Properties

Label 176.2.w.a.5.6
Level $176$
Weight $2$
Character 176.5
Analytic conductor $1.405$
Analytic rank $0$
Dimension $176$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,2,Mod(5,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 5, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 176.w (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40536707557\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 5.6
Character \(\chi\) \(=\) 176.5
Dual form 176.2.w.a.141.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.02618 - 0.973113i) q^{2} +(2.68580 - 0.425388i) q^{3} +(0.106100 + 1.99718i) q^{4} +(0.102082 - 0.0520132i) q^{5} +(-3.17007 - 2.17706i) q^{6} +(-2.36506 - 3.25523i) q^{7} +(1.83461 - 2.15272i) q^{8} +(4.17938 - 1.35796i) q^{9} +O(q^{10})\) \(q+(-1.02618 - 0.973113i) q^{2} +(2.68580 - 0.425388i) q^{3} +(0.106100 + 1.99718i) q^{4} +(0.102082 - 0.0520132i) q^{5} +(-3.17007 - 2.17706i) q^{6} +(-2.36506 - 3.25523i) q^{7} +(1.83461 - 2.15272i) q^{8} +(4.17938 - 1.35796i) q^{9} +(-0.155369 - 0.0459620i) q^{10} +(2.36922 + 2.32094i) q^{11} +(1.13454 + 5.31890i) q^{12} +(1.71312 + 0.872877i) q^{13} +(-0.740721 + 5.64193i) q^{14} +(0.252045 - 0.183121i) q^{15} +(-3.97749 + 0.423804i) q^{16} +(0.635702 - 1.95649i) q^{17} +(-5.61026 - 2.67349i) q^{18} +(-0.973675 + 0.154215i) q^{19} +(0.114711 + 0.198357i) q^{20} +(-7.73680 - 7.73680i) q^{21} +(-0.172713 - 4.68723i) q^{22} +1.88697i q^{23} +(4.01164 - 6.56220i) q^{24} +(-2.93121 + 4.03447i) q^{25} +(-0.908563 - 2.56279i) q^{26} +(3.37862 - 1.72149i) q^{27} +(6.25035 - 5.06884i) q^{28} +(-1.44957 + 9.15220i) q^{29} +(-0.436842 - 0.0573524i) q^{30} +(-2.44270 - 7.51787i) q^{31} +(4.49404 + 3.43564i) q^{32} +(7.35055 + 5.22574i) q^{33} +(-2.55623 + 1.38910i) q^{34} +(-0.410744 - 0.209285i) q^{35} +(3.15553 + 8.20291i) q^{36} +(-4.08119 - 0.646397i) q^{37} +(1.14924 + 0.789243i) q^{38} +(4.97240 + 1.61563i) q^{39} +(0.0753099 - 0.315177i) q^{40} +(-5.54176 + 7.62758i) q^{41} +(0.410584 + 15.4682i) q^{42} +(-4.92518 - 4.92518i) q^{43} +(-4.38398 + 4.97803i) q^{44} +(0.356006 - 0.356006i) q^{45} +(1.83623 - 1.93637i) q^{46} +(6.46457 + 4.69679i) q^{47} +(-10.5024 + 2.83023i) q^{48} +(-2.83987 + 8.74021i) q^{49} +(6.93395 - 1.28770i) q^{50} +(0.875098 - 5.52515i) q^{51} +(-1.56153 + 3.51402i) q^{52} +(0.688072 - 1.35042i) q^{53} +(-5.14229 - 1.52122i) q^{54} +(0.362574 + 0.113695i) q^{55} +(-11.3466 - 0.880745i) q^{56} +(-2.54949 + 0.828380i) q^{57} +(10.3936 - 7.98123i) q^{58} +(11.6186 + 1.84021i) q^{59} +(0.392469 + 0.483951i) q^{60} +(2.19035 + 4.29880i) q^{61} +(-4.80908 + 10.0917i) q^{62} +(-14.3050 - 10.3932i) q^{63} +(-1.26843 - 7.89880i) q^{64} +0.220279 q^{65} +(-2.45777 - 12.5155i) q^{66} +(7.37201 - 7.37201i) q^{67} +(3.97492 + 1.06203i) q^{68} +(0.802693 + 5.06801i) q^{69} +(0.217841 + 0.614465i) q^{70} +(-11.3461 - 3.68658i) q^{71} +(4.74420 - 11.4884i) q^{72} +(2.31924 + 3.19215i) q^{73} +(3.55903 + 4.63478i) q^{74} +(-6.15642 + 12.0827i) q^{75} +(-0.411303 - 1.92824i) q^{76} +(1.95184 - 13.2015i) q^{77} +(-3.53039 - 6.49664i) q^{78} +(1.28620 + 3.95853i) q^{79} +(-0.383985 + 0.250145i) q^{80} +(-2.32359 + 1.68818i) q^{81} +(13.1094 - 2.43452i) q^{82} +(-3.80201 - 7.46187i) q^{83} +(14.6309 - 16.2727i) q^{84} +(-0.0368698 - 0.232787i) q^{85} +(0.261374 + 9.84689i) q^{86} +25.1976i q^{87} +(9.34294 - 0.842258i) q^{88} -6.37697i q^{89} +(-0.711761 + 0.0188929i) q^{90} +(-1.21021 - 7.64099i) q^{91} +(-3.76862 + 0.200208i) q^{92} +(-9.75862 - 19.1524i) q^{93} +(-2.06332 - 11.1105i) q^{94} +(-0.0913731 + 0.0663865i) q^{95} +(13.5315 + 7.31573i) q^{96} +(-4.65228 - 14.3182i) q^{97} +(11.4194 - 6.20554i) q^{98} +(13.0536 + 6.48279i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8} - 16 q^{10} - 12 q^{11} - 6 q^{13} - 12 q^{15} + 14 q^{16} - 12 q^{17} - 44 q^{18} - 6 q^{19} + 2 q^{20} - 28 q^{21} + 50 q^{22} - 38 q^{24} - 68 q^{26} - 18 q^{27} - 46 q^{28} - 22 q^{29} + 26 q^{30} - 12 q^{31} - 16 q^{32} - 16 q^{33} + 12 q^{34} - 26 q^{35} - 22 q^{36} + 18 q^{37} - 34 q^{38} + 14 q^{40} - 10 q^{42} - 40 q^{43} + 2 q^{44} - 24 q^{45} + 38 q^{46} - 12 q^{47} - 26 q^{48} + 8 q^{49} - 62 q^{50} + 6 q^{51} + 74 q^{52} - 30 q^{53} - 52 q^{54} - 96 q^{56} - 26 q^{58} + 10 q^{59} + 118 q^{60} - 6 q^{61} - 42 q^{62} - 28 q^{63} - 106 q^{64} - 32 q^{65} + 6 q^{66} + 24 q^{67} + 116 q^{68} + 12 q^{69} + 52 q^{70} - 98 q^{72} + 96 q^{74} - 46 q^{75} + 112 q^{76} - 14 q^{77} + 44 q^{78} - 52 q^{79} - 28 q^{80} + 66 q^{82} + 54 q^{83} + 120 q^{84} + 14 q^{85} + 86 q^{86} + 142 q^{88} + 228 q^{90} - 122 q^{91} + 146 q^{92} + 6 q^{93} + 56 q^{94} + 52 q^{95} + 86 q^{96} - 12 q^{97} + 140 q^{98} + 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.02618 0.973113i −0.725621 0.688095i
\(3\) 2.68580 0.425388i 1.55065 0.245598i 0.678410 0.734684i \(-0.262669\pi\)
0.872236 + 0.489086i \(0.162669\pi\)
\(4\) 0.106100 + 1.99718i 0.0530502 + 0.998592i
\(5\) 0.102082 0.0520132i 0.0456523 0.0232610i −0.431015 0.902345i \(-0.641845\pi\)
0.476668 + 0.879084i \(0.341845\pi\)
\(6\) −3.17007 2.17706i −1.29417 0.888780i
\(7\) −2.36506 3.25523i −0.893909 1.23036i −0.972371 0.233442i \(-0.925001\pi\)
0.0784620 0.996917i \(-0.474999\pi\)
\(8\) 1.83461 2.15272i 0.648632 0.761102i
\(9\) 4.17938 1.35796i 1.39313 0.452654i
\(10\) −0.155369 0.0459620i −0.0491321 0.0145345i
\(11\) 2.36922 + 2.32094i 0.714348 + 0.699791i
\(12\) 1.13454 + 5.31890i 0.327514 + 1.53543i
\(13\) 1.71312 + 0.872877i 0.475133 + 0.242092i 0.675123 0.737706i \(-0.264091\pi\)
−0.199989 + 0.979798i \(0.564091\pi\)
\(14\) −0.740721 + 5.64193i −0.197966 + 1.50787i
\(15\) 0.252045 0.183121i 0.0650777 0.0472817i
\(16\) −3.97749 + 0.423804i −0.994371 + 0.105951i
\(17\) 0.635702 1.95649i 0.154180 0.474518i −0.843897 0.536506i \(-0.819744\pi\)
0.998077 + 0.0619876i \(0.0197439\pi\)
\(18\) −5.61026 2.67349i −1.32235 0.630148i
\(19\) −0.973675 + 0.154215i −0.223376 + 0.0353793i −0.267119 0.963663i \(-0.586072\pi\)
0.0437429 + 0.999043i \(0.486072\pi\)
\(20\) 0.114711 + 0.198357i 0.0256501 + 0.0443540i
\(21\) −7.73680 7.73680i −1.68831 1.68831i
\(22\) −0.172713 4.68723i −0.0368226 0.999322i
\(23\) 1.88697i 0.393460i 0.980458 + 0.196730i \(0.0630322\pi\)
−0.980458 + 0.196730i \(0.936968\pi\)
\(24\) 4.01164 6.56220i 0.818873 1.33950i
\(25\) −2.93121 + 4.03447i −0.586242 + 0.806893i
\(26\) −0.908563 2.56279i −0.178184 0.502604i
\(27\) 3.37862 1.72149i 0.650216 0.331302i
\(28\) 6.25035 5.06884i 1.18120 0.957921i
\(29\) −1.44957 + 9.15220i −0.269178 + 1.69952i 0.368835 + 0.929495i \(0.379757\pi\)
−0.638013 + 0.770026i \(0.720243\pi\)
\(30\) −0.436842 0.0573524i −0.0797560 0.0104711i
\(31\) −2.44270 7.51787i −0.438722 1.35025i −0.889224 0.457473i \(-0.848755\pi\)
0.450501 0.892776i \(-0.351245\pi\)
\(32\) 4.49404 + 3.43564i 0.794441 + 0.607342i
\(33\) 7.35055 + 5.22574i 1.27957 + 0.909685i
\(34\) −2.55623 + 1.38910i −0.438390 + 0.238229i
\(35\) −0.410744 0.209285i −0.0694284 0.0353756i
\(36\) 3.15553 + 8.20291i 0.525922 + 1.36715i
\(37\) −4.08119 0.646397i −0.670943 0.106267i −0.188337 0.982104i \(-0.560310\pi\)
−0.482606 + 0.875837i \(0.660310\pi\)
\(38\) 1.14924 + 0.789243i 0.186431 + 0.128032i
\(39\) 4.97240 + 1.61563i 0.796221 + 0.258708i
\(40\) 0.0753099 0.315177i 0.0119075 0.0498339i
\(41\) −5.54176 + 7.62758i −0.865477 + 1.19123i 0.114758 + 0.993393i \(0.463391\pi\)
−0.980236 + 0.197834i \(0.936609\pi\)
\(42\) 0.410584 + 15.4682i 0.0633545 + 2.38679i
\(43\) −4.92518 4.92518i −0.751083 0.751083i 0.223598 0.974681i \(-0.428220\pi\)
−0.974681 + 0.223598i \(0.928220\pi\)
\(44\) −4.38398 + 4.97803i −0.660909 + 0.750466i
\(45\) 0.356006 0.356006i 0.0530703 0.0530703i
\(46\) 1.83623 1.93637i 0.270738 0.285502i
\(47\) 6.46457 + 4.69679i 0.942955 + 0.685097i 0.949130 0.314884i \(-0.101966\pi\)
−0.00617537 + 0.999981i \(0.501966\pi\)
\(48\) −10.5024 + 2.83023i −1.51590 + 0.408508i
\(49\) −2.83987 + 8.74021i −0.405695 + 1.24860i
\(50\) 6.93395 1.28770i 0.980609 0.182108i
\(51\) 0.875098 5.52515i 0.122538 0.773676i
\(52\) −1.56153 + 3.51402i −0.216546 + 0.487307i
\(53\) 0.688072 1.35042i 0.0945139 0.185494i −0.838909 0.544271i \(-0.816806\pi\)
0.933423 + 0.358777i \(0.116806\pi\)
\(54\) −5.14229 1.52122i −0.699777 0.207011i
\(55\) 0.362574 + 0.113695i 0.0488895 + 0.0153306i
\(56\) −11.3466 0.880745i −1.51625 0.117694i
\(57\) −2.54949 + 0.828380i −0.337688 + 0.109722i
\(58\) 10.3936 7.98123i 1.36475 1.04799i
\(59\) 11.6186 + 1.84021i 1.51262 + 0.239575i 0.856920 0.515450i \(-0.172375\pi\)
0.655696 + 0.755025i \(0.272375\pi\)
\(60\) 0.392469 + 0.483951i 0.0506675 + 0.0624778i
\(61\) 2.19035 + 4.29880i 0.280446 + 0.550406i 0.987664 0.156590i \(-0.0500501\pi\)
−0.707218 + 0.706995i \(0.750050\pi\)
\(62\) −4.80908 + 10.0917i −0.610754 + 1.28165i
\(63\) −14.3050 10.3932i −1.80225 1.30941i
\(64\) −1.26843 7.89880i −0.158554 0.987350i
\(65\) 0.220279 0.0273223
\(66\) −2.45777 12.5155i −0.302530 1.54055i
\(67\) 7.37201 7.37201i 0.900635 0.900635i −0.0948563 0.995491i \(-0.530239\pi\)
0.995491 + 0.0948563i \(0.0302392\pi\)
\(68\) 3.97492 + 1.06203i 0.482029 + 0.128790i
\(69\) 0.802693 + 5.06801i 0.0966329 + 0.610116i
\(70\) 0.217841 + 0.614465i 0.0260369 + 0.0734426i
\(71\) −11.3461 3.68658i −1.34654 0.437517i −0.455012 0.890485i \(-0.650365\pi\)
−0.891527 + 0.452968i \(0.850365\pi\)
\(72\) 4.74420 11.4884i 0.559110 1.35392i
\(73\) 2.31924 + 3.19215i 0.271446 + 0.373613i 0.922877 0.385094i \(-0.125831\pi\)
−0.651431 + 0.758708i \(0.725831\pi\)
\(74\) 3.55903 + 4.63478i 0.413729 + 0.538782i
\(75\) −6.15642 + 12.0827i −0.710882 + 1.39519i
\(76\) −0.411303 1.92824i −0.0471797 0.221185i
\(77\) 1.95184 13.2015i 0.222433 1.50445i
\(78\) −3.53039 6.49664i −0.399738 0.735599i
\(79\) 1.28620 + 3.95853i 0.144709 + 0.445370i 0.996974 0.0777421i \(-0.0247711\pi\)
−0.852264 + 0.523112i \(0.824771\pi\)
\(80\) −0.383985 + 0.250145i −0.0429308 + 0.0279670i
\(81\) −2.32359 + 1.68818i −0.258176 + 0.187576i
\(82\) 13.1094 2.43452i 1.44769 0.268848i
\(83\) −3.80201 7.46187i −0.417325 0.819046i −0.999980 0.00632673i \(-0.997986\pi\)
0.582655 0.812720i \(-0.302014\pi\)
\(84\) 14.6309 16.2727i 1.59637 1.77550i
\(85\) −0.0368698 0.232787i −0.00399909 0.0252493i
\(86\) 0.261374 + 9.84689i 0.0281847 + 1.06182i
\(87\) 25.1976i 2.70146i
\(88\) 9.34294 0.842258i 0.995961 0.0897850i
\(89\) 6.37697i 0.675958i −0.941154 0.337979i \(-0.890257\pi\)
0.941154 0.337979i \(-0.109743\pi\)
\(90\) −0.711761 + 0.0188929i −0.0750262 + 0.00199148i
\(91\) −1.21021 7.64099i −0.126865 0.800993i
\(92\) −3.76862 + 0.200208i −0.392906 + 0.0208731i
\(93\) −9.75862 19.1524i −1.01192 1.98601i
\(94\) −2.06332 11.1105i −0.212816 1.14596i
\(95\) −0.0913731 + 0.0663865i −0.00937469 + 0.00681111i
\(96\) 13.5315 + 7.31573i 1.38106 + 0.746659i
\(97\) −4.65228 14.3182i −0.472367 1.45380i −0.849476 0.527627i \(-0.823082\pi\)
0.377109 0.926169i \(-0.376918\pi\)
\(98\) 11.4194 6.20554i 1.15354 0.626854i
\(99\) 13.0536 + 6.48279i 1.31194 + 0.651545i
\(100\) −8.36857 5.42611i −0.836857 0.542611i
\(101\) 4.11596 8.07803i 0.409553 0.803794i −0.590441 0.807081i \(-0.701046\pi\)
0.999995 + 0.00328703i \(0.00104629\pi\)
\(102\) −6.27461 + 4.81824i −0.621279 + 0.477077i
\(103\) 4.73864 + 6.52218i 0.466912 + 0.642650i 0.975924 0.218110i \(-0.0699891\pi\)
−0.509012 + 0.860760i \(0.669989\pi\)
\(104\) 5.02196 2.08648i 0.492444 0.204596i
\(105\) −1.19220 0.387370i −0.116347 0.0378034i
\(106\) −2.02020 + 0.716202i −0.196219 + 0.0695637i
\(107\) −2.44775 15.4545i −0.236633 1.49404i −0.764449 0.644684i \(-0.776989\pi\)
0.527816 0.849358i \(-0.323011\pi\)
\(108\) 3.79661 + 6.56508i 0.365329 + 0.631725i
\(109\) −2.13018 + 2.13018i −0.204034 + 0.204034i −0.801726 0.597692i \(-0.796085\pi\)
0.597692 + 0.801726i \(0.296085\pi\)
\(110\) −0.261429 0.469498i −0.0249263 0.0447648i
\(111\) −11.2362 −1.06649
\(112\) 10.7866 + 11.9453i 1.01923 + 1.12872i
\(113\) 5.80318 + 4.21626i 0.545917 + 0.396632i 0.826278 0.563263i \(-0.190454\pi\)
−0.280361 + 0.959895i \(0.590454\pi\)
\(114\) 3.42235 + 1.63087i 0.320532 + 0.152745i
\(115\) 0.0981472 + 0.192625i 0.00915227 + 0.0179623i
\(116\) −18.4324 1.92400i −1.71141 0.178639i
\(117\) 8.34510 + 1.32173i 0.771505 + 0.122194i
\(118\) −10.1321 13.1946i −0.932735 1.21466i
\(119\) −7.87228 + 2.55786i −0.721651 + 0.234479i
\(120\) 0.0681941 0.878538i 0.00622524 0.0801992i
\(121\) 0.226437 + 10.9977i 0.0205852 + 0.999788i
\(122\) 1.93553 6.54282i 0.175234 0.592359i
\(123\) −11.6394 + 22.8435i −1.04949 + 2.05973i
\(124\) 14.7554 5.67618i 1.32507 0.509736i
\(125\) −0.178990 + 1.13010i −0.0160094 + 0.101079i
\(126\) 4.56577 + 24.5856i 0.406751 + 2.19026i
\(127\) −4.87874 + 15.0152i −0.432918 + 1.33239i 0.462287 + 0.886731i \(0.347029\pi\)
−0.895205 + 0.445655i \(0.852971\pi\)
\(128\) −6.38479 + 9.33994i −0.564341 + 0.825542i
\(129\) −15.3231 11.1329i −1.34913 0.980199i
\(130\) −0.226046 0.214357i −0.0198256 0.0188003i
\(131\) 8.79191 8.79191i 0.768153 0.768153i −0.209628 0.977781i \(-0.567225\pi\)
0.977781 + 0.209628i \(0.0672254\pi\)
\(132\) −9.65687 + 15.2349i −0.840523 + 1.32602i
\(133\) 2.80480 + 2.80480i 0.243207 + 0.243207i
\(134\) −14.7388 + 0.391225i −1.27324 + 0.0337967i
\(135\) 0.255355 0.351466i 0.0219775 0.0302494i
\(136\) −3.04551 4.95788i −0.261151 0.425135i
\(137\) 6.39658 + 2.07837i 0.546496 + 0.177567i 0.569236 0.822174i \(-0.307239\pi\)
−0.0227399 + 0.999741i \(0.507239\pi\)
\(138\) 4.10804 5.98181i 0.349699 0.509206i
\(139\) −17.4213 2.75927i −1.47766 0.234038i −0.635011 0.772503i \(-0.719004\pi\)
−0.842648 + 0.538465i \(0.819004\pi\)
\(140\) 0.374400 0.842537i 0.0316425 0.0712073i
\(141\) 19.3605 + 9.86466i 1.63045 + 0.830754i
\(142\) 8.05574 + 14.8242i 0.676023 + 1.24402i
\(143\) 2.03286 + 6.04409i 0.169996 + 0.505432i
\(144\) −16.0479 + 7.17251i −1.33733 + 0.597710i
\(145\) 0.328061 + 1.00967i 0.0272440 + 0.0838484i
\(146\) 0.726369 5.53261i 0.0601147 0.457882i
\(147\) −3.90932 + 24.6825i −0.322435 + 2.03578i
\(148\) 0.857957 8.21947i 0.0705237 0.675636i
\(149\) 4.41244 2.24825i 0.361481 0.184184i −0.263811 0.964574i \(-0.584980\pi\)
0.625292 + 0.780391i \(0.284980\pi\)
\(150\) 18.0754 6.40811i 1.47585 0.523220i
\(151\) 11.9686 16.4734i 0.973991 1.34058i 0.0339856 0.999422i \(-0.489180\pi\)
0.940005 0.341161i \(-0.110820\pi\)
\(152\) −1.45433 + 2.37898i −0.117962 + 0.192960i
\(153\) 9.04017i 0.730854i
\(154\) −14.8495 + 11.6478i −1.19661 + 0.938607i
\(155\) −0.640384 0.640384i −0.0514369 0.0514369i
\(156\) −2.69914 + 10.1022i −0.216104 + 0.808824i
\(157\) −1.18385 + 0.187503i −0.0944815 + 0.0149644i −0.203496 0.979076i \(-0.565230\pi\)
0.109015 + 0.994040i \(0.465230\pi\)
\(158\) 2.53222 5.31380i 0.201453 0.422743i
\(159\) 1.27357 3.91964i 0.101001 0.310848i
\(160\) 0.637458 + 0.116967i 0.0503955 + 0.00924706i
\(161\) 6.14250 4.46279i 0.484097 0.351717i
\(162\) 4.02722 + 0.528728i 0.316408 + 0.0415408i
\(163\) −2.42420 1.23519i −0.189878 0.0967476i 0.356467 0.934308i \(-0.383981\pi\)
−0.546345 + 0.837560i \(0.683981\pi\)
\(164\) −15.8217 10.2586i −1.23546 0.801064i
\(165\) 1.02216 + 0.151127i 0.0795754 + 0.0117652i
\(166\) −3.35969 + 11.3570i −0.260762 + 0.881476i
\(167\) 7.00824 2.27712i 0.542314 0.176208i −0.0250341 0.999687i \(-0.507969\pi\)
0.567348 + 0.823478i \(0.307969\pi\)
\(168\) −30.8492 + 2.46119i −2.38007 + 0.189885i
\(169\) −5.46835 7.52654i −0.420642 0.578965i
\(170\) −0.188693 + 0.274760i −0.0144721 + 0.0210731i
\(171\) −3.85994 + 1.96674i −0.295177 + 0.150400i
\(172\) 9.31392 10.3591i 0.710180 0.789870i
\(173\) 1.52435 0.241433i 0.115894 0.0183558i −0.0982180 0.995165i \(-0.531314\pi\)
0.214112 + 0.976809i \(0.431314\pi\)
\(174\) 24.5201 25.8573i 1.85886 1.96024i
\(175\) 20.0656 1.51682
\(176\) −10.4072 8.22743i −0.784470 0.620166i
\(177\) 31.9881 2.40437
\(178\) −6.20552 + 6.54394i −0.465123 + 0.490489i
\(179\) −8.13756 + 1.28886i −0.608230 + 0.0963341i −0.452949 0.891536i \(-0.649628\pi\)
−0.155281 + 0.987870i \(0.549628\pi\)
\(180\) 0.748782 + 0.673237i 0.0558109 + 0.0501801i
\(181\) 13.7836 7.02310i 1.02453 0.522023i 0.140807 0.990037i \(-0.455030\pi\)
0.883721 + 0.468014i \(0.155030\pi\)
\(182\) −6.19365 + 9.01872i −0.459104 + 0.668512i
\(183\) 7.71150 + 10.6140i 0.570050 + 0.784607i
\(184\) 4.06211 + 3.46184i 0.299463 + 0.255210i
\(185\) −0.450236 + 0.146291i −0.0331020 + 0.0107555i
\(186\) −8.62330 + 29.1501i −0.632291 + 2.13739i
\(187\) 6.04702 3.15993i 0.442202 0.231077i
\(188\) −8.69445 + 13.4093i −0.634108 + 0.977971i
\(189\) −13.5945 6.92674i −0.988854 0.503846i
\(190\) 0.158367 + 0.0207918i 0.0114892 + 0.00150840i
\(191\) −6.50678 + 4.72745i −0.470814 + 0.342066i −0.797758 0.602977i \(-0.793981\pi\)
0.326945 + 0.945044i \(0.393981\pi\)
\(192\) −6.76680 20.6750i −0.488352 1.49209i
\(193\) −0.142831 + 0.439588i −0.0102812 + 0.0316423i −0.956066 0.293153i \(-0.905295\pi\)
0.945784 + 0.324795i \(0.105295\pi\)
\(194\) −9.15918 + 19.2203i −0.657591 + 1.37994i
\(195\) 0.591625 0.0937042i 0.0423671 0.00671029i
\(196\) −17.7571 4.74439i −1.26837 0.338885i
\(197\) −2.08610 2.08610i −0.148628 0.148628i 0.628877 0.777505i \(-0.283515\pi\)
−0.777505 + 0.628877i \(0.783515\pi\)
\(198\) −7.08692 19.3552i −0.503646 1.37551i
\(199\) 16.0062i 1.13465i −0.823494 0.567325i \(-0.807978\pi\)
0.823494 0.567325i \(-0.192022\pi\)
\(200\) 3.30746 + 13.7117i 0.233873 + 0.969567i
\(201\) 16.6638 22.9357i 1.17537 1.61776i
\(202\) −12.0846 + 4.28423i −0.850267 + 0.301437i
\(203\) 33.2208 16.9268i 2.33164 1.18803i
\(204\) 11.1276 + 1.16151i 0.779087 + 0.0813220i
\(205\) −0.168977 + 1.06688i −0.0118019 + 0.0745142i
\(206\) 1.48411 11.3042i 0.103403 0.787600i
\(207\) 2.56243 + 7.88635i 0.178101 + 0.548139i
\(208\) −7.18383 2.74583i −0.498109 0.190389i
\(209\) −2.66478 1.89447i −0.184326 0.131044i
\(210\) 0.846462 + 1.55766i 0.0584114 + 0.107489i
\(211\) −6.88280 3.50696i −0.473832 0.241429i 0.200732 0.979646i \(-0.435668\pi\)
−0.674563 + 0.738217i \(0.735668\pi\)
\(212\) 2.77004 + 1.23093i 0.190247 + 0.0845403i
\(213\) −32.0417 5.07490i −2.19546 0.347726i
\(214\) −12.5271 + 18.2411i −0.856337 + 1.24693i
\(215\) −0.758945 0.246596i −0.0517596 0.0168177i
\(216\) 2.49255 10.4315i 0.169596 0.709774i
\(217\) −18.6952 + 25.7318i −1.26911 + 1.74679i
\(218\) 4.25886 0.113046i 0.288447 0.00765647i
\(219\) 7.58690 + 7.58690i 0.512675 + 0.512675i
\(220\) −0.188600 + 0.736190i −0.0127154 + 0.0496339i
\(221\) 2.79681 2.79681i 0.188133 0.188133i
\(222\) 11.5304 + 10.9341i 0.773870 + 0.733850i
\(223\) −5.06651 3.68103i −0.339278 0.246500i 0.405079 0.914282i \(-0.367244\pi\)
−0.744357 + 0.667782i \(0.767244\pi\)
\(224\) 0.555134 22.7546i 0.0370915 1.52036i
\(225\) −6.77199 + 20.8420i −0.451466 + 1.38947i
\(226\) −1.85222 9.97380i −0.123208 0.663447i
\(227\) −3.00496 + 18.9725i −0.199446 + 1.25925i 0.661263 + 0.750154i \(0.270021\pi\)
−0.860709 + 0.509098i \(0.829979\pi\)
\(228\) −1.92493 5.00391i −0.127482 0.331392i
\(229\) −6.48839 + 12.7342i −0.428765 + 0.841498i 0.571024 + 0.820933i \(0.306546\pi\)
−0.999789 + 0.0205644i \(0.993454\pi\)
\(230\) 0.0867288 0.293176i 0.00571873 0.0193315i
\(231\) −0.373525 36.2869i −0.0245762 2.38750i
\(232\) 17.0428 + 19.9112i 1.11891 + 1.30723i
\(233\) 6.34397 2.06128i 0.415607 0.135039i −0.0937468 0.995596i \(-0.529884\pi\)
0.509354 + 0.860557i \(0.329884\pi\)
\(234\) −7.27740 9.47707i −0.475738 0.619535i
\(235\) 0.904210 + 0.143213i 0.0589841 + 0.00934217i
\(236\) −2.44249 + 23.3998i −0.158993 + 1.52320i
\(237\) 5.13840 + 10.0847i 0.333775 + 0.655070i
\(238\) 10.5675 + 5.03579i 0.684988 + 0.326422i
\(239\) −4.03417 2.93100i −0.260949 0.189590i 0.449616 0.893222i \(-0.351561\pi\)
−0.710565 + 0.703631i \(0.751561\pi\)
\(240\) −0.924897 + 0.835180i −0.0597019 + 0.0539106i
\(241\) −6.95477 −0.447996 −0.223998 0.974590i \(-0.571911\pi\)
−0.223998 + 0.974590i \(0.571911\pi\)
\(242\) 10.4696 11.5060i 0.673012 0.739631i
\(243\) −13.5664 + 13.5664i −0.870286 + 0.870286i
\(244\) −8.35311 + 4.83064i −0.534753 + 0.309250i
\(245\) 0.164708 + 1.03993i 0.0105228 + 0.0664384i
\(246\) 34.1734 12.1152i 2.17882 0.772437i
\(247\) −1.80263 0.585710i −0.114699 0.0372678i
\(248\) −20.6653 8.53388i −1.31225 0.541902i
\(249\) −13.3856 18.4237i −0.848279 1.16756i
\(250\) 1.28339 0.985510i 0.0811688 0.0623291i
\(251\) 0.866145 1.69991i 0.0546706 0.107297i −0.862055 0.506815i \(-0.830823\pi\)
0.916725 + 0.399518i \(0.130823\pi\)
\(252\) 19.2393 29.6723i 1.21196 1.86918i
\(253\) −4.37954 + 4.47064i −0.275339 + 0.281067i
\(254\) 19.6180 10.6608i 1.23094 0.668917i
\(255\) −0.198049 0.609533i −0.0124023 0.0381705i
\(256\) 15.6408 3.37135i 0.977549 0.210709i
\(257\) −3.61269 + 2.62477i −0.225353 + 0.163729i −0.694733 0.719268i \(-0.744478\pi\)
0.469380 + 0.882996i \(0.344478\pi\)
\(258\) 4.89075 + 26.3356i 0.304485 + 1.63958i
\(259\) 7.54809 + 14.8140i 0.469016 + 0.920495i
\(260\) 0.0233717 + 0.439938i 0.00144945 + 0.0272838i
\(261\) 6.37006 + 40.2190i 0.394297 + 2.48949i
\(262\) −17.5776 + 0.466577i −1.08595 + 0.0288252i
\(263\) 6.93960i 0.427914i 0.976843 + 0.213957i \(0.0686353\pi\)
−0.976843 + 0.213957i \(0.931365\pi\)
\(264\) 24.7350 6.23651i 1.52233 0.383831i
\(265\) 0.173642i 0.0106667i
\(266\) −0.148848 5.60763i −0.00912645 0.343826i
\(267\) −2.71269 17.1273i −0.166014 1.04817i
\(268\) 15.5054 + 13.9411i 0.947145 + 0.851588i
\(269\) −5.88555 11.5510i −0.358849 0.704280i 0.639044 0.769170i \(-0.279330\pi\)
−0.997892 + 0.0648904i \(0.979330\pi\)
\(270\) −0.604057 + 0.112179i −0.0367618 + 0.00682699i
\(271\) 13.6804 9.93939i 0.831025 0.603775i −0.0888240 0.996047i \(-0.528311\pi\)
0.919849 + 0.392272i \(0.128311\pi\)
\(272\) −1.69933 + 8.05132i −0.103037 + 0.488183i
\(273\) −6.50078 20.0073i −0.393445 1.21090i
\(274\) −4.54156 8.35739i −0.274366 0.504888i
\(275\) −16.3085 + 2.75537i −0.983437 + 0.166155i
\(276\) −10.0366 + 2.14084i −0.604131 + 0.128864i
\(277\) 6.53826 12.8321i 0.392846 0.771004i −0.606871 0.794801i \(-0.707575\pi\)
0.999717 + 0.0237966i \(0.00757540\pi\)
\(278\) 15.1924 + 19.7845i 0.911179 + 1.18659i
\(279\) −20.4180 28.1029i −1.22239 1.68248i
\(280\) −1.20409 + 0.500263i −0.0719579 + 0.0298964i
\(281\) 22.4010 + 7.27853i 1.33633 + 0.434201i 0.888073 0.459702i \(-0.152044\pi\)
0.448260 + 0.893903i \(0.352044\pi\)
\(282\) −10.2680 28.9629i −0.611448 1.72471i
\(283\) 4.16327 + 26.2859i 0.247481 + 1.56253i 0.728018 + 0.685558i \(0.240442\pi\)
−0.480537 + 0.876975i \(0.659558\pi\)
\(284\) 6.15896 23.0515i 0.365467 1.36785i
\(285\) −0.217170 + 0.217170i −0.0128640 + 0.0128640i
\(286\) 3.79550 8.18054i 0.224433 0.483725i
\(287\) 37.9361 2.23930
\(288\) 23.4477 + 8.25613i 1.38167 + 0.486497i
\(289\) 10.3296 + 7.50486i 0.607621 + 0.441463i
\(290\) 0.645872 1.35535i 0.0379269 0.0795886i
\(291\) −18.5859 36.4768i −1.08952 2.13831i
\(292\) −6.12925 + 4.97063i −0.358687 + 0.290884i
\(293\) −7.20948 1.14187i −0.421182 0.0667087i −0.0577539 0.998331i \(-0.518394\pi\)
−0.363428 + 0.931622i \(0.618394\pi\)
\(294\) 28.0305 21.5245i 1.63477 1.25533i
\(295\) 1.28176 0.416470i 0.0746272 0.0242478i
\(296\) −8.87890 + 7.59978i −0.516075 + 0.441728i
\(297\) 12.0002 + 3.76299i 0.696322 + 0.218351i
\(298\) −6.71577 1.98669i −0.389034 0.115086i
\(299\) −1.64709 + 3.23259i −0.0952536 + 0.186946i
\(300\) −24.7845 11.0135i −1.43093 0.635866i
\(301\) −4.38423 + 27.6809i −0.252703 + 1.59550i
\(302\) −28.3124 + 5.25787i −1.62920 + 0.302556i
\(303\) 7.61833 23.4468i 0.437662 1.34698i
\(304\) 3.80742 1.02604i 0.218370 0.0588471i
\(305\) 0.447189 + 0.324902i 0.0256060 + 0.0186038i
\(306\) −8.79711 + 9.27686i −0.502897 + 0.530323i
\(307\) 0.426436 0.426436i 0.0243380 0.0243380i −0.694833 0.719171i \(-0.744522\pi\)
0.719171 + 0.694833i \(0.244522\pi\)
\(308\) 26.5730 + 2.49750i 1.51414 + 0.142308i
\(309\) 15.5015 + 15.5015i 0.881849 + 0.881849i
\(310\) 0.0339845 + 1.28032i 0.00193019 + 0.0727171i
\(311\) −16.0426 + 22.0808i −0.909693 + 1.25209i 0.0575780 + 0.998341i \(0.481662\pi\)
−0.967271 + 0.253744i \(0.918338\pi\)
\(312\) 12.6004 7.74014i 0.713357 0.438199i
\(313\) −5.19272 1.68722i −0.293510 0.0953671i 0.158561 0.987349i \(-0.449315\pi\)
−0.452071 + 0.891982i \(0.649315\pi\)
\(314\) 1.39731 + 0.959607i 0.0788546 + 0.0541538i
\(315\) −2.00086 0.316904i −0.112735 0.0178555i
\(316\) −7.76945 + 2.98879i −0.437066 + 0.168133i
\(317\) 0.139268 + 0.0709607i 0.00782208 + 0.00398555i 0.457897 0.889005i \(-0.348603\pi\)
−0.450075 + 0.892991i \(0.648603\pi\)
\(318\) −5.12117 + 2.78294i −0.287181 + 0.156060i
\(319\) −24.6761 + 18.3192i −1.38160 + 1.02568i
\(320\) −0.540326 0.740348i −0.0302051 0.0413867i
\(321\) −13.1483 40.4664i −0.733868 2.25861i
\(322\) −10.6461 1.39772i −0.593285 0.0778916i
\(323\) −0.317247 + 2.00302i −0.0176521 + 0.111451i
\(324\) −3.61815 4.46151i −0.201008 0.247862i
\(325\) −8.54310 + 4.35293i −0.473886 + 0.241457i
\(326\) 1.28569 + 3.62655i 0.0712077 + 0.200856i
\(327\) −4.81508 + 6.62739i −0.266275 + 0.366495i
\(328\) 6.25310 + 25.9235i 0.345270 + 1.43138i
\(329\) 32.1518i 1.77259i
\(330\) −0.901864 1.14977i −0.0496460 0.0632925i
\(331\) −15.7047 15.7047i −0.863209 0.863209i 0.128500 0.991709i \(-0.458984\pi\)
−0.991709 + 0.128500i \(0.958984\pi\)
\(332\) 14.4993 8.38502i 0.795754 0.460188i
\(333\) −17.9346 + 2.84056i −0.982811 + 0.155662i
\(334\) −9.40762 4.48308i −0.514762 0.245303i
\(335\) 0.369105 1.13599i 0.0201664 0.0620657i
\(336\) 34.0519 + 27.4941i 1.85768 + 1.49993i
\(337\) 7.10872 5.16478i 0.387236 0.281344i −0.377086 0.926178i \(-0.623074\pi\)
0.764322 + 0.644835i \(0.223074\pi\)
\(338\) −1.71265 + 13.0449i −0.0931560 + 0.709551i
\(339\) 17.3797 + 8.85540i 0.943936 + 0.480959i
\(340\) 0.461006 0.0983345i 0.0250015 0.00533294i
\(341\) 11.6612 23.4809i 0.631492 1.27156i
\(342\) 5.87486 + 1.73793i 0.317676 + 0.0939763i
\(343\) 8.38058 2.72302i 0.452509 0.147029i
\(344\) −19.6383 + 1.56677i −1.05883 + 0.0844747i
\(345\) 0.345544 + 0.475600i 0.0186034 + 0.0256054i
\(346\) −1.79920 1.23561i −0.0967257 0.0664268i
\(347\) −12.3824 + 6.30914i −0.664721 + 0.338692i −0.753584 0.657352i \(-0.771677\pi\)
0.0888629 + 0.996044i \(0.471677\pi\)
\(348\) −50.3242 + 2.67347i −2.69766 + 0.143313i
\(349\) 14.0353 2.22297i 0.751291 0.118993i 0.230967 0.972962i \(-0.425811\pi\)
0.520324 + 0.853969i \(0.325811\pi\)
\(350\) −20.5909 19.5261i −1.10063 1.04371i
\(351\) 7.29063 0.389145
\(352\) 2.67343 + 18.5702i 0.142495 + 0.989796i
\(353\) −18.9020 −1.00605 −0.503026 0.864271i \(-0.667780\pi\)
−0.503026 + 0.864271i \(0.667780\pi\)
\(354\) −32.8256 31.1280i −1.74466 1.65444i
\(355\) −1.34998 + 0.213817i −0.0716497 + 0.0113482i
\(356\) 12.7360 0.676600i 0.675006 0.0358597i
\(357\) −20.0553 + 10.2187i −1.06144 + 0.540829i
\(358\) 9.60483 + 6.59616i 0.507631 + 0.348618i
\(359\) 7.37380 + 10.1492i 0.389174 + 0.535652i 0.957986 0.286815i \(-0.0925967\pi\)
−0.568812 + 0.822468i \(0.692597\pi\)
\(360\) −0.113251 1.41951i −0.00596884 0.0748149i
\(361\) −17.1458 + 5.57101i −0.902411 + 0.293211i
\(362\) −20.9788 6.20604i −1.10262 0.326182i
\(363\) 5.28644 + 29.4412i 0.277466 + 1.54526i
\(364\) 15.1321 3.22773i 0.793135 0.169179i
\(365\) 0.402786 + 0.205230i 0.0210828 + 0.0107422i
\(366\) 2.41519 18.3960i 0.126244 0.961576i
\(367\) 10.1042 7.34114i 0.527435 0.383204i −0.291962 0.956430i \(-0.594308\pi\)
0.819398 + 0.573226i \(0.194308\pi\)
\(368\) −0.799704 7.50538i −0.0416875 0.391245i
\(369\) −12.8031 + 39.4040i −0.666505 + 2.05129i
\(370\) 0.604382 + 0.288010i 0.0314203 + 0.0149729i
\(371\) −6.02324 + 0.953988i −0.312711 + 0.0495286i
\(372\) 37.2154 21.5218i 1.92953 1.11585i
\(373\) 27.2141 + 27.2141i 1.40910 + 1.40910i 0.764653 + 0.644442i \(0.222910\pi\)
0.644442 + 0.764653i \(0.277090\pi\)
\(374\) −9.28032 2.64177i −0.479874 0.136603i
\(375\) 3.11136i 0.160670i
\(376\) 21.9708 5.29967i 1.13306 0.273310i
\(377\) −10.4720 + 14.4135i −0.539336 + 0.742333i
\(378\) 7.20993 + 20.3371i 0.370839 + 1.04603i
\(379\) −7.87822 + 4.01415i −0.404677 + 0.206193i −0.644468 0.764631i \(-0.722921\pi\)
0.239791 + 0.970825i \(0.422921\pi\)
\(380\) −0.142281 0.175445i −0.00729885 0.00900016i
\(381\) −6.71600 + 42.4032i −0.344071 + 2.17238i
\(382\) 11.2775 + 1.48061i 0.577006 + 0.0757544i
\(383\) −0.222430 0.684570i −0.0113657 0.0349799i 0.945213 0.326455i \(-0.105854\pi\)
−0.956579 + 0.291475i \(0.905854\pi\)
\(384\) −13.1752 + 27.8012i −0.672342 + 1.41872i
\(385\) −0.487407 1.44916i −0.0248405 0.0738558i
\(386\) 0.574340 0.312107i 0.0292331 0.0158858i
\(387\) −27.2724 13.8960i −1.38633 0.706372i
\(388\) 28.1025 10.8106i 1.42669 0.548826i
\(389\) 7.18610 + 1.13817i 0.364350 + 0.0577073i 0.335925 0.941889i \(-0.390951\pi\)
0.0284243 + 0.999596i \(0.490951\pi\)
\(390\) −0.698300 0.479560i −0.0353598 0.0242835i
\(391\) 3.69183 + 1.19955i 0.186704 + 0.0606637i
\(392\) 13.6052 + 22.1483i 0.687167 + 1.11866i
\(393\) 19.8733 27.3533i 1.00248 1.37979i
\(394\) 0.110707 + 4.17073i 0.00557734 + 0.210118i
\(395\) 0.337194 + 0.337194i 0.0169661 + 0.0169661i
\(396\) −11.5623 + 26.7583i −0.581029 + 1.34466i
\(397\) 17.5670 17.5670i 0.881664 0.881664i −0.112040 0.993704i \(-0.535738\pi\)
0.993704 + 0.112040i \(0.0357383\pi\)
\(398\) −15.5758 + 16.4253i −0.780747 + 0.823325i
\(399\) 8.72626 + 6.34000i 0.436859 + 0.317397i
\(400\) 9.94902 17.2893i 0.497451 0.864464i
\(401\) −8.75090 + 26.9325i −0.436999 + 1.34494i 0.454025 + 0.890989i \(0.349988\pi\)
−0.891024 + 0.453956i \(0.850012\pi\)
\(402\) −39.4191 + 7.32048i −1.96605 + 0.365112i
\(403\) 2.37754 15.0112i 0.118433 0.747760i
\(404\) 16.5700 + 7.36324i 0.824389 + 0.366335i
\(405\) −0.149388 + 0.293190i −0.00742313 + 0.0145687i
\(406\) −50.5623 14.9576i −2.50937 0.742332i
\(407\) −8.16900 11.0037i −0.404922 0.545432i
\(408\) −10.2887 12.0203i −0.509364 0.595095i
\(409\) 7.19202 2.33683i 0.355622 0.115549i −0.125757 0.992061i \(-0.540136\pi\)
0.481379 + 0.876512i \(0.340136\pi\)
\(410\) 1.21160 0.930380i 0.0598365 0.0459482i
\(411\) 18.0640 + 2.86106i 0.891032 + 0.141126i
\(412\) −12.5232 + 10.1559i −0.616975 + 0.500348i
\(413\) −21.4884 42.1735i −1.05738 2.07522i
\(414\) 5.04479 10.5864i 0.247938 0.520291i
\(415\) −0.776232 0.563965i −0.0381037 0.0276840i
\(416\) 4.69991 + 9.80840i 0.230432 + 0.480896i
\(417\) −47.9639 −2.34880
\(418\) 0.891008 + 4.53721i 0.0435806 + 0.221922i
\(419\) 5.26021 5.26021i 0.256978 0.256978i −0.566846 0.823824i \(-0.691836\pi\)
0.823824 + 0.566846i \(0.191836\pi\)
\(420\) 0.647156 2.42215i 0.0315780 0.118189i
\(421\) 3.28797 + 20.7594i 0.160246 + 1.01175i 0.928426 + 0.371518i \(0.121163\pi\)
−0.768180 + 0.640234i \(0.778837\pi\)
\(422\) 3.65034 + 10.2965i 0.177696 + 0.501227i
\(423\) 33.3960 + 10.8510i 1.62377 + 0.527594i
\(424\) −1.64473 3.95871i −0.0798752 0.192252i
\(425\) 6.03001 + 8.29960i 0.292498 + 0.402590i
\(426\) 27.9421 + 36.3879i 1.35380 + 1.76300i
\(427\) 8.81327 17.2970i 0.426504 0.837061i
\(428\) 30.6058 6.52834i 1.47938 0.315559i
\(429\) 8.03093 + 15.3684i 0.387737 + 0.741995i
\(430\) 0.538850 + 0.991593i 0.0259857 + 0.0478188i
\(431\) 2.39117 + 7.35925i 0.115178 + 0.354483i 0.991984 0.126362i \(-0.0403301\pi\)
−0.876806 + 0.480845i \(0.840330\pi\)
\(432\) −12.7088 + 8.27909i −0.611455 + 0.398328i
\(433\) 7.81326 5.67667i 0.375481 0.272803i −0.383999 0.923334i \(-0.625453\pi\)
0.759480 + 0.650530i \(0.225453\pi\)
\(434\) 44.2246 8.21291i 2.12285 0.394232i
\(435\) 1.31061 + 2.57221i 0.0628388 + 0.123328i
\(436\) −4.48038 4.02835i −0.214571 0.192923i
\(437\) −0.290998 1.83729i −0.0139203 0.0878895i
\(438\) −0.402629 15.1685i −0.0192383 0.724777i
\(439\) 9.27765i 0.442798i 0.975183 + 0.221399i \(0.0710623\pi\)
−0.975183 + 0.221399i \(0.928938\pi\)
\(440\) 0.909935 0.571936i 0.0433795 0.0272660i
\(441\) 40.3851i 1.92310i
\(442\) −5.59164 + 0.148423i −0.265967 + 0.00705978i
\(443\) −5.03901 31.8151i −0.239411 1.51158i −0.755560 0.655080i \(-0.772635\pi\)
0.516149 0.856499i \(-0.327365\pi\)
\(444\) −1.19217 22.4408i −0.0565778 1.06499i
\(445\) −0.331687 0.650972i −0.0157235 0.0308590i
\(446\) 1.61710 + 8.70770i 0.0765718 + 0.412321i
\(447\) 10.8945 7.91534i 0.515294 0.374383i
\(448\) −22.7125 + 22.8102i −1.07306 + 1.07768i
\(449\) 1.94733 + 5.99327i 0.0919003 + 0.282840i 0.986433 0.164162i \(-0.0524918\pi\)
−0.894533 + 0.447002i \(0.852492\pi\)
\(450\) 27.2310 14.7978i 1.28368 0.697576i
\(451\) −30.8328 + 5.20932i −1.45186 + 0.245297i
\(452\) −7.80492 + 12.0374i −0.367112 + 0.566190i
\(453\) 25.1376 49.3354i 1.18107 2.31798i
\(454\) 21.5461 16.5451i 1.01121 0.776501i
\(455\) −0.520973 0.717058i −0.0244236 0.0336162i
\(456\) −2.89404 + 7.00810i −0.135526 + 0.328184i
\(457\) −15.3625 4.99157i −0.718626 0.233496i −0.0731985 0.997317i \(-0.523321\pi\)
−0.645427 + 0.763822i \(0.723321\pi\)
\(458\) 19.0501 6.75365i 0.890151 0.315577i
\(459\) −1.22029 7.70459i −0.0569582 0.359620i
\(460\) −0.374293 + 0.216456i −0.0174515 + 0.0100923i
\(461\) 13.1178 13.1178i 0.610956 0.610956i −0.332239 0.943195i \(-0.607804\pi\)
0.943195 + 0.332239i \(0.107804\pi\)
\(462\) −34.9280 + 37.6005i −1.62500 + 1.74933i
\(463\) −21.9168 −1.01856 −0.509279 0.860601i \(-0.670088\pi\)
−0.509279 + 0.860601i \(0.670088\pi\)
\(464\) 1.88689 37.0171i 0.0875965 1.71847i
\(465\) −1.99235 1.44753i −0.0923931 0.0671275i
\(466\) −8.51593 4.05815i −0.394493 0.187990i
\(467\) 1.77395 + 3.48157i 0.0820886 + 0.161108i 0.928402 0.371577i \(-0.121183\pi\)
−0.846313 + 0.532685i \(0.821183\pi\)
\(468\) −1.75433 + 16.8069i −0.0810938 + 0.776901i
\(469\) −41.4328 6.56231i −1.91319 0.303019i
\(470\) −0.788522 1.02686i −0.0363718 0.0473656i
\(471\) −3.09982 + 1.00719i −0.142832 + 0.0464089i
\(472\) 25.2771 21.6356i 1.16347 0.995860i
\(473\) −0.237783 23.0999i −0.0109333 1.06214i
\(474\) 4.54060 15.3490i 0.208557 0.705001i
\(475\) 2.23187 4.38029i 0.102405 0.200982i
\(476\) −5.94377 15.4510i −0.272432 0.708196i
\(477\) 1.04190 6.57828i 0.0477052 0.301199i
\(478\) 1.28760 + 6.93344i 0.0588936 + 0.317128i
\(479\) −8.91723 + 27.4444i −0.407439 + 1.25397i 0.511403 + 0.859341i \(0.329126\pi\)
−0.918842 + 0.394626i \(0.870874\pi\)
\(480\) 1.76184 + 0.0429828i 0.0804165 + 0.00196189i
\(481\) −6.42733 4.66973i −0.293061 0.212921i
\(482\) 7.13686 + 6.76778i 0.325075 + 0.308264i
\(483\) 14.5991 14.5991i 0.664281 0.664281i
\(484\) −21.9403 + 1.61909i −0.997288 + 0.0735952i
\(485\) −1.21965 1.21965i −0.0553814 0.0553814i
\(486\) 27.1233 0.719955i 1.23034 0.0326578i
\(487\) 1.75800 2.41968i 0.0796626 0.109646i −0.767326 0.641257i \(-0.778413\pi\)
0.846989 + 0.531611i \(0.178413\pi\)
\(488\) 13.2726 + 3.17140i 0.600821 + 0.143563i
\(489\) −7.03634 2.28624i −0.318194 0.103388i
\(490\) 0.842946 1.22743i 0.0380804 0.0554498i
\(491\) 12.6457 + 2.00289i 0.570694 + 0.0903890i 0.435111 0.900377i \(-0.356709\pi\)
0.135583 + 0.990766i \(0.456709\pi\)
\(492\) −46.8576 20.8222i −2.11251 0.938738i
\(493\) 16.9847 + 8.65413i 0.764952 + 0.389762i
\(494\) 1.27986 + 2.35521i 0.0575838 + 0.105966i
\(495\) 1.66973 0.0171876i 0.0750487 0.000772526i
\(496\) 12.9019 + 28.8670i 0.579313 + 1.29617i
\(497\) 14.8336 + 45.6532i 0.665379 + 2.04783i
\(498\) −4.19229 + 31.9318i −0.187861 + 1.43090i
\(499\) 2.69071 16.9885i 0.120453 0.760510i −0.851330 0.524631i \(-0.824203\pi\)
0.971783 0.235878i \(-0.0757967\pi\)
\(500\) −2.27601 0.237572i −0.101786 0.0106245i
\(501\) 17.8541 9.09709i 0.797660 0.406428i
\(502\) −2.54302 + 0.901556i −0.113501 + 0.0402384i
\(503\) −2.26531 + 3.11793i −0.101005 + 0.139022i −0.856528 0.516101i \(-0.827383\pi\)
0.755523 + 0.655122i \(0.227383\pi\)
\(504\) −48.6176 + 11.7272i −2.16560 + 0.522372i
\(505\) 1.03870i 0.0462217i
\(506\) 8.84465 0.325904i 0.393193 0.0144882i
\(507\) −17.8886 17.8886i −0.794460 0.794460i
\(508\) −30.5058 8.15062i −1.35348 0.361625i
\(509\) −25.5093 + 4.04028i −1.13068 + 0.179082i −0.693614 0.720347i \(-0.743983\pi\)
−0.437067 + 0.899429i \(0.643983\pi\)
\(510\) −0.389910 + 0.818217i −0.0172655 + 0.0362313i
\(511\) 4.90605 15.0993i 0.217031 0.667952i
\(512\) −19.3310 11.7606i −0.854318 0.519751i
\(513\) −3.02420 + 2.19721i −0.133522 + 0.0970092i
\(514\) 6.26148 + 0.822062i 0.276182 + 0.0362596i
\(515\) 0.822969 + 0.419323i 0.0362643 + 0.0184776i
\(516\) 20.6087 31.7843i 0.907247 1.39923i
\(517\) 4.41503 + 26.1316i 0.194173 + 1.14927i
\(518\) 6.66995 22.5470i 0.293061 0.990657i
\(519\) 3.99139 1.29688i 0.175202 0.0569267i
\(520\) 0.404126 0.474200i 0.0177221 0.0207950i
\(521\) 19.3534 + 26.6377i 0.847888 + 1.16702i 0.984324 + 0.176369i \(0.0564352\pi\)
−0.136436 + 0.990649i \(0.543565\pi\)
\(522\) 32.6008 47.4708i 1.42690 2.07774i
\(523\) 3.69184 1.88109i 0.161433 0.0822541i −0.371407 0.928470i \(-0.621125\pi\)
0.532840 + 0.846216i \(0.321125\pi\)
\(524\) 18.4919 + 16.6262i 0.807822 + 0.726321i
\(525\) 53.8921 8.53567i 2.35204 0.372527i
\(526\) 6.75302 7.12130i 0.294446 0.310503i
\(527\) −16.2615 −0.708360
\(528\) −31.4514 17.6701i −1.36875 0.768993i
\(529\) 19.4394 0.845190
\(530\) −0.168973 + 0.178188i −0.00733972 + 0.00774000i
\(531\) 51.0576 8.08672i 2.21571 0.350934i
\(532\) −5.30412 + 5.89930i −0.229963 + 0.255767i
\(533\) −16.1516 + 8.22966i −0.699604 + 0.356466i
\(534\) −13.8830 + 20.2154i −0.600778 + 0.874808i
\(535\) −1.05371 1.45031i −0.0455558 0.0627022i
\(536\) −2.34515 29.3946i −0.101295 1.26966i
\(537\) −21.3076 + 6.92325i −0.919489 + 0.298760i
\(538\) −5.20083 + 17.5808i −0.224224 + 0.757962i
\(539\) −27.0138 + 14.1163i −1.16357 + 0.608034i
\(540\) 0.729036 + 0.472700i 0.0313727 + 0.0203418i
\(541\) −9.44447 4.81220i −0.406049 0.206893i 0.239023 0.971014i \(-0.423173\pi\)
−0.645073 + 0.764121i \(0.723173\pi\)
\(542\) −23.7107 3.11295i −1.01846 0.133713i
\(543\) 34.0324 24.7260i 1.46047 1.06110i
\(544\) 9.57866 6.60848i 0.410682 0.283336i
\(545\) −0.106655 + 0.328250i −0.00456860 + 0.0140607i
\(546\) −12.7984 + 26.8572i −0.547722 + 1.14938i
\(547\) 13.3150 2.10889i 0.569308 0.0901695i 0.134857 0.990865i \(-0.456942\pi\)
0.434451 + 0.900696i \(0.356942\pi\)
\(548\) −3.47221 + 12.9957i −0.148326 + 0.555147i
\(549\) 14.9919 + 14.9919i 0.639839 + 0.639839i
\(550\) 19.4167 + 13.0425i 0.827933 + 0.556133i
\(551\) 9.13481i 0.389156i
\(552\) 12.3826 + 7.56983i 0.527040 + 0.322193i
\(553\) 9.84396 13.5490i 0.418608 0.576164i
\(554\) −19.1965 + 6.80557i −0.815581 + 0.289141i
\(555\) −1.14701 + 0.584432i −0.0486879 + 0.0248077i
\(556\) 3.66235 35.0864i 0.155318 1.48799i
\(557\) 5.99075 37.8241i 0.253836 1.60266i −0.450490 0.892782i \(-0.648751\pi\)
0.704326 0.709877i \(-0.251249\pi\)
\(558\) −6.39477 + 48.7077i −0.270712 + 2.06196i
\(559\) −4.13834 12.7365i −0.175033 0.538696i
\(560\) 1.72242 + 0.658351i 0.0727857 + 0.0278204i
\(561\) 14.8969 11.0593i 0.628946 0.466922i
\(562\) −15.9047 29.2678i −0.670899 1.23459i
\(563\) 20.2017 + 10.2933i 0.851399 + 0.433809i 0.824522 0.565830i \(-0.191444\pi\)
0.0268763 + 0.999639i \(0.491444\pi\)
\(564\) −17.6474 + 39.7131i −0.743089 + 1.67222i
\(565\) 0.811699 + 0.128561i 0.0341484 + 0.00540858i
\(566\) 21.3069 31.0254i 0.895594 1.30410i
\(567\) 10.9908 + 3.57114i 0.461572 + 0.149974i
\(568\) −28.7519 + 17.6617i −1.20640 + 0.741067i
\(569\) 11.9478 16.4448i 0.500879 0.689401i −0.481469 0.876463i \(-0.659897\pi\)
0.982348 + 0.187062i \(0.0598966\pi\)
\(570\) 0.434186 0.0115250i 0.0181861 0.000482727i
\(571\) 1.80911 + 1.80911i 0.0757089 + 0.0757089i 0.743947 0.668238i \(-0.232951\pi\)
−0.668238 + 0.743947i \(0.732951\pi\)
\(572\) −11.8555 + 4.70127i −0.495702 + 0.196570i
\(573\) −15.4649 + 15.4649i −0.646054 + 0.646054i
\(574\) −38.9293 36.9161i −1.62488 1.54085i
\(575\) −7.61290 5.53110i −0.317480 0.230663i
\(576\) −16.0275 31.2896i −0.667813 1.30373i
\(577\) 4.74409 14.6008i 0.197499 0.607840i −0.802439 0.596734i \(-0.796465\pi\)
0.999938 0.0111058i \(-0.00353516\pi\)
\(578\) −3.29693 17.7532i −0.137134 0.738435i
\(579\) −0.196619 + 1.24140i −0.00817121 + 0.0515910i
\(580\) −1.98169 + 0.762325i −0.0822850 + 0.0316538i
\(581\) −15.2981 + 30.0242i −0.634671 + 1.24561i
\(582\) −16.4236 + 55.5180i −0.680780 + 2.30130i
\(583\) 4.76444 1.60246i 0.197323 0.0663672i
\(584\) 11.1267 + 0.863680i 0.460426 + 0.0357393i
\(585\) 0.920630 0.299131i 0.0380633 0.0123675i
\(586\) 6.28707 + 8.18741i 0.259717 + 0.338219i
\(587\) 15.6823 + 2.48383i 0.647276 + 0.102518i 0.471436 0.881900i \(-0.343736\pi\)
0.175840 + 0.984419i \(0.443736\pi\)
\(588\) −49.7102 5.18881i −2.05001 0.213983i
\(589\) 3.53777 + 6.94326i 0.145771 + 0.286092i
\(590\) −1.72060 0.819927i −0.0708359 0.0337559i
\(591\) −6.49024 4.71543i −0.266973 0.193967i
\(592\) 16.5068 + 0.841409i 0.678426 + 0.0345817i
\(593\) −21.6148 −0.887612 −0.443806 0.896123i \(-0.646372\pi\)
−0.443806 + 0.896123i \(0.646372\pi\)
\(594\) −8.65258 15.5391i −0.355020 0.637576i
\(595\) −0.670574 + 0.670574i −0.0274908 + 0.0274908i
\(596\) 4.95833 + 8.57391i 0.203101 + 0.351201i
\(597\) −6.80885 42.9894i −0.278668 1.75944i
\(598\) 4.83589 1.71443i 0.197754 0.0701081i
\(599\) 31.6816 + 10.2940i 1.29448 + 0.420601i 0.873656 0.486543i \(-0.161742\pi\)
0.420820 + 0.907144i \(0.361742\pi\)
\(600\) 14.7160 + 35.4200i 0.600778 + 1.44602i
\(601\) −17.1223 23.5668i −0.698431 0.961308i −0.999969 0.00785393i \(-0.997500\pi\)
0.301538 0.953454i \(-0.402500\pi\)
\(602\) 31.4357 24.1393i 1.28122 0.983845i
\(603\) 20.7995 40.8213i 0.847022 1.66237i
\(604\) 34.1702 + 22.1557i 1.39037 + 0.901501i
\(605\) 0.595139 + 1.11088i 0.0241959 + 0.0451638i
\(606\) −30.6342 + 16.6472i −1.24443 + 0.676246i
\(607\) 4.50259 + 13.8575i 0.182754 + 0.562460i 0.999902 0.0139678i \(-0.00444624\pi\)
−0.817148 + 0.576428i \(0.804446\pi\)
\(608\) −4.90556 2.65215i −0.198947 0.107559i
\(609\) 82.0238 59.5938i 3.32377 2.41486i
\(610\) −0.142731 0.768575i −0.00577902 0.0311187i
\(611\) 6.97485 + 13.6889i 0.282172 + 0.553794i
\(612\) 18.0549 0.959166i 0.729825 0.0387720i
\(613\) −5.69823 35.9772i −0.230149 1.45311i −0.784141 0.620583i \(-0.786896\pi\)
0.553991 0.832522i \(-0.313104\pi\)
\(614\) −0.852573 + 0.0226305i −0.0344070 + 0.000913294i
\(615\) 2.93731i 0.118444i
\(616\) −24.8384 28.4214i −1.00077 1.14513i
\(617\) 19.7986i 0.797062i −0.917155 0.398531i \(-0.869520\pi\)
0.917155 0.398531i \(-0.130480\pi\)
\(618\) −0.822648 30.9921i −0.0330917 1.24668i
\(619\) 5.29290 + 33.4181i 0.212740 + 1.34319i 0.830588 + 0.556888i \(0.188005\pi\)
−0.617848 + 0.786298i \(0.711995\pi\)
\(620\) 1.21102 1.34691i 0.0486357 0.0540932i
\(621\) 3.24840 + 6.37535i 0.130354 + 0.255834i
\(622\) 37.9497 7.04761i 1.52165 0.282583i
\(623\) −20.7585 + 15.0819i −0.831671 + 0.604244i
\(624\) −20.4623 4.31882i −0.819149 0.172891i
\(625\) −7.66464 23.5893i −0.306585 0.943573i
\(626\) 3.68682 + 6.78449i 0.147355 + 0.271163i
\(627\) −7.96294 3.95461i −0.318009 0.157932i
\(628\) −0.500086 2.34447i −0.0199556 0.0935545i
\(629\) −3.85909 + 7.57389i −0.153872 + 0.301991i
\(630\) 1.74486 + 2.27226i 0.0695168 + 0.0905291i
\(631\) −13.4654 18.5335i −0.536049 0.737808i 0.451989 0.892024i \(-0.350715\pi\)
−0.988037 + 0.154216i \(0.950715\pi\)
\(632\) 10.8813 + 4.49351i 0.432835 + 0.178742i
\(633\) −19.9776 6.49113i −0.794040 0.257999i
\(634\) −0.0738618 0.208342i −0.00293343 0.00827434i
\(635\) 0.282960 + 1.78654i 0.0112289 + 0.0708966i
\(636\) 7.96337 + 2.12768i 0.315768 + 0.0843678i
\(637\) −12.4942 + 12.4942i −0.495036 + 0.495036i
\(638\) 43.1489 + 5.21375i 1.70828 + 0.206414i
\(639\) −52.4261 −2.07394
\(640\) −0.165970 + 1.28553i −0.00656055 + 0.0508150i
\(641\) −1.66554 1.21009i −0.0657851 0.0477957i 0.554407 0.832246i \(-0.312945\pi\)
−0.620192 + 0.784450i \(0.712945\pi\)
\(642\) −25.8858 + 54.3207i −1.02163 + 2.14387i
\(643\) 22.5788 + 44.3134i 0.890421 + 1.74755i 0.619594 + 0.784922i \(0.287297\pi\)
0.270827 + 0.962628i \(0.412703\pi\)
\(644\) 9.56473 + 11.7942i 0.376903 + 0.464756i
\(645\) −2.14327 0.339461i −0.0843912 0.0133663i
\(646\) 2.27472 1.74674i 0.0894975 0.0687247i
\(647\) −47.3310 + 15.3788i −1.86077 + 0.604602i −0.866313 + 0.499501i \(0.833517\pi\)
−0.994462 + 0.105101i \(0.966483\pi\)
\(648\) −0.628677 + 8.09919i −0.0246968 + 0.318166i
\(649\) 23.2561 + 31.3260i 0.912882 + 1.22965i
\(650\) 13.0027 + 3.84651i 0.510007 + 0.150872i
\(651\) −39.2656 + 77.0630i −1.53894 + 3.02034i
\(652\) 2.20969 4.97262i 0.0865383 0.194743i
\(653\) −1.85985 + 11.7426i −0.0727814 + 0.459523i 0.924202 + 0.381905i \(0.124732\pi\)
−0.996983 + 0.0776188i \(0.975268\pi\)
\(654\) 11.3904 2.11529i 0.445398 0.0827144i
\(655\) 0.440198 1.35479i 0.0171999 0.0529360i
\(656\) 18.8097 32.6872i 0.734394 1.27622i
\(657\) 14.0278 + 10.1918i 0.547276 + 0.397619i
\(658\) −31.2874 + 32.9936i −1.21971 + 1.28623i
\(659\) 5.88714 5.88714i 0.229330 0.229330i −0.583083 0.812413i \(-0.698154\pi\)
0.812413 + 0.583083i \(0.198154\pi\)
\(660\) −0.193376 + 2.05749i −0.00752714 + 0.0800875i
\(661\) 1.63398 + 1.63398i 0.0635545 + 0.0635545i 0.738170 0.674615i \(-0.235690\pi\)
−0.674615 + 0.738170i \(0.735690\pi\)
\(662\) 0.833432 + 31.3984i 0.0323923 + 1.22033i
\(663\) 6.32192 8.70138i 0.245523 0.337934i
\(664\) −23.0385 5.50492i −0.894068 0.213633i
\(665\) 0.432206 + 0.140432i 0.0167602 + 0.00544573i
\(666\) 21.1684 + 14.5375i 0.820258 + 0.563316i
\(667\) −17.2699 2.73528i −0.668693 0.105911i
\(668\) 5.29140 + 13.7551i 0.204730 + 0.532202i
\(669\) −15.1735 7.73127i −0.586640 0.298908i
\(670\) −1.48422 + 0.806551i −0.0573403 + 0.0311598i
\(671\) −4.78786 + 15.2685i −0.184833 + 0.589434i
\(672\) −8.18856 61.3504i −0.315881 2.36664i
\(673\) 6.43912 + 19.8176i 0.248210 + 0.763912i 0.995092 + 0.0989550i \(0.0315500\pi\)
−0.746882 + 0.664957i \(0.768450\pi\)
\(674\) −12.3208 1.61758i −0.474578 0.0623067i
\(675\) −2.95815 + 18.6770i −0.113859 + 0.718878i
\(676\) 14.4517 11.7199i 0.555834 0.450764i
\(677\) 6.68839 3.40791i 0.257056 0.130976i −0.320714 0.947176i \(-0.603923\pi\)
0.577770 + 0.816199i \(0.303923\pi\)
\(678\) −9.21743 25.9997i −0.353993 0.998512i
\(679\) −35.6062 + 49.0077i −1.36644 + 1.88074i
\(680\) −0.568767 0.347702i −0.0218112 0.0133338i
\(681\) 52.2347i 2.00164i
\(682\) −34.8161 + 12.7480i −1.33318 + 0.488145i
\(683\) 14.5138 + 14.5138i 0.555354 + 0.555354i 0.927981 0.372627i \(-0.121543\pi\)
−0.372627 + 0.927981i \(0.621543\pi\)
\(684\) −4.33747 7.50033i −0.165847 0.286782i
\(685\) 0.761076 0.120543i 0.0290792 0.00460570i
\(686\) −11.2498 5.36094i −0.429520 0.204682i
\(687\) −12.0095 + 36.9615i −0.458192 + 1.41017i
\(688\) 21.6771 + 17.5025i 0.826433 + 0.667277i
\(689\) 2.35750 1.71282i 0.0898134 0.0652533i
\(690\) 0.108222 0.824306i 0.00411994 0.0313808i
\(691\) 33.8514 + 17.2482i 1.28777 + 0.656151i 0.957690 0.287802i \(-0.0929246\pi\)
0.330079 + 0.943953i \(0.392925\pi\)
\(692\) 0.643920 + 3.01879i 0.0244782 + 0.114757i
\(693\) −9.76969 57.8247i −0.371120 2.19658i
\(694\) 18.8461 + 5.57514i 0.715388 + 0.211629i
\(695\) −1.92192 + 0.624469i −0.0729025 + 0.0236875i
\(696\) 54.2434 + 46.2277i 2.05609 + 1.75226i
\(697\) 11.4004 + 15.6912i 0.431819 + 0.594348i
\(698\) −16.5660 11.3767i −0.627031 0.430616i
\(699\) 16.1618 8.23483i 0.611294 0.311470i
\(700\) 2.12897 + 40.0747i 0.0804674 + 1.51468i
\(701\) −12.5536 + 1.98830i −0.474145 + 0.0750972i −0.388934 0.921266i \(-0.627156\pi\)
−0.0852111 + 0.996363i \(0.527156\pi\)
\(702\) −7.48151 7.09461i −0.282372 0.267769i
\(703\) 4.07344 0.153633
\(704\) 15.3275 21.6580i 0.577677 0.816266i
\(705\) 2.48944 0.0937579
\(706\) 19.3969 + 18.3938i 0.730012 + 0.692259i
\(707\) −36.0303 + 5.70664i −1.35506 + 0.214620i
\(708\) 3.39395 + 63.8860i 0.127552 + 2.40098i
\(709\) 1.40081 0.713750i 0.0526087 0.0268055i −0.427488 0.904021i \(-0.640601\pi\)
0.480097 + 0.877215i \(0.340601\pi\)
\(710\) 1.59340 + 1.09427i 0.0597992 + 0.0410673i
\(711\) 10.7511 + 14.7976i 0.403197 + 0.554953i
\(712\) −13.7279 11.6992i −0.514473 0.438448i
\(713\) 14.1860 4.60930i 0.531268 0.172620i
\(714\) 30.5243 + 9.02983i 1.14234 + 0.337933i
\(715\) 0.521890 + 0.511255i 0.0195176 + 0.0191199i
\(716\) −3.43750 16.1155i −0.128465 0.602263i
\(717\) −12.0818 6.15597i −0.451202 0.229899i
\(718\) 2.30942 17.5904i 0.0861870 0.656469i
\(719\) −23.2601 + 16.8994i −0.867454 + 0.630242i −0.929903 0.367806i \(-0.880109\pi\)
0.0624487 + 0.998048i \(0.480109\pi\)
\(720\) −1.26513 + 1.56689i −0.0471487 + 0.0583944i
\(721\) 10.0240 30.8507i 0.373313 1.14894i
\(722\) 23.0160 + 10.9679i 0.856565 + 0.408185i
\(723\) −18.6791 + 2.95848i −0.694683 + 0.110027i
\(724\) 15.4889 + 26.7833i 0.575640 + 0.995392i
\(725\) −32.6753 32.6753i −1.21353 1.21353i
\(726\) 23.2248 35.3563i 0.861951 1.31220i
\(727\) 34.7829i 1.29003i −0.764171 0.645014i \(-0.776852\pi\)
0.764171 0.645014i \(-0.223148\pi\)
\(728\) −18.6692 11.4130i −0.691926 0.422993i
\(729\) −25.6011 + 35.2369i −0.948188 + 1.30507i
\(730\) −0.213620 0.602559i −0.00790643 0.0223017i
\(731\) −12.7670 + 6.50511i −0.472205 + 0.240600i
\(732\) −20.3798 + 16.5274i −0.753261 + 0.610871i
\(733\) 2.66012 16.7953i 0.0982537 0.620349i −0.888594 0.458695i \(-0.848317\pi\)
0.986847 0.161654i \(-0.0516830\pi\)
\(734\) −17.5125 2.29920i −0.646399 0.0848649i
\(735\) 0.884745 + 2.72297i 0.0326343 + 0.100438i
\(736\) −6.48294 + 8.48009i −0.238964 + 0.312580i
\(737\) 34.5760 0.355914i 1.27362 0.0131102i
\(738\) 51.4829 27.9768i 1.89511 1.02984i
\(739\) −16.0126 8.15885i −0.589034 0.300128i 0.133955 0.990987i \(-0.457232\pi\)
−0.722989 + 0.690859i \(0.757232\pi\)
\(740\) −0.339939 0.883683i −0.0124964 0.0324848i
\(741\) −5.09065 0.806280i −0.187010 0.0296194i
\(742\) 7.10928 + 4.88233i 0.260990 + 0.179236i
\(743\) −48.4878 15.7546i −1.77884 0.577981i −0.779987 0.625795i \(-0.784775\pi\)
−0.998856 + 0.0478141i \(0.984775\pi\)
\(744\) −59.1330 14.1295i −2.16792 0.518012i
\(745\) 0.333490 0.459010i 0.0122181 0.0168168i
\(746\) −1.44423 54.4091i −0.0528769 1.99206i
\(747\) −26.0230 26.0230i −0.952131 0.952131i
\(748\) 6.95255 + 11.7417i 0.254211 + 0.429321i
\(749\) −44.5188 + 44.5188i −1.62668 + 1.62668i
\(750\) 3.02770 3.19282i 0.110556 0.116585i
\(751\) −43.7884 31.8141i −1.59786 1.16091i −0.891460 0.453100i \(-0.850318\pi\)
−0.706400 0.707813i \(-0.749682\pi\)
\(752\) −27.7033 15.9417i −1.01023 0.581333i
\(753\) 1.60317 4.93405i 0.0584228 0.179807i
\(754\) 24.7722 4.60041i 0.902149 0.167537i
\(755\) 0.364942 2.30415i 0.0132816 0.0838568i
\(756\) 12.3916 27.8856i 0.450678 1.01419i
\(757\) 18.4878 36.2843i 0.671950 1.31878i −0.263275 0.964721i \(-0.584803\pi\)
0.935225 0.354055i \(-0.115197\pi\)
\(758\) 11.9907 + 3.54715i 0.435522 + 0.128838i
\(759\) −9.86080 + 13.8702i −0.357924 + 0.503458i
\(760\) −0.0247222 + 0.318494i −0.000896770 + 0.0115530i
\(761\) −23.9153 + 7.77057i −0.866931 + 0.281683i −0.708520 0.705691i \(-0.750637\pi\)
−0.158410 + 0.987373i \(0.550637\pi\)
\(762\) 48.1550 36.9780i 1.74447 1.33957i
\(763\) 11.9722 + 1.89621i 0.433424 + 0.0686476i
\(764\) −10.1320 12.4936i −0.366561 0.452004i
\(765\) −0.470208 0.922836i −0.0170004 0.0333652i
\(766\) −0.437910 + 0.918944i −0.0158223 + 0.0332028i
\(767\) 18.2978 +