 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.779948 + 1.17970i −0.551507 + 0.834171i
\(3\) 1.33374 0.211244i 0.770036 0.121962i 0.240959 0.970535i \(-0.422538\pi\)
0.529077 + 0.848574i \(0.322538\pi\)
\(4\) −0.783362 1.84020i −0.391681 0.920101i
\(5\) 0.141837 0.0722696i 0.0634315 0.0323200i −0.421987 0.906602i \(-0.638667\pi\)
0.485419 + 0.874282i \(0.338667\pi\)
\(6\) −0.791046 + 1.73817i −0.322943 + 0.709604i
\(7\) 1.45574 + 2.00365i 0.550217 + 0.757308i 0.990042 0.140775i \(-0.0449595\pi\)
−0.439825 + 0.898083i \(0.644960\pi\)
\(8\) 2.78186 + 0.511133i 0.983536 + 0.180713i
\(9\) −1.11893 + 0.363561i −0.372975 + 0.121187i
\(10\) −0.0253694 + 0.223691i −0.00802252 + 0.0707374i
\(11\) 2.80267 1.77343i 0.845036 0.534710i
\(12\) −1.43353 2.28887i −0.413826 0.660741i
\(13\) 5.97781 + 3.04584i 1.65795 + 0.844765i 0.995407 + 0.0957377i \(0.0305210\pi\)
0.662539 + 0.749028i \(0.269479\pi\)
\(14\) −3.49909 + 0.154583i −0.935172 + 0.0413141i
\(15\) 0.173908 0.126351i 0.0449028 0.0326238i
\(16\) −2.77269 + 2.88309i −0.693172 + 0.720772i
\(17\) 0.997950 3.07138i 0.242039 0.744918i −0.754071 0.656793i \(-0.771913\pi\)
0.996109 0.0881250i \(-0.0280875\pi\)
\(18\) 0.443813 1.60355i 0.104608 0.377960i
\(19\) −7.96492 + 1.26152i −1.82728 + 0.289413i −0.973069 0.230515i \(-0.925959\pi\)
−0.854210 + 0.519928i \(0.825959\pi\)
\(20\) −0.244101 0.204396i −0.0545826 0.0457043i
\(21\) 2.36483 + 2.36483i 0.516049 + 0.516049i
\(22\) −0.0938250 + 4.68948i −0.0200036 + 0.999800i
\(23\) 3.93241i 0.819965i −0.912093 0.409982i \(-0.865535\pi\)
0.912093 0.409982i \(-0.134465\pi\)
\(24\) 3.81826 + 0.0940686i 0.779398 + 0.0192017i
\(25\) −2.92403 + 4.02458i −0.584806 + 0.804917i
\(26\) −8.25555 + 4.67639i −1.61905 + 0.917116i
\(27\) −5.02512 + 2.56042i −0.967084 + 0.492754i
\(28\) 2.54675 4.24843i 0.481290 0.802878i
\(29\) 0.321711 2.03120i 0.0597401 0.377184i −0.939646 0.342148i \(-0.888845\pi\)
0.999386 0.0350360i \(-0.0111546\pi\)
\(30\) 0.0134171 + 0.303705i 0.00244962 + 0.0554488i
\(31\) −1.33069 4.09543i −0.238999 0.735562i −0.996566 0.0828047i \(-0.973612\pi\)
0.757567 0.652757i \(-0.226388\pi\)
\(32\) −1.23862 5.51959i −0.218958 0.975734i
\(33\) 3.36341 2.95735i 0.585494 0.514808i
\(34\) 2.84494 + 3.57279i 0.487903 + 0.612729i
\(35\) 0.351280 + 0.178986i 0.0593772 + 0.0302542i
\(36\) 1.54555 + 1.77425i 0.257592 + 0.295708i
\(37\) 1.07714 + 0.170602i 0.177081 + 0.0280468i 0.244345 0.969688i \(-0.421427\pi\)
−0.0672643 + 0.997735i \(0.521427\pi\)
\(38\) 4.72402 10.3801i 0.766337 1.68388i
\(39\) 8.61627 + 2.79960i 1.37971 + 0.448294i
\(40\) 0.431510 0.128546i 0.0682278 0.0203250i
\(41\) 3.33302 4.58751i 0.520530 0.716448i −0.465120 0.885247i \(-0.653989\pi\)
0.985650 + 0.168799i \(0.0539889\pi\)
\(42\) −4.63423 + 0.945337i −0.715078 + 0.145869i
\(43\) −4.85094 4.85094i −0.739761 0.739761i 0.232771 0.972532i \(-0.425221\pi\)
−0.972532 + 0.232771i \(0.925221\pi\)
\(44\) −5.45898 3.76823i −0.822972 0.568083i
\(45\) −0.132431 + 0.132431i −0.0197416 + 0.0197416i
\(46\) 4.63905 + 3.06708i 0.683991 + 0.452216i
\(47\) −4.29363 3.11950i −0.626290 0.455026i 0.228823 0.973468i \(-0.426512\pi\)
−0.855113 + 0.518442i \(0.826512\pi\)
\(48\) −3.08901 + 4.43101i −0.445861 + 0.639561i
\(49\) 0.267678 0.823828i 0.0382397 0.117690i
\(50\) −2.46719 6.58843i −0.348913 0.931745i
\(51\) 0.682199 4.30723i 0.0955269 0.603133i
\(52\) 0.922181 13.3864i 0.127884 1.85636i
\(53\) −3.26044 + 6.39897i −0.447856 + 0.878967i 0.551151 + 0.834406i \(0.314189\pi\)
−0.999007 + 0.0445610i \(0.985811\pi\)
\(54\) 0.898808 7.92510i 0.122312 1.07847i
\(55\) 0.269357 0.454086i 0.0363201 0.0612290i
\(56\) 3.02552 + 6.31794i 0.404302 + 0.844271i
\(57\) −10.3567 + 3.36508i −1.37177 + 0.445716i
\(58\) 2.14528 + 1.96375i 0.281689 + 0.257853i
\(59\) −9.97559 1.57998i −1.29871 0.205696i −0.531483 0.847069i \(-0.678365\pi\)
−0.767229 + 0.641373i \(0.778365\pi\)
\(60\) −0.368745 0.221046i −0.0476047 0.0285370i
\(61\) 3.72256 + 7.30593i 0.476624 + 0.935428i 0.996690 + 0.0813015i \(0.0259077\pi\)
−0.520065 + 0.854127i \(0.674092\pi\)
\(62\) 5.86923 + 1.62442i 0.745393 + 0.206302i
\(63\) −2.35731 1.71269i −0.296993 0.215778i
\(64\) 7.47749 + 2.84380i 0.934686 + 0.355475i
\(65\) 1.06800 0.132469
\(66\) 0.865485 + 6.27437i 0.106534 + 0.772322i
\(67\) 2.66050 2.66050i 0.325031 0.325031i −0.525662 0.850693i \(-0.676182\pi\)
0.850693 + 0.525662i \(0.176182\pi\)
\(68\) −6.43371 + 0.569569i −0.780202 + 0.0690704i
\(69\) −0.830699 5.24482i −0.100004 0.631403i
\(70\) −0.485130 + 0.274804i −0.0579841 + 0.0328453i
\(71\) 0.0749414 + 0.0243499i 0.00889391 + 0.00288981i 0.313461 0.949601i \(-0.398512\pi\)
−0.304567 + 0.952491i \(0.598512\pi\)
\(72\) −3.29852 + 0.439456i −0.388735 + 0.0517904i
\(73\) 3.33103 + 4.58477i 0.389868 + 0.536607i 0.958165 0.286217i \(-0.0923977\pi\)
−0.568297 + 0.822823i \(0.692398\pi\)
\(74\) −1.04137 + 1.13764i −0.121057 + 0.132248i
\(75\) −3.04973 + 5.98544i −0.352153 + 0.691139i
\(76\) 8.56087 + 13.6688i 0.982000 + 1.56792i
\(77\) 7.63328 + 3.03391i 0.869893 + 0.345746i
\(78\) −10.0229 + 7.98103i −1.13487 + 0.903674i
\(79\) 1.23948 + 3.81473i 0.139453 + 0.429191i 0.996256 0.0864522i \(-0.0275530\pi\)
−0.856803 + 0.515643i \(0.827553\pi\)
\(80\) −0.184910 + 0.609310i −0.0206736 + 0.0681230i
\(81\) −3.30589 + 2.40187i −0.367321 + 0.266874i
\(82\) 2.81228 + 7.50996i 0.310564 + 0.829337i
\(83\) 1.99285 + 3.91118i 0.218743 + 0.429308i 0.974135 0.225965i \(-0.0725536\pi\)
−0.755392 + 0.655273i \(0.772554\pi\)
\(84\) 2.49925 6.20430i 0.272691 0.676944i
\(85\) −0.0804208 0.507757i −0.00872286 0.0550739i
\(86\) 9.50611 1.93915i 1.02507 0.209104i
\(87\) 2.77706i 0.297732i
\(88\) 8.70308 3.50090i 0.927752 0.373197i
\(89\) 12.8156i 1.35845i −0.733929 0.679226i \(-0.762316\pi\)
0.733929 0.679226i \(-0.237684\pi\)
\(90\) −0.0529389 0.259517i −0.00558025 0.0273555i
\(91\) 2.59931 + 16.4114i 0.272481 + 1.72038i
\(92\) −7.23644 + 3.08050i −0.754451 + 0.321165i
\(93\) −2.63993 5.18115i −0.273748 0.537261i
\(94\) 7.02887 2.63212i 0.724973 0.271483i
\(95\) −1.03855 + 0.754553i −0.106553 + 0.0774155i
\(96\) −2.81797 7.10005i −0.287608 0.724646i
\(97\) −2.40325 7.39643i −0.244013 0.750994i −0.995797 0.0915850i \(-0.970807\pi\)
0.751785 0.659409i \(-0.229193\pi\)
\(98\) 0.763091 + 0.958322i 0.0770839 + 0.0968051i
\(99\) −2.49123 + 3.00328i −0.250378 + 0.301841i
\(100\) 9.69662 + 2.22810i 0.969662 + 0.222810i
\(101\) −6.90027 + 13.5425i −0.686603 + 1.34753i 0.239734 + 0.970839i \(0.422940\pi\)
−0.926337 + 0.376695i \(0.877060\pi\)
\(102\) 4.54914 + 4.16420i 0.450432 + 0.412318i
\(103\) −1.33107 1.83206i −0.131154 0.180518i 0.738389 0.674375i \(-0.235587\pi\)
−0.869543 + 0.493857i \(0.835587\pi\)
\(104\) 15.0726 + 11.5286i 1.47799 + 1.13047i
\(105\) 0.506327 + 0.164516i 0.0494125 + 0.0160551i
\(106\) −5.00587 8.83719i −0.486213 0.858344i
\(107\) 1.99306 + 12.5837i 0.192676 + 1.21651i 0.874512 + 0.485005i \(0.161182\pi\)
−0.681835 + 0.731506i \(0.738818\pi\)
\(108\) 8.64819 + 7.24149i 0.832172 + 0.696813i
\(109\) −9.48803 + 9.48803i −0.908789 + 0.908789i −0.996175 0.0873857i \(-0.972149\pi\)
0.0873857 + 0.996175i \(0.472149\pi\)
\(110\) 0.325599 + 0.671923i 0.0310446 + 0.0640653i
\(111\) 1.47267 0.139779
\(112\) −9.81300 1.35847i −0.927241 0.128364i
\(113\) 0.886226 + 0.643881i 0.0833692 + 0.0605712i 0.628689 0.777657i \(-0.283592\pi\)
−0.545320 + 0.838228i \(0.683592\pi\)
\(114\) 4.10789 14.8423i 0.384739 1.39011i
\(115\) −0.284194 0.557762i −0.0265012 0.0520116i
\(116\) −3.98984 + 0.999153i −0.370447 + 0.0927691i
\(117\) −7.79607 1.23478i −0.720747 0.114155i
\(118\) 9.64434 10.5359i 0.887833 0.969905i
\(119\) 7.60671 2.47157i 0.697306 0.226568i
\(120\) 0.548369 0.262602i 0.0500590 0.0239721i
\(121\) 4.70988 9.94068i 0.428171 0.903698i
\(122\) −11.5222 1.30676i −1.04317 0.118309i
\(123\) 3.47630 6.82263i 0.313448 0.615176i
\(124\) −6.49402 + 5.65694i −0.583180 + 0.508008i
\(125\) −0.248393 + 1.56829i −0.0222170 + 0.140272i
\(126\) 3.85903 1.44510i 0.343789 0.128740i
\(127\) 3.00883 9.26021i 0.266990 0.821711i −0.724238 0.689550i \(-0.757808\pi\)
0.991228 0.132161i \(-0.0421916\pi\)
\(128\) −9.18687 + 6.60314i −0.812012 + 0.583641i
\(129\) −7.49463 5.44517i −0.659865 0.479420i
\(130\) −0.832982 + 1.25991i −0.0730574 + 0.110502i
\(131\) 5.04787 5.04787i 0.441034 0.441034i −0.451325 0.892359i \(-0.649049\pi\)
0.892359 + 0.451325i \(0.149049\pi\)
\(132\) −8.07688 3.87268i −0.703002 0.337073i
\(133\) −14.1225 14.1225i −1.22457 1.22457i
\(134\) 1.06353 + 5.21362i 0.0918747 + 0.450389i
\(135\) −0.527707 + 0.726327i −0.0454178 + 0.0625122i
\(136\) 4.34604 8.03405i 0.372670 0.688914i
\(137\) −11.6541 3.78666i −0.995679 0.323516i −0.234541 0.972106i \(-0.575359\pi\)
−0.761138 + 0.648590i \(0.775359\pi\)
\(138\) 6.83520 + 3.11072i 0.581851 + 0.264802i
\(139\) 6.32049 + 1.00107i 0.536097 + 0.0849094i 0.418612 0.908165i \(-0.362517\pi\)
0.117485 + 0.993075i \(0.462517\pi\)
\(140\) 0.0541912 0.786638i 0.00457999 0.0664830i
\(141\) −6.38557 3.25361i −0.537762 0.274003i
\(142\) −0.0871759 + 0.0694163i −0.00731564 + 0.00582529i
\(143\) 22.1554 2.06474i 1.85273 0.172663i
\(144\) 2.05425 4.23401i 0.171188 0.352834i
\(145\) −0.101164 0.311350i −0.00840118 0.0258562i
\(146\) −8.00666 + 0.353719i −0.662636 + 0.0292740i
\(147\) 0.182985 1.15532i 0.0150923 0.0952891i
\(148\) −0.529848 2.11580i −0.0435533 0.173918i
\(149\) 20.3554 10.3716i 1.66758 0.849673i 0.673721 0.738985i \(-0.264695\pi\)
0.993855 0.110687i \(-0.0353052\pi\)
\(150\) −4.68236 8.26609i −0.382313 0.674923i
\(151\) −6.26771 + 8.62676i −0.510059 + 0.702036i −0.983929 0.178559i \(-0.942857\pi\)
0.473870 + 0.880595i \(0.342857\pi\)
\(152\) −22.8021 0.561765i −1.84950 0.0455651i
\(153\) 3.79946i 0.307168i
\(154\) −9.53265 + 6.63865i −0.768163 + 0.534958i
\(155\) −0.484716 0.484716i −0.0389334 0.0389334i
\(156\) −1.59784 18.0488i −0.127929 1.44506i
\(157\) 8.30576 1.31550i 0.662872 0.104989i 0.184072 0.982913i \(-0.441072\pi\)
0.478800 + 0.877924i \(0.341072\pi\)
\(158\) −5.46696 1.51308i −0.434928 0.120374i
\(159\) −2.99684 + 9.22333i −0.237665 + 0.731458i
\(160\) −0.574580 0.693368i −0.0454246 0.0548156i
\(161\) 7.87918 5.72456i 0.620966 0.451158i
\(162\) −0.255052 5.77327i −0.0200388 0.453591i
\(163\) 3.40270 + 1.73376i 0.266520 + 0.135799i 0.582144 0.813086i \(-0.302214\pi\)
−0.315624 + 0.948884i \(0.602214\pi\)
\(164\) −11.0529 2.53975i −0.863087 0.198321i
\(165\) 0.263330 0.662534i 0.0205002 0.0515782i
\(166\) −6.16832 0.699566i −0.478754 0.0542968i
\(167\) 1.76401 0.573161i 0.136503 0.0443525i −0.239969 0.970781i \(-0.577137\pi\)
0.376472 + 0.926428i \(0.377137\pi\)
\(168\) 5.36989 + 7.78738i 0.414296 + 0.600810i
\(169\) 18.8158 + 25.8977i 1.44737 + 1.99213i
\(170\) 0.661722 + 0.301152i 0.0507518 + 0.0230973i
\(171\) 8.45352 4.30728i 0.646457 0.329386i
\(172\) −5.12666 + 12.7267i −0.390904 + 0.970405i
\(173\) −10.6104 + 1.68053i −0.806697 + 0.127768i −0.546144 0.837691i \(-0.683905\pi\)
−0.260553 + 0.965459i \(0.583905\pi\)
\(174\) 3.27608 + 2.16596i 0.248359 + 0.164201i
\(175\) −12.3205 −0.931340
\(176\) −2.65796 + 12.9975i −0.200351 + 0.979724i
\(177\) −13.6386 −1.02514
\(178\) 15.1185 + 9.99551i 1.13318 + 0.749195i
\(179\) 9.71848 1.53926i 0.726393 0.115049i 0.217723 0.976011i \(-0.430137\pi\)
0.508671 + 0.860961i \(0.330137\pi\)
\(180\) 0.347441 + 0.139958i 0.0258967 + 0.0104319i
\(181\) 16.1603 8.23410i 1.20119 0.612036i 0.265242 0.964182i \(-0.414548\pi\)
0.935945 + 0.352146i \(0.114548\pi\)
\(182\) −21.3877 9.73363i −1.58536 0.721504i
\(183\) 6.50826 + 8.95785i 0.481105 + 0.662184i
\(184\) 2.00999 10.9394i 0.148178 0.806465i
\(185\) 0.165108 0.0536468i 0.0121390 0.00394419i
\(186\) 8.17119 + 0.926718i 0.599141 + 0.0679502i
\(187\) −2.64995 10.3778i −0.193784 0.758903i
\(188\) −2.37705 + 10.3448i −0.173364 + 0.754475i
\(189\) −12.4454 6.34127i −0.905272 0.461259i
\(190\) −0.0801252 1.81369i −0.00581289 0.131579i
\(191\) 5.58712 4.05928i 0.404270 0.293719i −0.367008 0.930218i \(-0.619618\pi\)
0.771278 + 0.636499i \(0.219618\pi\)
\(192\) 10.5738 + 2.21332i 0.763096 + 0.159733i
\(193\) −1.12019 + 3.44759i −0.0806330 + 0.248163i −0.983244 0.182294i \(-0.941648\pi\)
0.902611 + 0.430457i \(0.141648\pi\)
\(194\) 10.5999 + 2.93373i 0.761031 + 0.210630i
\(195\) 1.42443 0.225608i 0.102006 0.0161561i
\(196\) −1.72570 + 0.152774i −0.123264 + 0.0109124i
\(197\) 3.75105 + 3.75105i 0.267252 + 0.267252i 0.827992 0.560740i \(-0.189483\pi\)
−0.560740 + 0.827992i \(0.689483\pi\)
\(198\) −1.59993 5.28129i −0.113702 0.375325i
\(199\) 8.19027i 0.580593i 0.956937 + 0.290296i \(0.0937539\pi\)
−0.956937 + 0.290296i \(0.906246\pi\)
\(200\) −10.1913 + 9.70126i −0.720637 + 0.685983i
\(201\) 2.98640 4.11043i 0.210645 0.289927i
\(202\) −10.5942 18.7027i −0.745407 1.31592i
\(203\) 4.53814 2.31230i 0.318515 0.162291i
\(204\) −8.46059 + 2.11874i −0.592360 + 0.148342i
\(205\) 0.141208 0.891555i 0.00986243 0.0622689i
\(206\) 3.19944 0.141345i 0.222915 0.00984797i
\(207\) 1.42967 + 4.40008i 0.0993691 + 0.305827i
\(208\) −25.3560 + 8.78938i −1.75812 + 0.609434i
\(209\) −20.0858 + 17.6609i −1.38936 + 1.22163i
\(210\) −0.588987 + 0.468998i −0.0406440 + 0.0323639i
\(211\) −17.9667 9.15449i −1.23688 0.630221i −0.291617 0.956535i \(-0.594193\pi\)
−0.945262 + 0.326314i \(0.894193\pi\)
\(212\) 14.3295 + 0.987154i 0.984155 + 0.0677980i
\(213\) 0.105096 + 0.0166456i 0.00720108 + 0.00114054i
\(214\) −16.3994 7.46341i −1.12104 0.510188i
\(215\) −1.03862 0.337468i −0.0708332 0.0230151i
\(216\) −15.2879 + 4.55424i −1.04021 + 0.309877i
\(217\) 6.26868 8.62810i 0.425546 0.585714i
\(218\) −3.79282 18.5932i −0.256882 1.25929i
\(219\) 5.41124 + 5.41124i 0.365658 + 0.365658i
\(220\) −1.04661 0.139957i −0.0705627 0.00943592i
\(221\) 15.3205 15.3205i 1.03057 1.03057i
\(222\) −1.14860 + 1.73730i −0.0770892 + 0.116600i
\(223\) 4.79796 + 3.48592i 0.321295 + 0.233435i 0.736728 0.676189i \(-0.236370\pi\)
−0.415433 + 0.909624i \(0.636370\pi\)
\(224\) 9.25621 10.5168i 0.618457 0.702684i
\(225\) 1.80859 5.56628i 0.120573 0.371085i
\(226\) −1.45079 + 0.543283i −0.0965054 + 0.0361387i
\(227\) −2.25789 + 14.2558i −0.149862 + 0.946189i 0.792081 + 0.610416i \(0.208998\pi\)
−0.941943 + 0.335773i \(0.891002\pi\)
\(228\) 14.3055 + 16.4223i 0.947402 + 1.08759i
\(229\) −4.37818 + 8.59267i −0.289318 + 0.567819i −0.989223 0.146417i \(-0.953226\pi\)
0.699905 + 0.714236i \(0.253226\pi\)
\(230\) 0.879646 + 0.0997631i 0.0580022 + 0.00657819i
\(231\) 10.8217 + 2.43397i 0.712017 + 0.160144i
\(232\) 1.93317 5.48608i 0.126919 0.360179i
\(233\) −9.52594 + 3.09517i −0.624065 + 0.202771i −0.603944 0.797027i \(-0.706405\pi\)
−0.0201207 + 0.999798i \(0.506405\pi\)
\(234\) 7.53719 8.23393i 0.492722 0.538269i
\(235\) −0.834441 0.132163i −0.0544330 0.00862133i
\(236\) 4.90702 + 19.5948i 0.319420 + 1.27551i
\(237\) 2.45899 + 4.82604i 0.159728 + 0.313485i
\(238\) −3.01714 + 10.9013i −0.195572 + 0.706626i
\(239\) 11.7305 + 8.52269i 0.758782 + 0.551287i 0.898536 0.438899i \(-0.144631\pi\)
−0.139755 + 0.990186i \(0.544631\pi\)
\(240\) −0.117909 + 0.851724i −0.00761102 + 0.0549785i
\(241\) 22.2506 1.43329 0.716643 0.697440i \(-0.245678\pi\)
0.716643 + 0.697440i \(0.245678\pi\)
\(242\) 8.05351 + 13.3094i 0.517699 + 0.855563i
\(243\) 8.06204 8.06204i 0.517180 0.517180i
\(244\) 10.5283 12.5734i 0.674004 0.804932i
\(245\) −0.0215711 0.136194i −0.00137813 0.00870114i
\(246\) 5.33729 + 9.42228i 0.340293 + 0.600743i
\(247\) −51.4552 16.7188i −3.27401 1.06379i
\(248\) −1.60847 12.0731i −0.102138 0.766642i
\(249\) 3.48415 + 4.79553i 0.220799 + 0.303904i
\(250\) −1.65637 1.51621i −0.104758 0.0958938i
\(251\) 2.69578 5.29076i 0.170156 0.333950i −0.790143 0.612922i \(-0.789994\pi\)
0.960299 + 0.278973i \(0.0899939\pi\)
\(252\) −1.30506 + 5.67958i −0.0822111 + 0.357780i
\(253\) −6.97387 11.0212i −0.438443 0.692900i
\(254\) 8.57750 + 10.7720i 0.538200 + 0.675894i
\(255\) −0.214521 0.660228i −0.0134338 0.0413451i
\(256\) −0.624412 15.9878i −0.0390257 0.999238i
\(257\) 6.25605 4.54529i 0.390242 0.283527i −0.375313 0.926898i \(-0.622465\pi\)
0.765555 + 0.643371i \(0.222465\pi\)
\(258\) 12.2691 4.59443i 0.763838 0.286037i
\(259\) 1.22620 + 2.40656i 0.0761927 + 0.149537i
\(260\) −0.836629 1.96533i −0.0518855 0.121885i
\(261\) 0.378495 + 2.38972i 0.0234283 + 0.147920i
\(262\) 2.01787 + 9.89202i 0.124664 + 0.611131i
\(263\) 29.2018i 1.80066i −0.435210 0.900329i \(-0.643326\pi\)
0.435210 0.900329i \(-0.356674\pi\)
\(264\) 10.8681 6.50777i 0.668887 0.400526i
\(265\) 1.14324i 0.0702289i
\(266\) 27.6750 5.64542i 1.69686 0.346143i
\(267\) −2.70722 17.0927i −0.165679 1.04606i
\(268\) −6.97998 2.81172i −0.426370 0.171753i
\(269\) 10.5530 + 20.7115i 0.643429 + 1.26280i 0.950385 + 0.311077i \(0.100690\pi\)
−0.306956 + 0.951724i \(0.599310\pi\)
\(270\) −0.445260 1.18903i −0.0270977 0.0723621i
\(271\) −23.7344 + 17.2440i −1.44176 + 1.04750i −0.454088 + 0.890957i \(0.650035\pi\)
−0.987671 + 0.156542i \(0.949965\pi\)
\(272\) 6.08805 + 11.3931i 0.369142 + 0.690811i
\(273\) 6.93361 + 21.3394i 0.419641 + 1.29152i
\(274\) 13.5567 10.7949i 0.818991 0.652145i
\(275\) −1.05776 + 16.4651i −0.0637853 + 0.992885i
\(276\) −9.00080 + 5.63725i −0.541784 + 0.339323i
\(277\) 4.71319 9.25015i 0.283188 0.555788i −0.704968 0.709239i \(-0.749039\pi\)
0.988156 + 0.153451i \(0.0490388\pi\)
\(278\) −6.11061 + 6.67547i −0.366490 + 0.400368i
\(279\) 2.97788 + 4.09870i 0.178281 + 0.245383i
\(280\) 0.885727 + 0.677466i 0.0529323 + 0.0404863i
\(281\) −7.37905 2.39760i −0.440197 0.143029i 0.0805294 0.996752i \(-0.474339\pi\)
−0.520727 + 0.853723i \(0.674339\pi\)
\(282\) 8.81868 4.99538i 0.525145 0.297471i
\(283\) 0.671306 + 4.23846i 0.0399050 + 0.251950i 0.999574 0.0291817i \(-0.00929014\pi\)
−0.959669 + 0.281132i \(0.909290\pi\)
\(284\) −0.0138975 0.156982i −0.000824662 0.00931518i
\(285\) −1.22577 + 1.22577i −0.0726081 + 0.0726081i
\(286\) −14.8443 + 27.7470i −0.877761 + 1.64072i
\(287\) 14.0438 0.828976
\(288\) 3.39263 + 5.72570i 0.199912 + 0.337390i
\(289\) 5.31585 + 3.86219i 0.312697 + 0.227188i
\(290\) 0.446200 + 0.123494i 0.0262018 + 0.00725183i
\(291\) −4.76776 9.35726i −0.279491 0.548532i
\(292\) 5.82750 9.72130i 0.341029 0.568896i
\(293\) 1.73540 + 0.274861i 0.101383 + 0.0160575i 0.206920 0.978358i \(-0.433656\pi\)
−0.105537 + 0.994415i \(0.533656\pi\)
\(294\) 1.22021 + 1.11696i 0.0711639 + 0.0651421i
\(295\) −1.52909 + 0.496833i −0.0890273 + 0.0289267i
\(296\) 2.90925 + 1.02515i 0.169097 + 0.0595858i
\(297\) −9.54299 + 16.0877i −0.553740 + 0.933504i
\(298\) −3.64083 + 32.1024i −0.210907 + 1.85964i
\(299\) 11.9775 23.5072i 0.692678 1.35946i
\(300\) 13.4035 + 0.923359i 0.773849 + 0.0533102i
\(301\) 2.65789 16.7813i 0.153198 0.967256i
\(302\) −5.28846 14.1224i −0.304317 0.812653i
\(303\) −6.34240 + 19.5199i −0.364361 + 1.12139i
\(304\) 18.4472 26.4614i 1.05802 1.51766i
\(305\) 1.05599 + 0.767224i 0.0604660 + 0.0439311i
\(306\) −4.48220 2.96338i −0.256230 0.169405i
\(307\) 9.33324 9.33324i 0.532676 0.532676i −0.388692 0.921368i \(-0.627073\pi\)
0.921368 + 0.388692i \(0.127073\pi\)
\(308\) −0.396612 16.4234i −0.0225991 0.935811i
\(309\) −2.16231 2.16231i −0.123010 0.123010i
\(310\) 0.949871 0.193764i 0.0539491 0.0110051i
\(311\) −13.7800 + 18.9665i −0.781392 + 1.07549i 0.213735 + 0.976892i \(0.431437\pi\)
−0.995127 + 0.0986016i \(0.968563\pi\)
\(312\) 22.5383 + 12.1921i 1.27598 + 0.690244i
\(313\) −8.95972 2.91119i −0.506434 0.164550i 0.0446461 0.999003i \(-0.485784\pi\)
−0.551080 + 0.834453i \(0.685784\pi\)
\(314\) −4.92617 + 10.8243i −0.278000 + 0.610850i
\(315\) −0.458129 0.0725605i −0.0258127 0.00408832i
\(316\) 6.04892 5.26922i 0.340278 0.296417i
\(317\) −22.7920 11.6131i −1.28012 0.652256i −0.324234 0.945977i \(-0.605106\pi\)
−0.955891 + 0.293721i \(0.905106\pi\)
\(318\) −8.54334 10.7291i −0.479087 0.601657i
\(319\) −2.70055 6.26331i −0.151202 0.350678i
\(320\) 1.26611 0.137039i 0.0707775 0.00766069i
\(321\) 5.31645 + 16.3624i 0.296735 + 0.913258i
\(322\) 0.607885 + 13.7599i 0.0338761 + 0.766808i
\(323\) −4.07400 + 25.7222i −0.226683 + 1.43122i
\(324\) 7.00963 + 4.20197i 0.389424 + 0.233443i
\(325\) −29.7376 + 15.1520i −1.64954 + 0.840484i
\(326\) −4.69923 + 2.66190i −0.260267 + 0.147429i
\(327\) −10.6503 + 14.6589i −0.588963 + 0.810638i
\(328\) 11.6168 11.0582i 0.641432 0.610586i
\(329\) 13.1441i 0.724658i
\(330\) 0.576205 + 0.827391i 0.0317190 + 0.0455464i
\(331\) −1.87938 1.87938i −0.103300 0.103300i 0.653568 0.756868i \(-0.273271\pi\)
−0.756868 + 0.653568i \(0.773271\pi\)
\(332\) 5.63624 6.73111i 0.309329 0.369418i
\(333\) −1.26726 + 0.200715i −0.0694457 + 0.0109991i
\(334\) −0.699679 + 2.52803i −0.0382847 + 0.138327i
\(335\) 0.185084 0.569630i 0.0101122 0.0311222i
\(336\) −13.3750 + 0.261084i −0.729665 + 0.0142433i
\(337\) −15.9627 + 11.5976i −0.869544 + 0.631761i −0.930465 0.366382i \(-0.880596\pi\)
0.0609205 + 0.998143i \(0.480596\pi\)
\(338\) −45.2268 + 1.99803i −2.46001 + 0.108679i
\(339\) 1.31801 + 0.671561i 0.0715847 + 0.0364742i
\(340\) −0.871376 + 0.545748i −0.0472570 + 0.0295973i
\(341\) −10.9924 9.11826i −0.595274 0.493781i
\(342\) −1.51202 + 13.3320i −0.0817609 + 0.720914i
\(343\) 18.5283 6.02022i 1.00044 0.325062i
\(344\) −11.0152 15.9741i −0.593897 0.861266i
\(345\) −0.496865 0.683877i −0.0267503 0.0368187i
\(346\) 6.29308 13.8278i 0.338318 0.743388i
\(347\) 13.3651 6.80984i 0.717475 0.365572i −0.0568306 0.998384i \(-0.518099\pi\)
0.774305 + 0.632812i \(0.218099\pi\)
\(348\) −5.11035 + 2.17544i −0.273943 + 0.116616i
\(349\) −1.61382 + 0.255604i −0.0863857 + 0.0136821i −0.199478 0.979902i \(-0.563925\pi\)
0.113092 + 0.993585i \(0.463925\pi\)
\(350\) 9.60933 14.5344i 0.513640 0.776896i
\(351\) −37.8378 −2.01963
\(352\) −13.2600 13.2730i −0.706762 0.707451i
\(353\) 2.37657 0.126492 0.0632460 0.997998i \(-0.479855\pi\)
0.0632460 + 0.997998i \(0.479855\pi\)
\(354\) 10.6374 16.0894i 0.565373 0.855143i
\(355\) 0.0123892 0.00196226i 0.000657552 0.000104146i
\(356\) −23.5833 + 10.0393i −1.24991 + 0.532080i
\(357\) 9.62328 4.90331i 0.509318 0.259511i
\(358\) −5.76406 + 12.6654i −0.304640 + 0.669386i
\(359\) −10.9510 15.0728i −0.577974 0.795512i 0.415498 0.909594i \(-0.363607\pi\)
−0.993471 + 0.114082i \(0.963607\pi\)
\(360\) −0.436094 + 0.300714i −0.0229842 + 0.0158490i
\(361\) 43.7785 14.2245i 2.30413 0.748658i
\(362\) −2.89049 + 25.4864i −0.151921 + 1.33954i
\(363\) 4.18186 14.2532i 0.219491 0.748101i
\(364\) 28.1640 17.6393i 1.47620 0.924550i
\(365\) 0.803803 + 0.409558i 0.0420730 + 0.0214373i
\(366\) −15.6436 + 0.691106i −0.817706 + 0.0361247i
\(367\) 9.67041 7.02596i 0.504791 0.366752i −0.306053 0.952015i \(-0.599008\pi\)
0.810844 + 0.585262i \(0.199008\pi\)
\(368\) 11.3375 + 10.9034i 0.591008 + 0.568377i
\(369\) −2.06156 + 6.34484i −0.107321 + 0.330299i
\(370\) −0.0654887 + 0.236619i −0.00340459 + 0.0123012i
\(371\) −17.5676 + 2.78244i −0.912066 + 0.144457i
\(372\) −7.46635 + 8.91672i −0.387112 + 0.462311i
\(373\) 22.0000 + 22.0000i 1.13912 + 1.13912i 0.988609 + 0.150506i \(0.0480903\pi\)
0.150506 + 0.988609i \(0.451910\pi\)
\(374\) 14.3095 + 4.96804i 0.739927 + 0.256891i
\(375\) 2.14417i 0.110724i
\(376\) −10.3498 10.8726i −0.533750 0.560713i
\(377\) 8.10984 11.1622i 0.417678 0.574885i
\(378\) 17.1876 9.73596i 0.884032 0.500764i
\(379\) −13.1907 + 6.72102i −0.677563 + 0.345236i −0.758675 0.651469i \(-0.774153\pi\)
0.0811120 + 0.996705i \(0.474153\pi\)
\(380\) 2.20209 + 1.32006i 0.112965 + 0.0677176i
\(381\) 2.05683 12.9863i 0.105375 0.665310i
\(382\) 0.431051 + 9.75712i 0.0220545 + 0.499218i
\(383\) −3.23826 9.96634i −0.165467 0.509256i 0.833603 0.552364i \(-0.186274\pi\)
−0.999070 + 0.0431077i \(0.986274\pi\)
\(384\) −10.8580 + 10.7476i −0.554097 + 0.548459i
\(385\) 1.30194 0.121333i 0.0663531 0.00618370i
\(386\) −3.19341 4.01042i −0.162541 0.204125i
\(387\) 7.19145 + 3.66423i 0.365562 + 0.186263i
\(388\) −11.7283 + 10.2165i −0.595415 + 0.518666i
\(389\) 12.0447 + 1.90769i 0.610691 + 0.0967239i 0.454117 0.890942i \(-0.349955\pi\)
0.156574 + 0.987666i \(0.449955\pi\)
\(390\) −0.844835 + 1.85636i −0.0427799 + 0.0940004i
\(391\) −12.0779 3.92435i −0.610807 0.198463i
\(392\) 1.16573 2.15496i 0.0588782 0.108842i
\(393\) 5.66622 7.79888i 0.285823 0.393401i
\(394\) −7.35073 + 1.49947i −0.370324 + 0.0755424i
\(395\) 0.451494 + 0.451494i 0.0227171 + 0.0227171i
\(396\) 7.47817 + 2.23170i 0.375792 + 0.112147i
\(397\) −9.05147 + 9.05147i −0.454280 + 0.454280i −0.896772 0.442492i \(-0.854094\pi\)
0.442492 + 0.896772i \(0.354094\pi\)
\(398\) −9.66203 6.38799i −0.484314 0.320201i
\(399\) −21.8190 15.8524i −1.09232 0.793615i
\(400\) −3.49581 19.5892i −0.174791 0.979458i
\(401\) 1.05777 3.25549i 0.0528227 0.162572i −0.921165 0.389172i \(-0.872761\pi\)
0.973988 + 0.226600i \(0.0727612\pi\)
\(402\) 2.51982 + 6.72897i 0.125677 + 0.335610i
\(403\) 4.51947 28.5348i 0.225131 1.42142i
\(404\) 30.3264 + 2.08918i 1.50880 + 0.103940i
\(405\) −0.295316 + 0.579589i −0.0146743 + 0.0288000i
\(406\) −0.811706 + 7.15709i −0.0402843 + 0.355200i
\(407\) 3.32142 1.43209i 0.164637 0.0709862i
\(408\) 4.09935 11.6334i 0.202948 0.575940i
\(409\) −31.6863 + 10.2955i −1.56678 + 0.509079i −0.958610 0.284724i \(-0.908098\pi\)
−0.608175 + 0.793803i \(0.708098\pi\)
\(410\) 0.941628 + 0.861950i 0.0465037 + 0.0425687i
\(411\) −16.3435 2.58856i −0.806166 0.127684i
\(412\) −2.32865 + 3.88460i −0.114724 + 0.191381i
\(413\) −11.3561 22.2876i −0.558798 1.09670i
\(414\) −6.30582 1.74526i −0.309914 0.0857746i
\(415\) 0.565319 + 0.410728i 0.0277504 + 0.0201619i
\(416\) 9.40760 36.7677i 0.461245 1.80268i
\(417\) 8.64137 0.423170
\(418\) −5.16856 37.4697i −0.252803 1.83270i
\(419\) −19.1225 + 19.1225i −0.934195 + 0.934195i −0.997965 0.0637693i \(-0.979688\pi\)
0.0637693 + 0.997965i \(0.479688\pi\)
\(420\) −0.0938955 1.06062i −0.00458163 0.0517529i
\(421\) −4.41552 27.8785i −0.215199 1.35871i −0.824539 0.565805i \(-0.808565\pi\)
0.609340 0.792909i \(-0.291435\pi\)
\(422\) 24.8126 14.0552i 1.20786 0.684197i
\(423\) 5.93838 + 1.92950i 0.288734 + 0.0938154i
\(424\) −12.3408 + 16.1345i −0.599323 + 0.783562i
\(425\) 9.44297 + 12.9971i 0.458051 + 0.630454i
\(426\) −0.101606 + 0.110999i −0.00492284 + 0.00537791i
\(427\) −9.21945 + 18.0942i −0.446161 + 0.875639i
\(428\) 21.5952 13.5252i 1.04384 0.653766i
\(429\) 29.1134 7.43403i 1.40561 0.358918i
\(430\) 1.20818 0.962046i 0.0582635 0.0463940i
\(431\) −0.498521 1.53429i −0.0240129 0.0739041i 0.938332 0.345736i \(-0.112371\pi\)
−0.962345 + 0.271832i \(0.912371\pi\)
\(432\) 6.55114 21.5871i 0.315192 1.03861i
\(433\) −10.6595 + 7.74461i −0.512265 + 0.372182i −0.813682 0.581310i \(-0.802540\pi\)
0.301417 + 0.953492i \(0.402540\pi\)
\(434\) 5.28929 + 14.1246i 0.253894 + 0.678003i
\(435\) −0.200697 0.393890i −0.00962268 0.0188856i
\(436\) 24.8925 + 10.0273i 1.19213 + 0.480222i
\(437\) 4.96082 + 31.3214i 0.237308 + 1.49830i
\(438\) −10.6041 + 2.16313i −0.506683 + 0.103358i
\(439\) 14.5049i 0.692280i 0.938183 + 0.346140i \(0.112508\pi\)
−0.938183 + 0.346140i \(0.887492\pi\)
\(440\) 0.981412 1.12553i 0.0467870 0.0536574i
\(441\) 1.01912i 0.0485295i
\(442\) 6.12432 + 30.0227i 0.291304 + 1.42803i
\(443\) −0.156773 0.989826i −0.00744851 0.0470281i 0.983684 0.179904i \(-0.0575788\pi\)
−0.991133 + 0.132876i \(0.957579\pi\)
\(444\) −1.15363 2.71000i −0.0547489 0.128611i
\(445\) −0.926179 1.81773i −0.0439051 0.0861686i
\(446\) −7.85449 + 2.94130i −0.371921 + 0.139274i
\(447\) 24.9579 18.1330i 1.18047 0.857659i
\(448\) 5.18727 + 19.1221i 0.245075 + 0.903433i
\(449\) 1.44395 + 4.44403i 0.0681443 + 0.209727i 0.979330 0.202270i \(-0.0648317\pi\)
−0.911186 + 0.411996i \(0.864832\pi\)
\(450\) 5.15590 + 6.47499i 0.243052 + 0.305234i
\(451\) 1.20571 18.7681i 0.0567747 0.883757i
\(452\) 0.490635 2.13523i 0.0230775 0.100433i
\(453\) −6.53715 + 12.8299i −0.307142 + 0.602801i
\(454\) −15.0564 13.7824i −0.706633 0.646839i
\(455\) 1.55472 + 2.13989i 0.0728865 + 0.100320i
\(456\) −30.5308 + 4.06756i −1.42974 + 0.190481i
\(457\) 18.4893 + 6.00752i 0.864891 + 0.281020i 0.707670 0.706543i \(-0.249746\pi\)
0.157221 + 0.987563i \(0.449746\pi\)
\(458\) −6.72197 11.8668i −0.314097 0.554497i
\(459\) 2.84921 + 17.9892i 0.132990 + 0.839664i
\(460\) −0.803768 + 0.959904i −0.0374759 + 0.0447558i
\(461\) −4.87332 + 4.87332i −0.226973 + 0.226973i −0.811427 0.584454i \(-0.801309\pi\)
0.584454 + 0.811427i \(0.301309\pi\)
\(462\) −11.3117 + 10.8680i −0.526269 + 0.505623i
\(463\) 4.34716 0.202030 0.101015 0.994885i \(-0.467791\pi\)
0.101015 + 0.994885i \(0.467791\pi\)
\(464\) 4.96413 + 6.55940i 0.230454 + 0.304513i
\(465\) −0.748880 0.544093i −0.0347285 0.0252317i
\(466\) 3.77838 13.6518i 0.175030 0.632406i
\(467\) 8.02822 + 15.7563i 0.371502 + 0.729113i 0.998764 0.0496945i \(-0.0158248\pi\)
−0.627263 + 0.778808i \(0.715825\pi\)
\(468\) 3.83491 + 15.3136i 0.177269 + 0.707873i
\(469\) 9.20368 + 1.45772i 0.424987 + 0.0673112i
\(470\) 0.806732 0.881307i 0.0372118 0.0406516i
\(471\) 10.7998 3.50908i 0.497631 0.161690i
\(472\) −26.9431 9.49414i −1.24016 0.437003i
\(473\) −22.1984 4.99275i −1.02068 0.229567i
\(474\) −7.61114 0.863200i −0.349591 0.0396481i
\(475\) 18.2126 35.7442i 0.835651 1.64006i
\(476\) −10.5070 12.0617i −0.481587 0.552849i
\(477\) 1.32177 8.34535i 0.0605198 0.382107i
\(478\) −19.2033 + 7.19114i −0.878341 + 0.328915i
\(479\) −6.71859 + 20.6777i −0.306980 + 0.944788i 0.671950 + 0.740596i \(0.265457\pi\)
−0.978931 + 0.204192i \(0.934543\pi\)
\(480\) −0.912811 0.803397i −0.0416640 0.0366699i
\(481\) 5.91931 + 4.30063i 0.269897 + 0.196092i
\(482\) −17.3543 + 26.2489i −0.790466 + 1.19560i
\(483\) 9.29951 9.29951i 0.423142 0.423142i
\(484\) −21.9824 0.879981i −0.999200 0.0399991i
\(485\) −0.875407 0.875407i −0.0397502 0.0397502i
\(486\) 3.22278 + 15.7987i 0.146188 + 0.716645i
\(487\) 8.83346 12.1582i 0.400282 0.550941i −0.560532 0.828132i \(-0.689403\pi\)
0.960815 + 0.277191i \(0.0894035\pi\)
\(488\) 6.62133 + 22.2268i 0.299733 + 1.00616i
\(489\) 4.90456 + 1.59359i 0.221792 + 0.0720646i
\(490\) 0.177492 + 0.0807773i 0.00801828 + 0.00364914i
\(491\) −21.6392 3.42732i −0.976565 0.154673i −0.352301 0.935887i \(-0.614601\pi\)
−0.624263 + 0.781214i \(0.714601\pi\)
\(492\) −15.2782 1.05251i −0.688796 0.0474508i
\(493\) −5.91753 3.01513i −0.266512 0.135795i
\(494\) 59.8555 47.6616i 2.69302 2.14440i
\(495\) −0.136302 + 0.606017i −0.00612634 + 0.0272384i
\(496\) 15.4971 + 7.51887i 0.695840 + 0.337607i
\(497\) 0.0603062 + 0.185603i 0.00270510 + 0.00832545i
\(498\) −8.37472 + 0.369979i −0.375280 + 0.0165792i
\(499\) −2.72183 + 17.1849i −0.121846 + 0.769303i 0.848787 + 0.528736i \(0.177334\pi\)
−0.970632 + 0.240568i \(0.922666\pi\)
\(500\) 3.08056 0.771448i 0.137767 0.0345002i
\(501\) 2.23165 1.13708i 0.0997030 0.0508012i
\(502\) 4.13892 + 7.30671i 0.184729 + 0.326114i
\(503\) 17.4767 24.0547i 0.779249 1.07254i −0.216115 0.976368i \(-0.569339\pi\)
0.995364 0.0961769i \(-0.0306614\pi\)
\(504\) −5.68229 5.96935i −0.253110 0.265896i
\(505\) 2.41952i 0.107667i
\(506\) 18.4410 + 0.368959i 0.819801 + 0.0164022i
\(507\) 30.5662 + 30.5662i 1.35749 + 1.35749i
\(508\) −19.3977 + 1.71725i −0.860632 + 0.0761908i
\(509\) −32.1858 + 5.09773i −1.42661 + 0.225953i −0.821509 0.570196i \(-0.806867\pi\)
−0.605101 + 0.796149i \(0.706867\pi\)
\(510\) 0.946183 + 0.261874i 0.0418977 + 0.0115960i
\(511\) −4.33717 + 13.3484i −0.191865 + 0.590500i
\(512\) 19.3478 + 11.7330i 0.855058 + 0.518532i
\(513\) 36.7946 26.7329i 1.62452 1.18029i
\(514\) 0.482660 + 10.9253i 0.0212892 + 0.481895i
\(515\) −0.321197 0.163658i −0.0141536 0.00721164i
\(516\) −4.14920 + 18.0572i −0.182658 + 0.794923i
\(517\) −17.5658 1.12847i −0.772545 0.0496301i
\(518\) −3.79539 0.430445i −0.166760 0.0189127i
\(519\) −13.7966 + 4.48279i −0.605603 + 0.196772i
\(520\) 2.97102 + 0.545889i 0.130288 + 0.0239388i
\(521\) 19.2421 + 26.4845i 0.843013 + 1.16031i 0.985359 + 0.170491i \(0.0545355\pi\)
−0.142346 + 0.989817i \(0.545464\pi\)
\(522\) −3.11435 1.41735i −0.136312 0.0620358i
\(523\) −7.94459 + 4.04797i −0.347393 + 0.177005i −0.618977 0.785409i \(-0.712453\pi\)
0.271584 + 0.962415i \(0.412453\pi\)
\(524\) −13.2434 5.33478i −0.578541 0.233051i
\(525\) −16.4323 + 2.60263i −0.717166 + 0.113588i
\(526\) 34.4492 + 22.7759i 1.50206 + 0.993074i
\(527\) −13.9066 −0.605780
\(528\) −0.799380 + 17.8968i −0.0347886 + 0.778858i
\(529\) 7.53612 0.327658
\(530\) −1.34868 0.891670i −0.0585829 0.0387317i
\(531\) 11.7364 1.85886i 0.509315 0.0806676i
\(532\) −14.9252 + 37.0512i −0.647089 + 1.60637i
\(533\) 33.8970 17.2714i 1.46824 0.748106i
\(534\) 22.2757 + 10.1377i 0.963963 + 0.438703i
\(535\) 1.19211 + 1.64080i 0.0515393 + 0.0709378i
\(536\) 8.76100 6.04126i 0.378417 0.260943i
\(537\) 12.6368 4.10594i 0.545318 0.177184i
\(538\) −32.6640 3.70452i −1.40825 0.159713i
\(539\) −0.710791 2.78362i −0.0306159 0.119899i
\(540\) 1.74997 + 0.402111i 0.0753069 + 0.0173041i
\(541\) 41.0034 + 20.8923i 1.76287 + 0.898228i 0.947798 + 0.318871i \(0.103304\pi\)
0.815074 + 0.579357i \(0.196696\pi\)
\(542\) −1.83113 41.4487i −0.0786536 1.78038i
\(543\) 19.8143 14.3959i 0.850313 0.617789i
\(544\) −18.1888 1.70402i −0.779838 0.0730592i
\(545\) −0.660059 + 2.03145i −0.0282738 + 0.0870179i
\(546\) −30.5819 8.46412i −1.30878 0.362231i
\(547\) 28.6257 4.53386i 1.22395 0.193854i 0.489185 0.872180i \(-0.337294\pi\)
0.734761 + 0.678326i \(0.237294\pi\)
\(548\) 2.16119 + 24.4123i 0.0923215 + 1.04284i
\(549\) −6.82142 6.82142i −0.291131 0.291131i
\(550\) −18.5988 14.0898i −0.793058 0.600790i
\(551\) 16.5842i 0.706511i
\(552\) 0.369916 15.0150i 0.0157447 0.639079i
\(553\) −5.83903 + 8.03673i −0.248301 + 0.341757i
\(554\) 7.23632 + 12.7748i 0.307442 + 0.542747i
\(555\) 0.208879 0.106429i 0.00886641 0.00451766i
\(556\) −3.10907 12.4152i −0.131854 0.526521i
\(557\) −5.47429 + 34.5633i −0.231953 + 1.46449i 0.546852 + 0.837229i \(0.315826\pi\)
−0.778806 + 0.627265i \(0.784174\pi\)
\(558\) −7.15781 + 0.316218i −0.303014 + 0.0133866i
\(559\) −14.2228 43.7732i −0.601559 1.85141i
\(560\) −1.49002 + 0.516500i −0.0629650 + 0.0218261i
\(561\) −5.72661 13.2816i −0.241778 0.560748i
\(562\) 8.58371 6.83503i 0.362082 0.288318i
\(563\) 1.44158 + 0.734522i 0.0607554 + 0.0309564i 0.484104 0.875010i \(-0.339146\pi\)
−0.423349 + 0.905967i \(0.639146\pi\)
\(564\) −0.985086 + 14.2995i −0.0414796 + 0.602117i
\(565\) 0.172233 + 0.0272790i 0.00724589 + 0.00114764i
\(566\) −5.52367 2.51384i −0.232177 0.105665i
\(567\) −9.62500 3.12735i −0.404212 0.131336i
\(568\) 0.196030 + 0.106043i 0.00822525 + 0.00444947i
\(569\) 2.43584 3.35264i 0.102116 0.140550i −0.754901 0.655839i \(-0.772315\pi\)
0.857017 + 0.515288i \(0.172315\pi\)
\(570\) −0.489997 2.40207i −0.0205237 0.100611i
\(571\) 21.9987 + 21.9987i 0.920615 + 0.920615i 0.997073 0.0764577i \(-0.0243610\pi\)
−0.0764577 + 0.997073i \(0.524361\pi\)
\(572\) −21.1552 39.1530i −0.884545 1.63707i
\(573\) 6.59428 6.59428i 0.275480 0.275480i
\(574\) −10.9534 + 16.5673i −0.457186 + 0.691508i
\(575\) 15.8263 + 11.4985i 0.660004 + 0.479521i
\(576\) −9.40065 0.463480i −0.391694 0.0193117i
\(577\) 1.31161 4.03673i 0.0546032 0.168051i −0.920036 0.391834i \(-0.871841\pi\)
0.974639 + 0.223783i \(0.0718406\pi\)
\(578\) −8.70229 + 3.25877i −0.361968 + 0.135547i
\(579\) −0.765761 + 4.83483i −0.0318239 + 0.200929i
\(580\) −0.493698 + 0.430061i −0.0204997 + 0.0178573i
\(581\) −4.93557 + 9.68661i −0.204762 + 0.401868i
\(582\) 14.7573 + 1.67367i 0.611711 + 0.0693758i
\(583\) 2.21022 + 23.7164i 0.0915378 + 0.982231i
\(584\) 6.92303 + 14.4568i 0.286477 + 0.598226i
\(585\) −1.19501 + 0.388282i −0.0494076 + 0.0160535i
\(586\) −1.67778 + 1.83287i −0.0693083 + 0.0757151i
\(587\) −28.7878 4.55955i −1.18820 0.188193i −0.469130 0.883129i \(-0.655432\pi\)
−0.719071 + 0.694936i \(0.755432\pi\)
\(588\) −2.26936 + 0.568305i −0.0935870 + 0.0234365i
\(589\) 15.7653 + 30.9411i 0.649598 + 1.27491i
\(590\) 0.606503 2.19137i 0.0249693 0.0902172i
\(591\) 5.79533 + 4.21055i 0.238388 + 0.173199i
\(592\) −3.47843 + 2.63247i −0.142963 + 0.108194i
\(593\) −18.3132 −0.752031 −0.376016 0.926613i \(-0.622706\pi\)
−0.376016 + 0.926613i \(0.622706\pi\)
\(594\) −11.5356 23.8054i −0.473310 0.976747i
\(595\) 0.900295 0.900295i 0.0369085 0.0369085i
\(596\) −35.0314 29.3333i −1.43494 1.20154i
\(597\) 1.73015 + 10.9237i 0.0708101 + 0.447078i
\(598\) 18.3895 + 32.4642i 0.752003 + 1.32756i
\(599\) 37.8357 + 12.2936i 1.54593 + 0.502302i 0.953004 0.302958i \(-0.0979743\pi\)
0.592922 + 0.805260i \(0.297974\pi\)
\(600\) −11.5433 + 15.0918i −0.471253 + 0.616122i
\(601\) −7.85107 10.8061i −0.320252 0.440789i 0.618292 0.785948i \(-0.287825\pi\)
−0.938544 + 0.345159i \(0.887825\pi\)
\(602\) 17.7238 + 16.2240i 0.722366 + 0.661241i
\(603\) −2.00965 + 3.94415i −0.0818391 + 0.160618i
\(604\) 20.7849 + 4.77597i 0.845724 + 0.194331i
\(605\) −0.0503731 1.75034i −0.00204796 0.0711614i
\(606\) −18.0808 22.7066i −0.734482 0.922393i
\(607\) 13.2472 + 40.7707i 0.537687 + 1.65483i 0.737771 + 0.675051i \(0.235878\pi\)
−0.200084 + 0.979779i \(0.564122\pi\)
\(608\) 16.8285 + 42.4006i 0.682488 + 1.71957i
\(609\) 5.56425 4.04266i 0.225475 0.163817i
\(610\) −1.72871 + 0.647356i −0.0699934 + 0.0262107i
\(611\) −16.1650 31.7255i −0.653964 1.28348i
\(612\) 6.99177 2.97635i 0.282626 0.120312i
\(613\) −3.84479 24.2751i −0.155290 0.980460i −0.935084 0.354425i \(-0.884677\pi\)
0.779795 0.626035i \(-0.215323\pi\)
\(614\) 3.73094 + 18.2898i 0.150568 + 0.738117i
\(615\) 1.21893i 0.0491522i
\(616\) 19.6840 + 12.3415i 0.793090 + 0.497255i
\(617\) 37.5228i 1.51061i −0.655373 0.755306i \(-0.727488\pi\)
0.655373 0.755306i \(-0.272512\pi\)
\(618\) 4.23736 0.864379i 0.170452 0.0347704i
\(619\) 3.31406 + 20.9241i 0.133203 + 0.841012i 0.960303 + 0.278958i \(0.0899889\pi\)
−0.827100 + 0.562055i \(0.810011\pi\)
\(620\) −0.512268 + 1.27168i −0.0205732 + 0.0510721i
\(621\) 10.0686 + 19.7608i 0.404041 + 0.792975i
\(622\) −11.6271 31.0491i −0.466202 1.24496i
\(623\) 25.6780 18.6561i 1.02877 0.747443i
\(624\) −31.9617 + 17.0791i −1.27949 + 0.683710i
\(625\) −7.60816 23.4155i −0.304327 0.936621i
\(626\) 10.4224 8.29917i 0.416564 0.331701i
\(627\) −23.0585 + 27.7980i −0.920869 + 1.11015i
\(628\) −8.92721 14.2538i −0.356234 0.568787i
\(629\) 1.59892 3.13805i 0.0637530 0.125122i
\(630\) 0.442916 0.483859i 0.0176462 0.0192774i
\(631\) 1.68406 + 2.31792i 0.0670415 + 0.0922747i 0.841221 0.540691i \(-0.181837\pi\)
−0.774180 + 0.632966i \(0.781837\pi\)
\(632\) 1.49823 + 11.2456i 0.0595963 + 0.447326i
\(633\) −25.8968 8.41437i −1.02930 0.334441i
\(634\) 31.4765 17.8300i 1.25009 0.708119i
\(635\) −0.242469 1.53089i −0.00962209 0.0607515i
\(636\) 19.3204 1.71041i 0.766104 0.0678223i
\(637\) 4.10938 4.10938i 0.162820 0.162820i
\(638\) 9.49508 + 1.69923i 0.375914 + 0.0672732i
\(639\) −0.0927066 −0.00366742
\(640\) −0.825833 + 1.60050i −0.0326439 + 0.0632654i
\(641\) −38.4922 27.9662i −1.52035 1.10460i −0.961314 0.275455i \(-0.911172\pi\)
−0.559035 0.829144i \(-0.688828\pi\)
\(642\) −23.4492 6.49000i −0.925464 0.256140i
\(643\) −5.43046 10.6579i −0.214156 0.420306i 0.758790 0.651335i \(-0.225791\pi\)
−0.972947 + 0.231029i \(0.925791\pi\)
\(644\) −16.7066 10.0149i −0.658332 0.394641i
\(645\) −1.45654 0.230693i −0.0573511 0.00908352i
\(646\) −27.1669 24.8681i −1.06887 0.978421i
\(647\) −15.6500 + 5.08501i −0.615267 + 0.199912i −0.600038 0.799972i \(-0.704848\pi\)
−0.0152290 + 0.999884i \(0.504848\pi\)
\(648\) −10.4242 + 4.99191i −0.409501 + 0.196101i
\(649\) −30.7602 + 13.2629i −1.20745 + 0.520614i
\(650\) 5.31895 46.8991i 0.208627 1.83953i
\(651\) 6.53817 12.8319i 0.256251 0.502921i
\(652\) 0.524926 7.61981i 0.0205577 0.298415i
\(653\) 4.53897 28.6579i 0.177624 1.12147i −0.724271 0.689516i \(-0.757823\pi\)
0.901894 0.431956i \(-0.142177\pi\)
\(654\) −8.98633 23.9973i −0.351393 0.938368i
\(655\) 0.351167 1.08078i 0.0137212 0.0422297i
\(656\) 3.98478 + 22.3291i 0.155579 + 0.871806i
\(657\) −5.39402 3.91899i −0.210441 0.152894i
\(658\) 15.5060 + 10.2517i 0.604488 + 0.399653i
\(659\) −0.387867 + 0.387867i −0.0151091 + 0.0151091i −0.714621 0.699512i \(-0.753401\pi\)
0.699512 + 0.714621i \(0.253401\pi\)
\(660\) −1.42548 + 0.0344241i −0.0554867 + 0.00133996i
\(661\) −16.3188 16.3188i −0.634727 0.634727i 0.314523 0.949250i \(-0.398156\pi\)
−0.949250 + 0.314523i \(0.898156\pi\)
\(662\) 3.68291 0.751277i 0.143140 0.0291992i
\(663\) 17.1972 23.6699i 0.667885 0.919264i
\(664\) 3.54468 + 11.8990i 0.137560 + 0.461769i
\(665\) −3.02372 0.982465i −0.117255 0.0380984i
\(666\) 0.751618 1.65153i 0.0291246 0.0639956i
\(667\) −7.98752 1.26510i −0.309278 0.0489848i
\(668\) −2.43659 2.79714i −0.0942744 0.108225i
\(669\) 7.13563 + 3.63578i 0.275879 + 0.140567i
\(670\) 0.527634 + 0.662625i 0.0203843 + 0.0255994i
\(671\) 23.3896 + 13.8744i 0.902947 + 0.535614i
\(672\) 10.1238 15.9820i 0.390534 0.616520i
\(673\) −13.7011 42.1678i −0.528140 1.62545i −0.758021 0.652230i \(-0.773834\pi\)
0.229880 0.973219i \(-0.426166\pi\)
\(674\) −1.23154 27.8766i −0.0474370 1.07377i
\(675\) 4.38895 27.7108i 0.168931 1.06659i
\(676\) 32.9175 54.9122i 1.26606 2.11201i
\(677\) 4.16492 2.12214i 0.160071 0.0815603i −0.372120 0.928185i \(-0.621369\pi\)
0.532191 + 0.846624i \(0.321369\pi\)
\(678\) −1.82022 + 1.03107i −0.0699051 + 0.0395981i
\(679\) 11.3214 15.5825i 0.434474 0.598002i
\(680\) 0.0358120 1.45361i 0.00137333 0.0557435i
\(681\) 19.4905i 0.746877i
\(682\) 19.3303 5.85597i 0.740195 0.224237i
\(683\) 16.8305 + 16.8305i 0.644000 + 0.644000i 0.951536 0.307536i \(-0.0995045\pi\)
−0.307536 + 0.951536i \(0.599504\pi\)
\(684\) −14.5484 12.1820i −0.556274 0.465791i
\(685\) −1.92665 + 0.305151i −0.0736134 + 0.0116592i
\(686\) −7.34911 + 26.5533i −0.280590 + 1.01381i
\(687\) −4.02422 + 12.3853i −0.153533 + 0.472527i
\(688\) 27.4358 0.535555i 1.04598 0.0204179i
\(689\) −38.9806 + 28.3210i −1.48504 + 1.07895i
\(690\) 1.19430 0.0527617i 0.0454660 0.00200860i
\(691\) −4.53260 2.30947i −0.172428 0.0878565i 0.365646 0.930754i \(-0.380848\pi\)
−0.538074 + 0.842897i \(0.680848\pi\)
\(692\) 11.4043 + 18.2089i 0.433528 + 0.692199i
\(693\) −9.64408 0.619559i −0.366348 0.0235351i
\(694\) −2.39052 + 21.0780i −0.0907429 + 0.800111i
\(695\) 0.968827 0.314791i 0.0367497 0.0119407i
\(696\) 1.41945 7.72538i 0.0538039 0.292830i
\(697\) −10.7638 14.8151i −0.407707 0.561160i
\(698\) 0.957160 2.10317i 0.0362290 0.0796062i
\(699\) −12.0513 + 6.14045i −0.455822 + 0.232253i
\(700\) 9.65139 + 22.6722i 0.364788 + 0.856927i
\(701\) 3.04952 0.482997i 0.115179 0.0182425i −0.0985789 0.995129i \(-0.531430\pi\)
0.213758 + 0.976887i \(0.431430\pi\)
\(702\) 29.5115 44.6371i 1.11384 1.68472i
\(703\) −8.79456 −0.331693
\(704\) 26.0002 5.29058i 0.979919 0.199396i
\(705\) −1.14085 −0.0429668
\(706\) −1.85360 + 2.80363i −0.0697612 + 0.105516i
\(707\) −37.1795 + 5.88865i −1.39828 + 0.221466i
\(708\) 10.6840 + 25.0978i 0.401529 + 0.943234i
\(709\) −5.41094 + 2.75701i −0.203212 + 0.103542i −0.552635 0.833423i \(-0.686378\pi\)
0.349423 + 0.936965i \(0.386378\pi\)
\(710\) −0.00734809 + 0.0161460i −0.000275769 + 0.000605948i
\(711\) −2.77378 3.81778i −0.104025 0.143178i
\(712\) 6.55048 35.6512i 0.245490 1.33609i
\(713\) −16.1049 + 5.23281i −0.603135 + 0.195970i
\(714\) −1.72125 + 15.1769i −0.0644162 + 0.567980i
\(715\) 2.99324 1.89402i 0.111941 0.0708323i
\(716\) −10.4456 16.6782i −0.390372 0.623293i
\(717\) 17.4458 + 8.88908i 0.651526 + 0.331969i
\(718\) 26.3226 1.16288i 0.982349 0.0433983i
\(719\) 26.8101 19.4787i 0.999849 0.726433i 0.0377932 0.999286i \(-0.487967\pi\)
0.962056 + 0.272853i \(0.0879672\pi\)
\(720\) −0.0146207 0.748999i −0.000544881 0.0279136i
\(721\) 1.73312 5.33399i 0.0645447 0.198648i
\(722\) −17.3644 + 62.7397i −0.646236 + 2.33493i
\(723\) 29.6765 4.70030i 1.10368 0.174806i
\(724\) −27.8118 23.2880i −1.03362 0.865491i
\(725\) 7.23405 + 7.23405i 0.268666 + 0.268666i
\(726\) 13.5528 + 16.0501i 0.502993 + 0.595675i
\(727\) 23.2021i 0.860520i 0.902705 + 0.430260i \(0.141578\pi\)
−0.902705 + 0.430260i \(0.858422\pi\)
\(728\) −1.15749 + 46.9827i −0.0428995 + 1.74130i
\(729\) 16.2552 22.3734i 0.602046 0.828645i
\(730\) −1.11008 + 0.628809i −0.0410859 + 0.0232733i
\(731\) −19.7400 + 10.0581i −0.730112 + 0.372011i
\(732\) 11.3859 18.9938i 0.420836 0.702030i
\(733\) 0.540579 3.41308i 0.0199667 0.126065i −0.975692 0.219148i \(-0.929672\pi\)
0.995658 + 0.0930831i \(0.0296722\pi\)
\(734\) 0.746080 + 16.8880i 0.0275383 + 0.623348i
\(735\) −0.0575405 0.177091i −0.00212241 0.00653212i
\(736\) −21.7053 + 4.87075i −0.800068 + 0.179538i
\(737\) 2.73828 12.1747i 0.100866 0.448461i
\(738\) −5.87706 7.38066i −0.216338 0.271686i
\(739\) −1.84129 0.938186i −0.0677331 0.0345117i 0.419796 0.907619i \(-0.362102\pi\)
−0.487529 + 0.873107i \(0.662102\pi\)
\(740\) −0.228060 0.261807i −0.00838366 0.00962421i
\(741\) −72.1597 11.4290i −2.65085 0.419854i
\(742\) 10.4194 22.8946i 0.382509 0.840488i
\(743\) −8.24128 2.67776i −0.302343 0.0982373i 0.153917 0.988084i \(-0.450811\pi\)
−0.456260 + 0.889847i \(0.650811\pi\)
\(744\) −4.69565 15.7626i −0.172151 0.577885i
\(745\) 2.13760 2.94215i 0.0783155 0.107792i
\(746\) −43.1121 + 8.79443i −1.57845 + 0.321987i
\(747\) −3.65180 3.65180i −0.133612 0.133612i
\(748\) −17.0214 + 13.0061i −0.622366 + 0.475548i
\(749\) −22.3119 + 22.3119i −0.815259 + 0.815259i
\(750\) −2.52947 1.67234i −0.0923631 0.0610652i
\(751\) 16.2775 + 11.8263i 0.593975 + 0.431548i 0.843735 0.536760i \(-0.180352\pi\)
−0.249761 + 0.968308i \(0.580352\pi\)
\(752\) 20.8987 3.72951i 0.762097 0.136001i
\(753\) 2.47783 7.62597i 0.0902971 0.277906i
\(754\) 6.84279 + 18.2731i 0.249200 + 0.665468i
\(755\) −0.265541 + 1.67656i −0.00966403 + 0.0610163i
\(756\) −1.91993 + 27.8696i −0.0698270 + 1.01361i
\(757\) 6.82722 13.3992i 0.248140 0.487002i −0.733018 0.680209i \(-0.761889\pi\)
0.981158 + 0.193207i \(0.0618890\pi\)
\(758\) 2.35934 20.8031i 0.0856950 0.755603i
\(759\) −11.6295 13.2263i −0.422124 0.480085i
\(760\) −3.27478 + 1.56822i −0.118789 + 0.0568853i
\(761\) −19.8864 + 6.46149i −0.720882 + 0.234229i −0.646406 0.762994i \(-0.723729\pi\)
−0.0744766 + 0.997223i \(0.523729\pi\)
\(762\) 13.7157 + 12.5551i 0.496867 + 0.454823i
\(763\) −32.8228 5.19861i −1.18826 0.188202i
\(764\) −11.8466 7.10154i −0.428596 0.256925i
\(765\) 0.274585 + 0.538904i 0.00992766 + 0.0194841i
\(766\) 14.2829 + 3.95307i 0.516063 + 0.142830i
\(767\)