Properties

Label 176.2.w.a.5.3
Level $176$
Weight $2$
Character 176.5
Analytic conductor $1.405$
Analytic rank $0$
Dimension $176$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,2,Mod(5,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 5, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 176.w (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40536707557\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 5.3
Character \(\chi\) \(=\) 176.5
Dual form 176.2.w.a.141.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37053 - 0.348781i) q^{2} +(-0.417657 + 0.0661504i) q^{3} +(1.75670 + 0.956029i) q^{4} +(-0.736011 + 0.375016i) q^{5} +(0.595484 + 0.0550098i) q^{6} +(1.33653 + 1.83957i) q^{7} +(-2.07417 - 1.92297i) q^{8} +(-2.68311 + 0.871795i) q^{9} +O(q^{10})\) \(q+(-1.37053 - 0.348781i) q^{2} +(-0.417657 + 0.0661504i) q^{3} +(1.75670 + 0.956029i) q^{4} +(-0.736011 + 0.375016i) q^{5} +(0.595484 + 0.0550098i) q^{6} +(1.33653 + 1.83957i) q^{7} +(-2.07417 - 1.92297i) q^{8} +(-2.68311 + 0.871795i) q^{9} +(1.13952 - 0.257265i) q^{10} +(2.42937 + 2.25791i) q^{11} +(-0.796942 - 0.283086i) q^{12} +(2.30500 + 1.17446i) q^{13} +(-1.19014 - 2.98735i) q^{14} +(0.282593 - 0.205316i) q^{15} +(2.17202 + 3.35892i) q^{16} +(-1.80274 + 5.54827i) q^{17} +(3.98134 - 0.259004i) q^{18} +(6.83710 - 1.08289i) q^{19} +(-1.65148 - 0.0448555i) q^{20} +(-0.679900 - 0.679900i) q^{21} +(-2.54200 - 3.94185i) q^{22} +1.11273i q^{23} +(0.993498 + 0.665936i) q^{24} +(-2.53785 + 3.49305i) q^{25} +(-2.74944 - 2.41357i) q^{26} +(2.19327 - 1.11753i) q^{27} +(0.589198 + 4.50935i) q^{28} +(0.804578 - 5.07990i) q^{29} +(-0.458912 + 0.182828i) q^{30} +(-0.190214 - 0.585418i) q^{31} +(-1.80528 - 5.36106i) q^{32} +(-1.16401 - 0.782330i) q^{33} +(4.40585 - 6.97531i) q^{34} +(-1.67357 - 0.852727i) q^{35} +(-5.54689 - 1.03364i) q^{36} +(-10.5754 - 1.67497i) q^{37} +(-9.74814 - 0.900517i) q^{38} +(-1.04039 - 0.338044i) q^{39} +(2.24776 + 0.637481i) q^{40} +(1.98076 - 2.72629i) q^{41} +(0.694687 + 1.16896i) q^{42} +(4.01718 + 4.01718i) q^{43} +(2.10905 + 6.28903i) q^{44} +(1.64786 - 1.64786i) q^{45} +(0.388097 - 1.52502i) q^{46} +(-8.84762 - 6.42817i) q^{47} +(-1.12935 - 1.25920i) q^{48} +(0.565396 - 1.74011i) q^{49} +(4.69651 - 3.90218i) q^{50} +(0.385908 - 2.43653i) q^{51} +(2.92639 + 4.26682i) q^{52} +(2.11603 - 4.15295i) q^{53} +(-3.39572 + 0.766634i) q^{54} +(-2.63480 - 0.750796i) q^{55} +(0.765260 - 6.38569i) q^{56} +(-2.78393 + 0.904555i) q^{57} +(-2.87447 + 6.68154i) q^{58} +(-1.71951 - 0.272343i) q^{59} +(0.692720 - 0.0905119i) q^{60} +(0.120777 + 0.237038i) q^{61} +(0.0565111 + 0.868676i) q^{62} +(-5.18978 - 3.77060i) q^{63} +(0.604362 + 7.97714i) q^{64} -2.13695 q^{65} +(1.32244 + 1.47819i) q^{66} +(5.03339 - 5.03339i) q^{67} +(-8.47120 + 8.02320i) q^{68} +(-0.0736073 - 0.464738i) q^{69} +(1.99626 + 1.75240i) q^{70} +(13.4180 + 4.35977i) q^{71} +(7.24166 + 3.35129i) q^{72} +(0.636819 + 0.876507i) q^{73} +(13.9096 + 5.98408i) q^{74} +(0.828885 - 1.62678i) q^{75} +(13.0460 + 4.63415i) q^{76} +(-0.906677 + 7.48677i) q^{77} +(1.30798 + 0.826168i) q^{78} +(-0.195487 - 0.601646i) q^{79} +(-2.85828 - 1.65766i) q^{80} +(6.00505 - 4.36293i) q^{81} +(-3.66557 + 3.04561i) q^{82} +(3.37313 + 6.62014i) q^{83} +(-0.544378 - 1.84439i) q^{84} +(-0.753855 - 4.75965i) q^{85} +(-4.10455 - 6.90679i) q^{86} +2.17488i q^{87} +(-0.697020 - 9.35490i) q^{88} +16.2321i q^{89} +(-2.83318 + 1.68370i) q^{90} +(0.920200 + 5.80991i) q^{91} +(-1.06380 + 1.95473i) q^{92} +(0.118170 + 0.231921i) q^{93} +(9.88390 + 11.8959i) q^{94} +(-4.62608 + 3.36105i) q^{95} +(1.10863 + 2.11967i) q^{96} +(-2.01389 - 6.19812i) q^{97} +(-1.38181 + 2.18767i) q^{98} +(-8.48669 - 3.94031i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8} - 16 q^{10} - 12 q^{11} - 6 q^{13} - 12 q^{15} + 14 q^{16} - 12 q^{17} - 44 q^{18} - 6 q^{19} + 2 q^{20} - 28 q^{21} + 50 q^{22} - 38 q^{24} - 68 q^{26} - 18 q^{27} - 46 q^{28} - 22 q^{29} + 26 q^{30} - 12 q^{31} - 16 q^{32} - 16 q^{33} + 12 q^{34} - 26 q^{35} - 22 q^{36} + 18 q^{37} - 34 q^{38} + 14 q^{40} - 10 q^{42} - 40 q^{43} + 2 q^{44} - 24 q^{45} + 38 q^{46} - 12 q^{47} - 26 q^{48} + 8 q^{49} - 62 q^{50} + 6 q^{51} + 74 q^{52} - 30 q^{53} - 52 q^{54} - 96 q^{56} - 26 q^{58} + 10 q^{59} + 118 q^{60} - 6 q^{61} - 42 q^{62} - 28 q^{63} - 106 q^{64} - 32 q^{65} + 6 q^{66} + 24 q^{67} + 116 q^{68} + 12 q^{69} + 52 q^{70} - 98 q^{72} + 96 q^{74} - 46 q^{75} + 112 q^{76} - 14 q^{77} + 44 q^{78} - 52 q^{79} - 28 q^{80} + 66 q^{82} + 54 q^{83} + 120 q^{84} + 14 q^{85} + 86 q^{86} + 142 q^{88} + 228 q^{90} - 122 q^{91} + 146 q^{92} + 6 q^{93} + 56 q^{94} + 52 q^{95} + 86 q^{96} - 12 q^{97} + 140 q^{98} + 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.37053 0.348781i −0.969111 0.246625i
\(3\) −0.417657 + 0.0661504i −0.241135 + 0.0381920i −0.275832 0.961206i \(-0.588953\pi\)
0.0346973 + 0.999398i \(0.488953\pi\)
\(4\) 1.75670 + 0.956029i 0.878352 + 0.478015i
\(5\) −0.736011 + 0.375016i −0.329154 + 0.167712i −0.610756 0.791819i \(-0.709134\pi\)
0.281602 + 0.959531i \(0.409134\pi\)
\(6\) 0.595484 + 0.0550098i 0.243105 + 0.0224577i
\(7\) 1.33653 + 1.83957i 0.505160 + 0.695293i 0.983094 0.183103i \(-0.0586140\pi\)
−0.477934 + 0.878396i \(0.658614\pi\)
\(8\) −2.07417 1.92297i −0.733330 0.679873i
\(9\) −2.68311 + 0.871795i −0.894369 + 0.290598i
\(10\) 1.13952 0.257265i 0.360349 0.0813542i
\(11\) 2.42937 + 2.25791i 0.732482 + 0.680786i
\(12\) −0.796942 0.283086i −0.230057 0.0817199i
\(13\) 2.30500 + 1.17446i 0.639292 + 0.325736i 0.743417 0.668829i \(-0.233204\pi\)
−0.104124 + 0.994564i \(0.533204\pi\)
\(14\) −1.19014 2.98735i −0.318079 0.798402i
\(15\) 0.282593 0.205316i 0.0729652 0.0530123i
\(16\) 2.17202 + 3.35892i 0.543004 + 0.839730i
\(17\) −1.80274 + 5.54827i −0.437230 + 1.34565i 0.453555 + 0.891228i \(0.350156\pi\)
−0.890785 + 0.454426i \(0.849844\pi\)
\(18\) 3.98134 0.259004i 0.938412 0.0610477i
\(19\) 6.83710 1.08289i 1.56854 0.248432i 0.689180 0.724591i \(-0.257971\pi\)
0.879359 + 0.476158i \(0.157971\pi\)
\(20\) −1.65148 0.0448555i −0.369282 0.0100300i
\(21\) −0.679900 0.679900i −0.148366 0.148366i
\(22\) −2.54200 3.94185i −0.541957 0.840406i
\(23\) 1.11273i 0.232019i 0.993248 + 0.116010i \(0.0370104\pi\)
−0.993248 + 0.116010i \(0.962990\pi\)
\(24\) 0.993498 + 0.665936i 0.202797 + 0.135934i
\(25\) −2.53785 + 3.49305i −0.507570 + 0.698610i
\(26\) −2.74944 2.41357i −0.539210 0.473340i
\(27\) 2.19327 1.11753i 0.422096 0.215068i
\(28\) 0.589198 + 4.50935i 0.111348 + 0.852186i
\(29\) 0.804578 5.07990i 0.149406 0.943314i −0.793092 0.609102i \(-0.791530\pi\)
0.942498 0.334212i \(-0.108470\pi\)
\(30\) −0.458912 + 0.182828i −0.0837856 + 0.0333798i
\(31\) −0.190214 0.585418i −0.0341634 0.105144i 0.932521 0.361117i \(-0.117604\pi\)
−0.966684 + 0.255972i \(0.917604\pi\)
\(32\) −1.80528 5.36106i −0.319132 0.947710i
\(33\) −1.16401 0.782330i −0.202627 0.136186i
\(34\) 4.40585 6.97531i 0.755596 1.19626i
\(35\) −1.67357 0.852727i −0.282885 0.144137i
\(36\) −5.54689 1.03364i −0.924481 0.172274i
\(37\) −10.5754 1.67497i −1.73858 0.275364i −0.795023 0.606579i \(-0.792541\pi\)
−0.943555 + 0.331216i \(0.892541\pi\)
\(38\) −9.74814 0.900517i −1.58136 0.146083i
\(39\) −1.04039 0.338044i −0.166596 0.0541303i
\(40\) 2.24776 + 0.637481i 0.355402 + 0.100795i
\(41\) 1.98076 2.72629i 0.309343 0.425775i −0.625833 0.779957i \(-0.715241\pi\)
0.935176 + 0.354182i \(0.115241\pi\)
\(42\) 0.694687 + 1.16896i 0.107192 + 0.180374i
\(43\) 4.01718 + 4.01718i 0.612615 + 0.612615i 0.943627 0.331012i \(-0.107390\pi\)
−0.331012 + 0.943627i \(0.607390\pi\)
\(44\) 2.10905 + 6.28903i 0.317951 + 0.948107i
\(45\) 1.64786 1.64786i 0.245649 0.245649i
\(46\) 0.388097 1.52502i 0.0572218 0.224852i
\(47\) −8.84762 6.42817i −1.29056 0.937645i −0.290742 0.956802i \(-0.593902\pi\)
−0.999817 + 0.0191561i \(0.993902\pi\)
\(48\) −1.12935 1.25920i −0.163008 0.181750i
\(49\) 0.565396 1.74011i 0.0807709 0.248587i
\(50\) 4.69651 3.90218i 0.664187 0.551851i
\(51\) 0.385908 2.43653i 0.0540380 0.341182i
\(52\) 2.92639 + 4.26682i 0.405817 + 0.591702i
\(53\) 2.11603 4.15295i 0.290659 0.570451i −0.698791 0.715326i \(-0.746278\pi\)
0.989450 + 0.144875i \(0.0462781\pi\)
\(54\) −3.39572 + 0.766634i −0.462099 + 0.104326i
\(55\) −2.63480 0.750796i −0.355276 0.101237i
\(56\) 0.765260 6.38569i 0.102262 0.853324i
\(57\) −2.78393 + 0.904555i −0.368741 + 0.119811i
\(58\) −2.87447 + 6.68154i −0.377437 + 0.877329i
\(59\) −1.71951 0.272343i −0.223861 0.0354560i 0.0434964 0.999054i \(-0.486150\pi\)
−0.267357 + 0.963598i \(0.586150\pi\)
\(60\) 0.692720 0.0905119i 0.0894298 0.0116850i
\(61\) 0.120777 + 0.237038i 0.0154639 + 0.0303496i 0.898609 0.438750i \(-0.144579\pi\)
−0.883145 + 0.469099i \(0.844579\pi\)
\(62\) 0.0565111 + 0.868676i 0.00717691 + 0.110322i
\(63\) −5.18978 3.77060i −0.653851 0.475050i
\(64\) 0.604362 + 7.97714i 0.0755452 + 0.997142i
\(65\) −2.13695 −0.265056
\(66\) 1.32244 + 1.47819i 0.162781 + 0.181953i
\(67\) 5.03339 5.03339i 0.614926 0.614926i −0.329299 0.944226i \(-0.606813\pi\)
0.944226 + 0.329299i \(0.106813\pi\)
\(68\) −8.47120 + 8.02320i −1.02728 + 0.972956i
\(69\) −0.0736073 0.464738i −0.00886127 0.0559479i
\(70\) 1.99626 + 1.75240i 0.238599 + 0.209451i
\(71\) 13.4180 + 4.35977i 1.59242 + 0.517409i 0.965218 0.261446i \(-0.0841994\pi\)
0.627203 + 0.778855i \(0.284199\pi\)
\(72\) 7.24166 + 3.35129i 0.853438 + 0.394953i
\(73\) 0.636819 + 0.876507i 0.0745341 + 0.102587i 0.844656 0.535309i \(-0.179805\pi\)
−0.770122 + 0.637896i \(0.779805\pi\)
\(74\) 13.9096 + 5.98408i 1.61696 + 0.695635i
\(75\) 0.828885 1.62678i 0.0957114 0.187844i
\(76\) 13.0460 + 4.63415i 1.49648 + 0.531574i
\(77\) −0.906677 + 7.48677i −0.103325 + 0.853196i
\(78\) 1.30798 + 0.826168i 0.148100 + 0.0935451i
\(79\) −0.195487 0.601646i −0.0219940 0.0676905i 0.939457 0.342666i \(-0.111330\pi\)
−0.961451 + 0.274976i \(0.911330\pi\)
\(80\) −2.85828 1.65766i −0.319565 0.185332i
\(81\) 6.00505 4.36293i 0.667228 0.484770i
\(82\) −3.66557 + 3.04561i −0.404795 + 0.336331i
\(83\) 3.37313 + 6.62014i 0.370249 + 0.726655i 0.998688 0.0512041i \(-0.0163059\pi\)
−0.628439 + 0.777859i \(0.716306\pi\)
\(84\) −0.544378 1.84439i −0.0593965 0.201239i
\(85\) −0.753855 4.75965i −0.0817670 0.516257i
\(86\) −4.10455 6.90679i −0.442605 0.744778i
\(87\) 2.17488i 0.233172i
\(88\) −0.697020 9.35490i −0.0743026 0.997236i
\(89\) 16.2321i 1.72060i 0.509785 + 0.860302i \(0.329725\pi\)
−0.509785 + 0.860302i \(0.670275\pi\)
\(90\) −2.83318 + 1.68370i −0.298644 + 0.177477i
\(91\) 0.920200 + 5.80991i 0.0964632 + 0.609044i
\(92\) −1.06380 + 1.95473i −0.110909 + 0.203795i
\(93\) 0.118170 + 0.231921i 0.0122536 + 0.0240491i
\(94\) 9.88390 + 11.8959i 1.01945 + 1.22697i
\(95\) −4.62608 + 3.36105i −0.474626 + 0.344836i
\(96\) 1.10863 + 2.11967i 0.113149 + 0.216337i
\(97\) −2.01389 6.19812i −0.204480 0.629324i −0.999734 0.0230481i \(-0.992663\pi\)
0.795255 0.606275i \(-0.207337\pi\)
\(98\) −1.38181 + 2.18767i −0.139584 + 0.220988i
\(99\) −8.48669 3.94031i −0.852945 0.396016i
\(100\) −7.79771 + 3.71000i −0.779771 + 0.371000i
\(101\) 6.00525 11.7860i 0.597545 1.17275i −0.372092 0.928196i \(-0.621359\pi\)
0.969636 0.244552i \(-0.0786408\pi\)
\(102\) −1.37871 + 3.20474i −0.136513 + 0.317316i
\(103\) −7.14082 9.82849i −0.703606 0.968430i −0.999911 0.0133371i \(-0.995755\pi\)
0.296305 0.955093i \(-0.404245\pi\)
\(104\) −2.52252 6.86847i −0.247353 0.673509i
\(105\) 0.755387 + 0.245440i 0.0737182 + 0.0239525i
\(106\) −4.34855 + 4.95371i −0.422369 + 0.481146i
\(107\) −1.07132 6.76402i −0.103568 0.653903i −0.983788 0.179336i \(-0.942605\pi\)
0.880220 0.474566i \(-0.157395\pi\)
\(108\) 4.92132 + 0.133667i 0.473554 + 0.0128621i
\(109\) 5.73085 5.73085i 0.548916 0.548916i −0.377211 0.926127i \(-0.623117\pi\)
0.926127 + 0.377211i \(0.123117\pi\)
\(110\) 3.34920 + 1.94796i 0.319334 + 0.185730i
\(111\) 4.52768 0.429748
\(112\) −3.27602 + 8.48488i −0.309555 + 0.801745i
\(113\) 5.16641 + 3.75361i 0.486015 + 0.353110i 0.803650 0.595103i \(-0.202889\pi\)
−0.317635 + 0.948213i \(0.602889\pi\)
\(114\) 4.13095 0.268736i 0.386899 0.0251695i
\(115\) −0.417290 0.818979i −0.0389125 0.0763701i
\(116\) 6.26994 8.15469i 0.582149 0.757144i
\(117\) −7.20845 1.14171i −0.666421 0.105551i
\(118\) 2.26165 + 0.972985i 0.208201 + 0.0895706i
\(119\) −12.6159 + 4.09915i −1.15650 + 0.375768i
\(120\) −0.980963 0.117558i −0.0895492 0.0107316i
\(121\) 0.803659 + 10.9706i 0.0730599 + 0.997328i
\(122\) −0.0828539 0.366992i −0.00750124 0.0332259i
\(123\) −0.646936 + 1.26968i −0.0583322 + 0.114483i
\(124\) 0.225527 1.21026i 0.0202530 0.108684i
\(125\) 1.20404 7.60204i 0.107693 0.679947i
\(126\) 5.79764 + 6.97781i 0.516494 + 0.621633i
\(127\) −1.09852 + 3.38089i −0.0974777 + 0.300006i −0.987891 0.155146i \(-0.950415\pi\)
0.890414 + 0.455152i \(0.150415\pi\)
\(128\) 1.95398 11.1437i 0.172709 0.984973i
\(129\) −1.94355 1.41207i −0.171120 0.124326i
\(130\) 2.92875 + 0.745326i 0.256868 + 0.0653695i
\(131\) −1.34449 + 1.34449i −0.117469 + 0.117469i −0.763398 0.645929i \(-0.776470\pi\)
0.645929 + 0.763398i \(0.276470\pi\)
\(132\) −1.29688 2.48715i −0.112879 0.216478i
\(133\) 11.1300 + 11.1300i 0.965097 + 0.965097i
\(134\) −8.65396 + 5.14286i −0.747588 + 0.444275i
\(135\) −1.19518 + 1.64503i −0.102865 + 0.141581i
\(136\) 14.4084 8.04144i 1.23551 0.689548i
\(137\) 1.61846 + 0.525869i 0.138274 + 0.0449280i 0.377336 0.926076i \(-0.376840\pi\)
−0.239062 + 0.971004i \(0.576840\pi\)
\(138\) −0.0612108 + 0.662610i −0.00521061 + 0.0564051i
\(139\) −3.36177 0.532453i −0.285142 0.0451621i 0.0122251 0.999925i \(-0.496109\pi\)
−0.297367 + 0.954763i \(0.596109\pi\)
\(140\) −2.12474 3.09797i −0.179573 0.261826i
\(141\) 4.12050 + 2.09950i 0.347009 + 0.176810i
\(142\) −16.8691 10.6551i −1.41563 0.894158i
\(143\) 2.94787 + 8.05768i 0.246514 + 0.673817i
\(144\) −8.75604 7.11879i −0.729670 0.593233i
\(145\) 1.31287 + 4.04060i 0.109028 + 0.335553i
\(146\) −0.567071 1.42339i −0.0469311 0.117801i
\(147\) −0.121033 + 0.764171i −0.00998262 + 0.0630278i
\(148\) −16.9764 13.0528i −1.39546 1.07293i
\(149\) 2.67355 1.36224i 0.219025 0.111599i −0.341036 0.940050i \(-0.610778\pi\)
0.560061 + 0.828451i \(0.310778\pi\)
\(150\) −1.70340 + 1.94045i −0.139082 + 0.158437i
\(151\) 9.03881 12.4409i 0.735568 1.01242i −0.263293 0.964716i \(-0.584809\pi\)
0.998861 0.0477070i \(-0.0151914\pi\)
\(152\) −16.2637 10.9015i −1.31916 0.884225i
\(153\) 16.4582i 1.33057i
\(154\) 3.85387 9.94460i 0.310554 0.801359i
\(155\) 0.359541 + 0.359541i 0.0288790 + 0.0288790i
\(156\) −1.50448 1.58849i −0.120455 0.127181i
\(157\) −15.8990 + 2.51815i −1.26888 + 0.200970i −0.754332 0.656493i \(-0.772039\pi\)
−0.514545 + 0.857464i \(0.672039\pi\)
\(158\) 0.0580776 + 0.892756i 0.00462041 + 0.0710238i
\(159\) −0.609057 + 1.87449i −0.0483014 + 0.148656i
\(160\) 3.33920 + 3.26879i 0.263987 + 0.258420i
\(161\) −2.04694 + 1.48719i −0.161322 + 0.117207i
\(162\) −9.75181 + 3.88507i −0.766174 + 0.305240i
\(163\) 15.3134 + 7.80254i 1.19943 + 0.611142i 0.935476 0.353392i \(-0.114972\pi\)
0.263959 + 0.964534i \(0.414972\pi\)
\(164\) 6.08603 2.89561i 0.475239 0.226109i
\(165\) 1.15011 + 0.139283i 0.0895358 + 0.0108431i
\(166\) −2.31400 10.2496i −0.179601 0.795522i
\(167\) −13.0881 + 4.25260i −1.01279 + 0.329076i −0.767965 0.640491i \(-0.778731\pi\)
−0.244826 + 0.969567i \(0.578731\pi\)
\(168\) 0.102800 + 2.71765i 0.00793118 + 0.209672i
\(169\) −3.70753 5.10297i −0.285194 0.392536i
\(170\) −0.626895 + 6.78617i −0.0480807 + 0.520476i
\(171\) −17.4006 + 8.86606i −1.33066 + 0.678005i
\(172\) 3.21646 + 10.8976i 0.245253 + 0.830930i
\(173\) 6.86472 1.08726i 0.521915 0.0826632i 0.110082 0.993923i \(-0.464889\pi\)
0.411833 + 0.911259i \(0.364889\pi\)
\(174\) 0.758557 2.98074i 0.0575061 0.225969i
\(175\) −9.81764 −0.742144
\(176\) −2.30752 + 13.0643i −0.173936 + 0.984757i
\(177\) 0.736180 0.0553347
\(178\) 5.66146 22.2466i 0.424345 1.66746i
\(179\) 9.32588 1.47708i 0.697049 0.110402i 0.202153 0.979354i \(-0.435206\pi\)
0.494896 + 0.868952i \(0.335206\pi\)
\(180\) 4.47020 1.31940i 0.333189 0.0983422i
\(181\) 4.48560 2.28553i 0.333412 0.169882i −0.279268 0.960213i \(-0.590092\pi\)
0.612680 + 0.790331i \(0.290092\pi\)
\(182\) 0.765226 8.28361i 0.0567223 0.614022i
\(183\) −0.0661234 0.0910111i −0.00488799 0.00672773i
\(184\) 2.13974 2.30798i 0.157744 0.170147i
\(185\) 8.41172 2.73313i 0.618442 0.200944i
\(186\) −0.0810655 0.359071i −0.00594401 0.0263283i
\(187\) −16.9070 + 9.40836i −1.23637 + 0.688008i
\(188\) −9.39713 19.7510i −0.685356 1.44049i
\(189\) 4.98715 + 2.54108i 0.362762 + 0.184836i
\(190\) 7.51245 2.99292i 0.545011 0.217130i
\(191\) 2.98931 2.17186i 0.216299 0.157150i −0.474360 0.880331i \(-0.657321\pi\)
0.690659 + 0.723180i \(0.257321\pi\)
\(192\) −0.780107 3.29173i −0.0562994 0.237560i
\(193\) 1.41126 4.34340i 0.101584 0.312645i −0.887329 0.461137i \(-0.847442\pi\)
0.988914 + 0.148492i \(0.0474418\pi\)
\(194\) 0.598312 + 9.19711i 0.0429563 + 0.660314i
\(195\) 0.892512 0.141360i 0.0639141 0.0101230i
\(196\) 2.65683 2.51632i 0.189774 0.179737i
\(197\) 14.6557 + 14.6557i 1.04418 + 1.04418i 0.998978 + 0.0452000i \(0.0143925\pi\)
0.0452000 + 0.998978i \(0.485607\pi\)
\(198\) 10.2570 + 8.36031i 0.728930 + 0.594142i
\(199\) 8.25982i 0.585523i −0.956185 0.292762i \(-0.905426\pi\)
0.956185 0.292762i \(-0.0945742\pi\)
\(200\) 11.9810 2.36497i 0.847183 0.167229i
\(201\) −1.76927 + 2.43519i −0.124795 + 0.171765i
\(202\) −12.3411 + 14.0585i −0.868316 + 0.989153i
\(203\) 10.4202 5.30936i 0.731354 0.372644i
\(204\) 3.00732 3.91132i 0.210555 0.273847i
\(205\) −0.435462 + 2.74940i −0.0304140 + 0.192026i
\(206\) 6.35871 + 15.9608i 0.443033 + 1.11204i
\(207\) −0.970068 2.98556i −0.0674244 0.207511i
\(208\) 1.06159 + 10.2933i 0.0736082 + 0.713709i
\(209\) 19.0549 + 12.8068i 1.31806 + 0.885868i
\(210\) −0.949676 0.599848i −0.0655339 0.0413934i
\(211\) −19.9553 10.1677i −1.37378 0.699974i −0.397723 0.917506i \(-0.630200\pi\)
−0.976053 + 0.217532i \(0.930200\pi\)
\(212\) 7.68758 5.27251i 0.527985 0.362117i
\(213\) −5.89252 0.933283i −0.403749 0.0639475i
\(214\) −0.890892 + 9.64395i −0.0609001 + 0.659247i
\(215\) −4.46320 1.45018i −0.304388 0.0989017i
\(216\) −6.69819 1.89966i −0.455754 0.129255i
\(217\) 0.822693 1.13234i 0.0558481 0.0768683i
\(218\) −9.85311 + 5.85549i −0.667337 + 0.396584i
\(219\) −0.323954 0.323954i −0.0218908 0.0218908i
\(220\) −3.91077 3.83787i −0.263664 0.258749i
\(221\) −10.6715 + 10.6715i −0.717845 + 0.717845i
\(222\) −6.20531 1.57917i −0.416473 0.105987i
\(223\) 19.5456 + 14.2007i 1.30887 + 0.950950i 1.00000 0.000154002i \(-4.90203e-5\pi\)
0.308871 + 0.951104i \(0.400049\pi\)
\(224\) 7.44925 10.4862i 0.497724 0.700636i
\(225\) 3.76410 11.5847i 0.250940 0.772315i
\(226\) −5.77153 6.94638i −0.383916 0.462067i
\(227\) −1.73058 + 10.9264i −0.114862 + 0.725213i 0.861288 + 0.508117i \(0.169658\pi\)
−0.976150 + 0.217095i \(0.930342\pi\)
\(228\) −5.75533 1.07249i −0.381156 0.0710272i
\(229\) −10.2119 + 20.0420i −0.674823 + 1.32441i 0.258721 + 0.965952i \(0.416699\pi\)
−0.933544 + 0.358462i \(0.883301\pi\)
\(230\) 0.286265 + 1.26798i 0.0188757 + 0.0836080i
\(231\) −0.116572 3.18688i −0.00766989 0.209681i
\(232\) −11.4373 + 8.98940i −0.750898 + 0.590183i
\(233\) 27.1409 8.81861i 1.77806 0.577727i 0.779259 0.626702i \(-0.215595\pi\)
0.998800 + 0.0489751i \(0.0155955\pi\)
\(234\) 9.48119 + 4.07891i 0.619805 + 0.266647i
\(235\) 8.92262 + 1.41320i 0.582048 + 0.0921873i
\(236\) −2.76030 2.12232i −0.179680 0.138152i
\(237\) 0.121446 + 0.238350i 0.00788874 + 0.0154825i
\(238\) 18.7201 1.21783i 1.21345 0.0789399i
\(239\) 4.52323 + 3.28632i 0.292583 + 0.212574i 0.724387 0.689393i \(-0.242123\pi\)
−0.431804 + 0.901967i \(0.642123\pi\)
\(240\) 1.30344 + 0.503258i 0.0841364 + 0.0324852i
\(241\) −21.8212 −1.40563 −0.702813 0.711374i \(-0.748073\pi\)
−0.702813 + 0.711374i \(0.748073\pi\)
\(242\) 2.72490 15.3158i 0.175163 0.984539i
\(243\) −7.44122 + 7.44122i −0.477354 + 0.477354i
\(244\) −0.0144460 + 0.531871i −0.000924813 + 0.0340496i
\(245\) 0.236432 + 1.49277i 0.0151051 + 0.0953698i
\(246\) 1.32949 1.51450i 0.0847649 0.0965610i
\(247\) 17.0313 + 5.53382i 1.08368 + 0.352108i
\(248\) −0.731206 + 1.58003i −0.0464316 + 0.100332i
\(249\) −1.84674 2.54182i −0.117032 0.161081i
\(250\) −4.30162 + 9.99887i −0.272059 + 0.632384i
\(251\) 2.94496 5.77980i 0.185884 0.364818i −0.779193 0.626784i \(-0.784371\pi\)
0.965077 + 0.261966i \(0.0843709\pi\)
\(252\) −5.51211 11.5854i −0.347230 0.729812i
\(253\) −2.51244 + 2.70322i −0.157956 + 0.169950i
\(254\) 2.68474 4.25047i 0.168456 0.266698i
\(255\) 0.629706 + 1.93804i 0.0394337 + 0.121364i
\(256\) −6.56469 + 14.5913i −0.410293 + 0.911954i
\(257\) −1.60025 + 1.16265i −0.0998206 + 0.0725239i −0.636576 0.771214i \(-0.719650\pi\)
0.536755 + 0.843738i \(0.319650\pi\)
\(258\) 2.17118 + 2.61315i 0.135172 + 0.162688i
\(259\) −11.0530 21.6928i −0.686802 1.34792i
\(260\) −3.75398 2.04298i −0.232812 0.126700i
\(261\) 2.26986 + 14.3314i 0.140501 + 0.887089i
\(262\) 2.31160 1.37373i 0.142811 0.0848696i
\(263\) 27.4431i 1.69221i 0.533013 + 0.846107i \(0.321060\pi\)
−0.533013 + 0.846107i \(0.678940\pi\)
\(264\) 0.909946 + 3.86103i 0.0560033 + 0.237630i
\(265\) 3.85016i 0.236514i
\(266\) −11.3721 19.1360i −0.697269 1.17330i
\(267\) −1.07376 6.77948i −0.0657133 0.414897i
\(268\) 13.6542 4.03011i 0.834065 0.246178i
\(269\) −4.47010 8.77307i −0.272547 0.534904i 0.713645 0.700507i \(-0.247043\pi\)
−0.986192 + 0.165603i \(0.947043\pi\)
\(270\) 2.21179 1.83770i 0.134605 0.111839i
\(271\) 10.5574 7.67042i 0.641318 0.465945i −0.218985 0.975728i \(-0.570275\pi\)
0.860303 + 0.509784i \(0.170275\pi\)
\(272\) −22.5518 + 5.99567i −1.36740 + 0.363541i
\(273\) −0.768657 2.36568i −0.0465212 0.143178i
\(274\) −2.03473 1.28521i −0.122923 0.0776421i
\(275\) −14.0524 + 2.75566i −0.847391 + 0.166173i
\(276\) 0.314997 0.886778i 0.0189606 0.0533777i
\(277\) 10.6623 20.9260i 0.640638 1.25732i −0.311090 0.950381i \(-0.600694\pi\)
0.951728 0.306943i \(-0.0993060\pi\)
\(278\) 4.42170 + 1.90227i 0.265196 + 0.114090i
\(279\) 1.02073 + 1.40491i 0.0611094 + 0.0841099i
\(280\) 1.83150 + 4.98693i 0.109453 + 0.298026i
\(281\) −20.8482 6.77400i −1.24370 0.404103i −0.388042 0.921642i \(-0.626848\pi\)
−0.855660 + 0.517539i \(0.826848\pi\)
\(282\) −4.91500 4.31458i −0.292684 0.256929i
\(283\) −4.21093 26.5868i −0.250314 1.58042i −0.717691 0.696362i \(-0.754801\pi\)
0.467377 0.884058i \(-0.345199\pi\)
\(284\) 19.4034 + 20.4868i 1.15138 + 1.21567i
\(285\) 1.70978 1.70978i 0.101279 0.101279i
\(286\) −1.22979 12.0715i −0.0727187 0.713800i
\(287\) 7.66256 0.452306
\(288\) 9.51752 + 12.8105i 0.560825 + 0.754864i
\(289\) −13.7802 10.0119i −0.810599 0.588934i
\(290\) −0.390043 5.99566i −0.0229041 0.352077i
\(291\) 1.25112 + 2.45547i 0.0733422 + 0.143942i
\(292\) 0.280737 + 2.14858i 0.0164289 + 0.125736i
\(293\) 1.07231 + 0.169838i 0.0626452 + 0.00992203i 0.187678 0.982231i \(-0.439904\pi\)
−0.125033 + 0.992153i \(0.539904\pi\)
\(294\) 0.432407 1.00511i 0.0252185 0.0586189i
\(295\) 1.36771 0.444396i 0.0796311 0.0258737i
\(296\) 18.7142 + 23.8103i 1.08774 + 1.38394i
\(297\) 7.85155 + 2.23733i 0.455593 + 0.129823i
\(298\) −4.13930 + 0.934508i −0.239783 + 0.0541346i
\(299\) −1.30685 + 2.56483i −0.0755770 + 0.148328i
\(300\) 3.01135 2.06533i 0.173861 0.119242i
\(301\) −2.02083 + 12.7590i −0.116478 + 0.735416i
\(302\) −16.7271 + 13.8980i −0.962536 + 0.799740i
\(303\) −1.72849 + 5.31975i −0.0992992 + 0.305611i
\(304\) 18.4876 + 20.6132i 1.06034 + 1.18225i
\(305\) −0.177786 0.129169i −0.0101800 0.00739620i
\(306\) −5.74032 + 22.5565i −0.328152 + 1.28947i
\(307\) 5.51185 5.51185i 0.314578 0.314578i −0.532102 0.846680i \(-0.678598\pi\)
0.846680 + 0.532102i \(0.178598\pi\)
\(308\) −8.75033 + 12.2852i −0.498596 + 0.700015i
\(309\) 3.63258 + 3.63258i 0.206650 + 0.206650i
\(310\) −0.367360 0.618163i −0.0208647 0.0351093i
\(311\) 9.71062 13.3655i 0.550639 0.757889i −0.439460 0.898262i \(-0.644830\pi\)
0.990099 + 0.140373i \(0.0448302\pi\)
\(312\) 1.50790 + 2.70180i 0.0853680 + 0.152959i
\(313\) −31.5730 10.2587i −1.78461 0.579856i −0.785380 0.619014i \(-0.787532\pi\)
−0.999233 + 0.0391586i \(0.987532\pi\)
\(314\) 22.6683 + 2.09406i 1.27925 + 0.118175i
\(315\) 5.23377 + 0.828948i 0.294890 + 0.0467059i
\(316\) 0.231779 1.24380i 0.0130386 0.0699695i
\(317\) −14.9465 7.61563i −0.839480 0.427737i −0.0192807 0.999814i \(-0.506138\pi\)
−0.820200 + 0.572078i \(0.806138\pi\)
\(318\) 1.48852 2.35661i 0.0834718 0.132152i
\(319\) 13.4246 10.5243i 0.751633 0.589247i
\(320\) −3.43638 5.64462i −0.192099 0.315544i
\(321\) 0.894886 + 2.75418i 0.0499477 + 0.153723i
\(322\) 3.32410 1.32430i 0.185245 0.0738005i
\(323\) −6.31737 + 39.8863i −0.351508 + 2.21933i
\(324\) 14.7202 1.92336i 0.817788 0.106853i
\(325\) −9.95219 + 5.07089i −0.552048 + 0.281283i
\(326\) −18.2660 16.0346i −1.01166 0.888076i
\(327\) −2.01443 + 2.77263i −0.111398 + 0.153327i
\(328\) −9.35102 + 1.84583i −0.516324 + 0.101919i
\(329\) 24.8673i 1.37098i
\(330\) −1.52768 0.592027i −0.0840959 0.0325900i
\(331\) −2.35714 2.35714i −0.129560 0.129560i 0.639353 0.768913i \(-0.279202\pi\)
−0.768913 + 0.639353i \(0.779202\pi\)
\(332\) −0.403458 + 14.8544i −0.0221426 + 0.815243i
\(333\) 29.8351 4.72541i 1.63495 0.258951i
\(334\) 19.4209 1.26341i 1.06267 0.0691310i
\(335\) −1.81703 + 5.59223i −0.0992748 + 0.305536i
\(336\) 0.806976 3.76048i 0.0440241 0.205151i
\(337\) −7.89012 + 5.73251i −0.429802 + 0.312270i −0.781570 0.623818i \(-0.785581\pi\)
0.351768 + 0.936087i \(0.385581\pi\)
\(338\) 3.30146 + 8.28689i 0.179576 + 0.450748i
\(339\) −2.40609 1.22596i −0.130681 0.0665853i
\(340\) 3.22607 9.08200i 0.174958 0.492541i
\(341\) 0.859723 1.85168i 0.0465566 0.100274i
\(342\) 26.9404 6.08219i 1.45677 0.328887i
\(343\) 19.0946 6.20420i 1.03101 0.334995i
\(344\) −0.607392 16.0573i −0.0327484 0.865749i
\(345\) 0.228460 + 0.314448i 0.0122999 + 0.0169293i
\(346\) −9.78752 0.904155i −0.526180 0.0486077i
\(347\) 26.5071 13.5061i 1.42298 0.725043i 0.438202 0.898877i \(-0.355616\pi\)
0.984775 + 0.173834i \(0.0556156\pi\)
\(348\) −2.07925 + 3.82062i −0.111460 + 0.204807i
\(349\) −31.7326 + 5.02596i −1.69861 + 0.269033i −0.929161 0.369676i \(-0.879469\pi\)
−0.769448 + 0.638709i \(0.779469\pi\)
\(350\) 13.4554 + 3.42420i 0.719219 + 0.183031i
\(351\) 6.36798 0.339898
\(352\) 7.71910 17.1002i 0.411429 0.911442i
\(353\) −3.97208 −0.211413 −0.105706 0.994397i \(-0.533710\pi\)
−0.105706 + 0.994397i \(0.533710\pi\)
\(354\) −1.00896 0.256766i −0.0536254 0.0136469i
\(355\) −11.5108 + 1.82313i −0.610928 + 0.0967615i
\(356\) −15.5184 + 28.5151i −0.822474 + 1.51130i
\(357\) 4.99795 2.54658i 0.264520 0.134780i
\(358\) −13.2966 1.22832i −0.702746 0.0649185i
\(359\) −8.75088 12.0446i −0.461854 0.635687i 0.513038 0.858366i \(-0.328520\pi\)
−0.974892 + 0.222679i \(0.928520\pi\)
\(360\) −6.58673 + 0.249154i −0.347151 + 0.0131316i
\(361\) 27.5033 8.93635i 1.44754 0.470334i
\(362\) −6.94480 + 1.56789i −0.365010 + 0.0824065i
\(363\) −1.06136 4.52879i −0.0557072 0.237700i
\(364\) −3.93793 + 11.0860i −0.206404 + 0.581066i
\(365\) −0.797411 0.406301i −0.0417384 0.0212668i
\(366\) 0.0588812 + 0.147796i 0.00307777 + 0.00772542i
\(367\) 11.3373 8.23702i 0.591801 0.429969i −0.251158 0.967946i \(-0.580811\pi\)
0.842959 + 0.537977i \(0.180811\pi\)
\(368\) −3.73756 + 2.41686i −0.194834 + 0.125987i
\(369\) −2.93784 + 9.04175i −0.152938 + 0.470695i
\(370\) −12.4818 + 0.811994i −0.648897 + 0.0422135i
\(371\) 10.4678 1.65793i 0.543461 0.0860757i
\(372\) −0.0141342 + 0.520391i −0.000732826 + 0.0269810i
\(373\) −11.1773 11.1773i −0.578737 0.578737i 0.355818 0.934555i \(-0.384202\pi\)
−0.934555 + 0.355818i \(0.884202\pi\)
\(374\) 26.4531 6.99759i 1.36786 0.361837i
\(375\) 3.25469i 0.168072i
\(376\) 5.99028 + 30.3468i 0.308925 + 1.56502i
\(377\) 7.82068 10.7642i 0.402785 0.554387i
\(378\) −5.94875 5.22204i −0.305971 0.268593i
\(379\) 4.21938 2.14988i 0.216735 0.110432i −0.342253 0.939608i \(-0.611190\pi\)
0.558988 + 0.829176i \(0.311190\pi\)
\(380\) −11.3399 + 1.48169i −0.581725 + 0.0760091i
\(381\) 0.235157 1.48472i 0.0120474 0.0760646i
\(382\) −4.85445 + 1.93399i −0.248375 + 0.0989514i
\(383\) −7.95749 24.4906i −0.406609 1.25141i −0.919544 0.392986i \(-0.871442\pi\)
0.512935 0.858427i \(-0.328558\pi\)
\(384\) −0.0789331 + 4.78350i −0.00402804 + 0.244107i
\(385\) −2.14034 5.85036i −0.109082 0.298162i
\(386\) −3.44906 + 5.46054i −0.175553 + 0.277934i
\(387\) −14.2807 7.27638i −0.725929 0.369879i
\(388\) 2.38777 12.8136i 0.121221 0.650512i
\(389\) −33.0298 5.23141i −1.67468 0.265243i −0.754374 0.656445i \(-0.772060\pi\)
−0.920305 + 0.391202i \(0.872060\pi\)
\(390\) −1.27252 0.117553i −0.0644364 0.00595253i
\(391\) −6.17371 2.00596i −0.312218 0.101446i
\(392\) −4.51891 + 2.52204i −0.228239 + 0.127382i
\(393\) 0.472599 0.650476i 0.0238394 0.0328122i
\(394\) −14.9745 25.1978i −0.754403 1.26945i
\(395\) 0.369508 + 0.369508i 0.0185919 + 0.0185919i
\(396\) −11.1415 15.0355i −0.559884 0.755562i
\(397\) −13.5679 + 13.5679i −0.680953 + 0.680953i −0.960215 0.279262i \(-0.909910\pi\)
0.279262 + 0.960215i \(0.409910\pi\)
\(398\) −2.88087 + 11.3203i −0.144405 + 0.567437i
\(399\) −5.38480 3.91229i −0.269577 0.195859i
\(400\) −17.2451 0.937475i −0.862257 0.0468737i
\(401\) −9.93461 + 30.5756i −0.496111 + 1.52687i 0.319108 + 0.947718i \(0.396617\pi\)
−0.815218 + 0.579154i \(0.803383\pi\)
\(402\) 3.27419 2.72042i 0.163302 0.135682i
\(403\) 0.249105 1.57279i 0.0124088 0.0783461i
\(404\) 21.8172 14.9633i 1.08545 0.744450i
\(405\) −2.78362 + 5.46316i −0.138319 + 0.271466i
\(406\) −16.1330 + 3.64226i −0.800667 + 0.180763i
\(407\) −21.9095 27.9474i −1.08601 1.38530i
\(408\) −5.48582 + 4.31169i −0.271588 + 0.213460i
\(409\) −9.02892 + 2.93368i −0.446452 + 0.145061i −0.523610 0.851958i \(-0.675415\pi\)
0.0771587 + 0.997019i \(0.475415\pi\)
\(410\) 1.55575 3.61625i 0.0768331 0.178594i
\(411\) −0.710747 0.112571i −0.0350586 0.00555273i
\(412\) −3.14797 24.0926i −0.155090 1.18696i
\(413\) −1.79717 3.52715i −0.0884331 0.173560i
\(414\) 0.288200 + 4.43014i 0.0141643 + 0.217730i
\(415\) −4.96532 3.60752i −0.243738 0.177086i
\(416\) 2.13515 14.4775i 0.104684 0.709816i
\(417\) 1.43929 0.0704824
\(418\) −21.6485 24.1981i −1.05886 1.18357i
\(419\) 7.24229 7.24229i 0.353809 0.353809i −0.507716 0.861525i \(-0.669510\pi\)
0.861525 + 0.507716i \(0.169510\pi\)
\(420\) 1.09234 + 1.15334i 0.0533009 + 0.0562771i
\(421\) 4.75283 + 30.0082i 0.231639 + 1.46251i 0.779743 + 0.626099i \(0.215350\pi\)
−0.548105 + 0.836410i \(0.684650\pi\)
\(422\) 23.8030 + 20.8952i 1.15871 + 1.01716i
\(423\) 29.3432 + 9.53417i 1.42671 + 0.463567i
\(424\) −12.3750 + 4.54485i −0.600984 + 0.220717i
\(425\) −14.8053 20.3778i −0.718163 0.988467i
\(426\) 7.75036 + 3.33429i 0.375506 + 0.161547i
\(427\) −0.274627 + 0.538985i −0.0132901 + 0.0260833i
\(428\) 4.58462 12.9066i 0.221606 0.623864i
\(429\) −1.76422 3.17035i −0.0851774 0.153066i
\(430\) 5.61116 + 3.54420i 0.270594 + 0.170916i
\(431\) 6.22605 + 19.1618i 0.299898 + 0.922991i 0.981532 + 0.191298i \(0.0612697\pi\)
−0.681634 + 0.731693i \(0.738730\pi\)
\(432\) 8.51751 + 4.93974i 0.409799 + 0.237663i
\(433\) 27.3599 19.8781i 1.31483 0.955280i 0.314849 0.949142i \(-0.398046\pi\)
0.999981 0.00613870i \(-0.00195402\pi\)
\(434\) −1.52246 + 1.26497i −0.0730806 + 0.0607203i
\(435\) −0.815617 1.60074i −0.0391058 0.0767495i
\(436\) 15.5463 4.58854i 0.744531 0.219751i
\(437\) 1.20496 + 7.60782i 0.0576411 + 0.363931i
\(438\) 0.330999 + 0.556977i 0.0158158 + 0.0266134i
\(439\) 35.1186i 1.67612i 0.545577 + 0.838061i \(0.316311\pi\)
−0.545577 + 0.838061i \(0.683689\pi\)
\(440\) 4.02126 + 6.62392i 0.191706 + 0.315783i
\(441\) 5.16181i 0.245801i
\(442\) 18.3477 10.9036i 0.872710 0.518633i
\(443\) −1.95025 12.3134i −0.0926590 0.585026i −0.989709 0.143096i \(-0.954294\pi\)
0.897050 0.441930i \(-0.145706\pi\)
\(444\) 7.95379 + 4.32859i 0.377470 + 0.205426i
\(445\) −6.08732 11.9470i −0.288567 0.566344i
\(446\) −21.8349 26.2796i −1.03391 1.24438i
\(447\) −1.02651 + 0.745806i −0.0485524 + 0.0352754i
\(448\) −13.8668 + 11.7734i −0.655144 + 0.556243i
\(449\) −1.72111 5.29702i −0.0812241 0.249982i 0.902195 0.431328i \(-0.141955\pi\)
−0.983419 + 0.181346i \(0.941955\pi\)
\(450\) −9.19935 + 14.5644i −0.433661 + 0.686570i
\(451\) 10.9677 2.15076i 0.516450 0.101276i
\(452\) 5.48728 + 11.5332i 0.258100 + 0.542477i
\(453\) −2.95216 + 5.79394i −0.138705 + 0.272223i
\(454\) 6.18274 14.3714i 0.290170 0.674483i
\(455\) −2.85609 3.93107i −0.133896 0.184291i
\(456\) 7.51378 + 3.47722i 0.351865 + 0.162836i
\(457\) 3.30128 + 1.07265i 0.154427 + 0.0501764i 0.385211 0.922829i \(-0.374129\pi\)
−0.230783 + 0.973005i \(0.574129\pi\)
\(458\) 20.9860 23.9065i 0.980612 1.11708i
\(459\) 2.24644 + 14.1835i 0.104855 + 0.662029i
\(460\) 0.0499119 1.83764i 0.00232715 0.0856806i
\(461\) 14.6040 14.6040i 0.680175 0.680175i −0.279865 0.960039i \(-0.590290\pi\)
0.960039 + 0.279865i \(0.0902896\pi\)
\(462\) −0.951757 + 4.40837i −0.0442798 + 0.205096i
\(463\) 6.25447 0.290670 0.145335 0.989383i \(-0.453574\pi\)
0.145335 + 0.989383i \(0.453574\pi\)
\(464\) 18.8105 8.33112i 0.873258 0.386762i
\(465\) −0.173949 0.126381i −0.00806668 0.00586078i
\(466\) −40.2732 + 2.61994i −1.86562 + 0.121367i
\(467\) 0.355621 + 0.697946i 0.0164562 + 0.0322971i 0.899088 0.437767i \(-0.144231\pi\)
−0.882632 + 0.470064i \(0.844231\pi\)
\(468\) −11.5716 8.89713i −0.534898 0.411270i
\(469\) 15.9866 + 2.53202i 0.738191 + 0.116918i
\(470\) −11.7358 5.04888i −0.541333 0.232887i
\(471\) 6.47375 2.10345i 0.298295 0.0969218i
\(472\) 3.04284 + 3.87145i 0.140058 + 0.178198i
\(473\) 0.688767 + 18.8297i 0.0316695 + 0.865789i
\(474\) −0.0833127 0.369024i −0.00382668 0.0169498i
\(475\) −13.5690 + 26.6306i −0.622586 + 1.22189i
\(476\) −26.0813 4.86016i −1.19543 0.222765i
\(477\) −2.05703 + 12.9875i −0.0941847 + 0.594659i
\(478\) −5.05301 6.08161i −0.231119 0.278166i
\(479\) −0.815904 + 2.51110i −0.0372796 + 0.114735i −0.967965 0.251087i \(-0.919212\pi\)
0.930685 + 0.365822i \(0.119212\pi\)
\(480\) −1.61087 1.14434i −0.0735259 0.0522319i
\(481\) −22.4090 16.2811i −1.02176 0.742355i
\(482\) 29.9066 + 7.61082i 1.36221 + 0.346663i
\(483\) 0.756542 0.756542i 0.0344238 0.0344238i
\(484\) −9.07643 + 20.0404i −0.412565 + 0.910928i
\(485\) 3.80664 + 3.80664i 0.172851 + 0.172851i
\(486\) 12.7938 7.60306i 0.580337 0.344882i
\(487\) 0.474526 0.653129i 0.0215028 0.0295961i −0.798130 0.602485i \(-0.794177\pi\)
0.819633 + 0.572889i \(0.194177\pi\)
\(488\) 0.205305 0.723907i 0.00929373 0.0327697i
\(489\) −6.91188 2.24580i −0.312566 0.101559i
\(490\) 0.196614 2.12835i 0.00888210 0.0961492i
\(491\) 4.53712 + 0.718609i 0.204757 + 0.0324304i 0.257971 0.966153i \(-0.416946\pi\)
−0.0532131 + 0.998583i \(0.516946\pi\)
\(492\) −2.35033 + 1.61197i −0.105961 + 0.0726731i
\(493\) 26.7343 + 13.6218i 1.20405 + 0.613494i
\(494\) −21.4119 13.5245i −0.963365 0.608494i
\(495\) 7.72398 0.282534i 0.347167 0.0126990i
\(496\) 1.55322 1.91045i 0.0697419 0.0857817i
\(497\) 9.91340 + 30.5103i 0.444677 + 1.36857i
\(498\) 1.64447 + 4.12774i 0.0736905 + 0.184968i
\(499\) −4.63356 + 29.2551i −0.207426 + 1.30964i 0.635705 + 0.771932i \(0.280709\pi\)
−0.843132 + 0.537707i \(0.819291\pi\)
\(500\) 9.38292 12.2034i 0.419617 0.545754i
\(501\) 5.18505 2.64191i 0.231651 0.118032i
\(502\) −6.05203 + 6.89424i −0.270115 + 0.307705i
\(503\) −23.8716 + 32.8565i −1.06438 + 1.46500i −0.188747 + 0.982026i \(0.560443\pi\)
−0.875636 + 0.482972i \(0.839557\pi\)
\(504\) 3.51374 + 17.8007i 0.156514 + 0.792904i
\(505\) 10.9267i 0.486231i
\(506\) 4.38620 2.82855i 0.194990 0.125745i
\(507\) 1.88604 + 1.88604i 0.0837620 + 0.0837620i
\(508\) −5.16200 + 4.88901i −0.229027 + 0.216915i
\(509\) −9.59702 + 1.52002i −0.425380 + 0.0673736i −0.365455 0.930829i \(-0.619086\pi\)
−0.0599259 + 0.998203i \(0.519086\pi\)
\(510\) −0.187081 2.87576i −0.00828408 0.127341i
\(511\) −0.761271 + 2.34295i −0.0336767 + 0.103646i
\(512\) 14.0863 17.7081i 0.622531 0.782595i
\(513\) 13.7855 10.0157i 0.608643 0.442205i
\(514\) 2.59869 1.03531i 0.114624 0.0456654i
\(515\) 8.94157 + 4.55596i 0.394013 + 0.200760i
\(516\) −2.06425 4.33867i −0.0908737 0.190999i
\(517\) −6.97987 35.5936i −0.306975 1.56540i
\(518\) 7.58248 + 33.5857i 0.333155 + 1.47567i
\(519\) −2.79518 + 0.908208i −0.122695 + 0.0398659i
\(520\) 4.43239 + 4.10929i 0.194373 + 0.180204i
\(521\) 13.2859 + 18.2864i 0.582064 + 0.801142i 0.993920 0.110107i \(-0.0351194\pi\)
−0.411856 + 0.911249i \(0.635119\pi\)
\(522\) 1.88759 20.4332i 0.0826175 0.894338i
\(523\) −15.7434 + 8.02169i −0.688413 + 0.350764i −0.762953 0.646454i \(-0.776251\pi\)
0.0745399 + 0.997218i \(0.476251\pi\)
\(524\) −3.64725 + 1.07650i −0.159331 + 0.0470272i
\(525\) 4.10041 0.649441i 0.178956 0.0283439i
\(526\) 9.57163 37.6116i 0.417343 1.63994i
\(527\) 3.59097 0.156425
\(528\) 0.0995468 5.60904i 0.00433222 0.244102i
\(529\) 21.7618 0.946167
\(530\) 1.34286 5.27676i 0.0583303 0.229208i
\(531\) 4.85105 0.768330i 0.210518 0.0333427i
\(532\) 8.91154 + 30.1928i 0.386364 + 1.30903i
\(533\) 7.76757 3.95778i 0.336451 0.171430i
\(534\) −0.892927 + 9.66598i −0.0386407 + 0.418288i
\(535\) 3.32512 + 4.57663i 0.143757 + 0.197865i
\(536\) −20.1192 + 0.761041i −0.869016 + 0.0328720i
\(537\) −3.79732 + 1.23382i −0.163866 + 0.0532434i
\(538\) 3.06653 + 13.5828i 0.132208 + 0.585598i
\(539\) 5.30257 2.95075i 0.228398 0.127098i
\(540\) −3.67227 + 1.74720i −0.158030 + 0.0751873i
\(541\) 26.7153 + 13.6121i 1.14858 + 0.585231i 0.921398 0.388621i \(-0.127049\pi\)
0.227183 + 0.973852i \(0.427049\pi\)
\(542\) −17.1446 + 6.83031i −0.736422 + 0.293387i
\(543\) −1.72225 + 1.25129i −0.0739090 + 0.0536981i
\(544\) 32.9991 0.351603i 1.41482 0.0150748i
\(545\) −2.06881 + 6.36713i −0.0886180 + 0.272738i
\(546\) 0.228362 + 3.51033i 0.00977299 + 0.150228i
\(547\) 24.6903 3.91056i 1.05568 0.167204i 0.395620 0.918414i \(-0.370530\pi\)
0.660062 + 0.751211i \(0.270530\pi\)
\(548\) 2.34040 + 2.47109i 0.0999771 + 0.105560i
\(549\) −0.530705 0.530705i −0.0226499 0.0226499i
\(550\) 20.2203 + 1.12448i 0.862198 + 0.0479482i
\(551\) 35.6031i 1.51674i
\(552\) −0.741004 + 1.10549i −0.0315392 + 0.0470528i
\(553\) 0.845499 1.16373i 0.0359543 0.0494868i
\(554\) −21.9117 + 24.9609i −0.930937 + 1.06049i
\(555\) −3.33242 + 1.69795i −0.141453 + 0.0720741i
\(556\) −5.39660 4.14932i −0.228867 0.175970i
\(557\) 0.185894 1.17369i 0.00787657 0.0497307i −0.983437 0.181250i \(-0.941986\pi\)
0.991314 + 0.131520i \(0.0419856\pi\)
\(558\) −0.908932 2.28148i −0.0384782 0.0965829i
\(559\) 4.54161 + 13.9776i 0.192089 + 0.591191i
\(560\) −0.770780 7.47353i −0.0325714 0.315814i
\(561\) 6.43899 5.04788i 0.271854 0.213122i
\(562\) 26.2105 + 16.5554i 1.10562 + 0.698349i
\(563\) −16.9208 8.62159i −0.713128 0.363357i 0.0594893 0.998229i \(-0.481053\pi\)
−0.772617 + 0.634872i \(0.781053\pi\)
\(564\) 5.23132 + 7.62752i 0.220278 + 0.321176i
\(565\) −5.21020 0.825215i −0.219195 0.0347170i
\(566\) −3.50176 + 37.9067i −0.147190 + 1.59334i
\(567\) 16.0518 + 5.21556i 0.674114 + 0.219033i
\(568\) −19.4475 34.8453i −0.815998 1.46208i
\(569\) −15.9081 + 21.8957i −0.666903 + 0.917914i −0.999685 0.0250901i \(-0.992013\pi\)
0.332782 + 0.943004i \(0.392013\pi\)
\(570\) −2.93965 + 1.74697i −0.123128 + 0.0731725i
\(571\) 6.48368 + 6.48368i 0.271333 + 0.271333i 0.829637 0.558303i \(-0.188547\pi\)
−0.558303 + 0.829637i \(0.688547\pi\)
\(572\) −2.52483 + 16.9732i −0.105569 + 0.709685i
\(573\) −1.10484 + 1.10484i −0.0461553 + 0.0461553i
\(574\) −10.5018 2.67255i −0.438335 0.111550i
\(575\) −3.88681 2.82393i −0.162091 0.117766i
\(576\) −8.57599 20.8766i −0.357333 0.869860i
\(577\) −5.04144 + 15.5159i −0.209878 + 0.645937i 0.789600 + 0.613622i \(0.210288\pi\)
−0.999478 + 0.0323153i \(0.989712\pi\)
\(578\) 15.3942 + 18.5278i 0.640314 + 0.770657i
\(579\) −0.302104 + 1.90741i −0.0125550 + 0.0792692i
\(580\) −1.55661 + 8.35327i −0.0646345 + 0.346851i
\(581\) −7.66995 + 15.0531i −0.318203 + 0.624509i
\(582\) −0.858282 3.80166i −0.0355769 0.157584i
\(583\) 14.5176 5.31122i 0.601258 0.219968i
\(584\) 0.364626 3.04261i 0.0150883 0.125904i
\(585\) 5.73366 1.86298i 0.237058 0.0770247i
\(586\) −1.41040 0.606770i −0.0582632 0.0250655i
\(587\) 5.39582 + 0.854614i 0.222709 + 0.0352737i 0.266792 0.963754i \(-0.414036\pi\)
−0.0440824 + 0.999028i \(0.514036\pi\)
\(588\) −0.943189 + 1.22671i −0.0388965 + 0.0505887i
\(589\) −1.93446 3.79658i −0.0797078 0.156435i
\(590\) −2.02948 + 0.132027i −0.0835525 + 0.00543545i
\(591\) −7.09056 5.15159i −0.291667 0.211908i
\(592\) −17.3437 39.1599i −0.712824 1.60946i
\(593\) 13.1314 0.539241 0.269620 0.962967i \(-0.413102\pi\)
0.269620 + 0.962967i \(0.413102\pi\)
\(594\) −9.98044 5.80480i −0.409502 0.238174i
\(595\) 7.74818 7.74818i 0.317644 0.317644i
\(596\) 5.99897 + 0.162937i 0.245727 + 0.00667415i
\(597\) 0.546391 + 3.44977i 0.0223623 + 0.141190i
\(598\) 2.68564 3.05938i 0.109824 0.125107i
\(599\) −28.1886 9.15905i −1.15176 0.374228i −0.329952 0.943998i \(-0.607033\pi\)
−0.821805 + 0.569769i \(0.807033\pi\)
\(600\) −4.84750 + 1.78029i −0.197898 + 0.0726802i
\(601\) 18.3221 + 25.2182i 0.747374 + 1.02867i 0.998160 + 0.0606296i \(0.0193109\pi\)
−0.250786 + 0.968042i \(0.580689\pi\)
\(602\) 7.21969 16.7817i 0.294253 0.683973i
\(603\) −9.11704 + 17.8932i −0.371275 + 0.728668i
\(604\) 27.7723 13.2135i 1.13004 0.537651i
\(605\) −4.70566 7.77310i −0.191312 0.316022i
\(606\) 4.22437 6.68801i 0.171603 0.271682i
\(607\) 5.85689 + 18.0257i 0.237724 + 0.731639i 0.996748 + 0.0805770i \(0.0256763\pi\)
−0.759024 + 0.651062i \(0.774324\pi\)
\(608\) −18.1484 34.6992i −0.736013 1.40724i
\(609\) −4.00086 + 2.90679i −0.162123 + 0.117789i
\(610\) 0.198609 + 0.239039i 0.00804146 + 0.00967839i
\(611\) −12.8442 25.2081i −0.519619 1.01981i
\(612\) 15.7346 28.9123i 0.636032 1.16871i
\(613\) 5.24236 + 33.0989i 0.211737 + 1.33685i 0.833009 + 0.553259i \(0.186616\pi\)
−0.621273 + 0.783594i \(0.713384\pi\)
\(614\) −9.47658 + 5.63172i −0.382444 + 0.227278i
\(615\) 1.17711i 0.0474658i
\(616\) 16.2774 13.7853i 0.655837 0.555426i
\(617\) 3.83039i 0.154206i 0.997023 + 0.0771029i \(0.0245670\pi\)
−0.997023 + 0.0771029i \(0.975433\pi\)
\(618\) −3.71158 6.24553i −0.149302 0.251232i
\(619\) −0.117602 0.742508i −0.00472681 0.0298439i 0.985212 0.171339i \(-0.0548092\pi\)
−0.989939 + 0.141495i \(0.954809\pi\)
\(620\) 0.287875 + 0.975338i 0.0115613 + 0.0391705i
\(621\) 1.24350 + 2.44051i 0.0499000 + 0.0979343i
\(622\) −17.9703 + 14.9310i −0.720544 + 0.598677i
\(623\) −29.8602 + 21.6947i −1.19632 + 0.869181i
\(624\) −1.12428 4.22883i −0.0450074 0.169289i
\(625\) −4.70644 14.4849i −0.188258 0.579397i
\(626\) 39.6937 + 25.0719i 1.58648 + 1.00208i
\(627\) −8.80560 4.08838i −0.351662 0.163274i
\(628\) −30.3372 10.7762i −1.21059 0.430019i
\(629\) 28.3579 55.6554i 1.13070 2.21913i
\(630\) −6.88392 2.96154i −0.274262 0.117991i
\(631\) −7.41607 10.2074i −0.295229 0.406348i 0.635475 0.772122i \(-0.280804\pi\)
−0.930704 + 0.365774i \(0.880804\pi\)
\(632\) −0.751476 + 1.62383i −0.0298921 + 0.0645925i
\(633\) 9.00706 + 2.92657i 0.357998 + 0.116321i
\(634\) 17.8285 + 15.6505i 0.708059 + 0.621561i
\(635\) −0.459368 2.90034i −0.0182295 0.115096i
\(636\) −2.86200 + 2.71064i −0.113486 + 0.107484i
\(637\) 3.34692 3.34692i 0.132610 0.132610i
\(638\) −22.0695 + 9.74161i −0.873739 + 0.385674i
\(639\) −39.8027 −1.57457
\(640\) 2.74092 + 8.93466i 0.108344 + 0.353173i
\(641\) −20.8283 15.1326i −0.822667 0.597702i 0.0948084 0.995496i \(-0.469776\pi\)
−0.917475 + 0.397793i \(0.869776\pi\)
\(642\) −0.265864 4.08680i −0.0104928 0.161293i
\(643\) −6.75366 13.2548i −0.266338 0.522719i 0.718643 0.695379i \(-0.244764\pi\)
−0.984981 + 0.172661i \(0.944764\pi\)
\(644\) −5.01766 + 0.655616i −0.197724 + 0.0258349i
\(645\) 1.96002 + 0.310437i 0.0771757 + 0.0122234i
\(646\) 22.5697 52.4620i 0.887994 2.06409i
\(647\) −41.6181 + 13.5225i −1.63618 + 0.531626i −0.975679 0.219202i \(-0.929654\pi\)
−0.660497 + 0.750828i \(0.729654\pi\)
\(648\) −20.8453 2.49809i −0.818880 0.0981344i
\(649\) −3.56239 4.54412i −0.139836 0.178372i
\(650\) 15.4084 3.47868i 0.604367 0.136445i
\(651\) −0.268699 + 0.527352i −0.0105311 + 0.0206685i
\(652\) 19.4416 + 28.3468i 0.761390 + 1.11015i
\(653\) 5.13985 32.4517i 0.201138 1.26993i −0.655966 0.754790i \(-0.727739\pi\)
0.857104 0.515144i \(-0.172261\pi\)
\(654\) 3.72788 3.09738i 0.145772 0.121117i
\(655\) 0.485355 1.49377i 0.0189644 0.0583664i
\(656\) 13.4596 + 0.731689i 0.525511 + 0.0285676i
\(657\) −2.47279 1.79659i −0.0964727 0.0700915i
\(658\) −8.67324 + 34.0814i −0.338118 + 1.32863i
\(659\) 22.9214 22.9214i 0.892893 0.892893i −0.101902 0.994794i \(-0.532493\pi\)
0.994794 + 0.101902i \(0.0324927\pi\)
\(660\) 1.88724 + 1.34422i 0.0734607 + 0.0523235i
\(661\) −22.0282 22.0282i −0.856796 0.856796i 0.134163 0.990959i \(-0.457165\pi\)
−0.990959 + 0.134163i \(0.957165\pi\)
\(662\) 2.40840 + 4.05265i 0.0936052 + 0.157511i
\(663\) 3.75112 5.16297i 0.145681 0.200513i
\(664\) 5.73389 20.2177i 0.222518 0.784600i
\(665\) −12.3658 4.01789i −0.479525 0.155807i
\(666\) −42.5380 3.92959i −1.64831 0.152268i
\(667\) 5.65254 + 0.895274i 0.218867 + 0.0346652i
\(668\) −27.0576 5.04210i −1.04689 0.195085i
\(669\) −9.10275 4.63808i −0.351933 0.179319i
\(670\) 4.44075 7.03058i 0.171561 0.271615i
\(671\) −0.241799 + 0.848555i −0.00933456 + 0.0327581i
\(672\) −2.41757 + 4.87239i −0.0932597 + 0.187957i
\(673\) 3.48641 + 10.7301i 0.134391 + 0.413614i 0.995495 0.0948158i \(-0.0302262\pi\)
−0.861104 + 0.508430i \(0.830226\pi\)
\(674\) 12.8130 5.10465i 0.493540 0.196624i
\(675\) −1.66261 + 10.4973i −0.0639941 + 0.404043i
\(676\) −1.63443 12.5089i −0.0628629 0.481112i
\(677\) 25.8228 13.1574i 0.992453 0.505680i 0.119160 0.992875i \(-0.461980\pi\)
0.873293 + 0.487195i \(0.161980\pi\)
\(678\) 2.87003 + 2.51942i 0.110223 + 0.0967577i
\(679\) 8.71027 11.9887i 0.334270 0.460083i
\(680\) −7.58905 + 11.3220i −0.291027 + 0.434178i
\(681\) 4.67798i 0.179261i
\(682\) −1.82411 + 2.23793i −0.0698487 + 0.0856948i
\(683\) −7.62367 7.62367i −0.291711 0.291711i 0.546045 0.837756i \(-0.316133\pi\)
−0.837756 + 0.546045i \(0.816133\pi\)
\(684\) −39.0440 1.06046i −1.49288 0.0405479i
\(685\) −1.38841 + 0.219903i −0.0530485 + 0.00840206i
\(686\) −28.3336 + 1.84322i −1.08178 + 0.0703745i
\(687\) 2.93930 9.04622i 0.112141 0.345135i
\(688\) −4.76802 + 22.2188i −0.181779 + 0.847084i
\(689\) 9.75491 7.08736i 0.371633 0.270007i
\(690\) −0.203438 0.510644i −0.00774475 0.0194399i
\(691\) 28.2730 + 14.4058i 1.07556 + 0.548024i 0.899752 0.436401i \(-0.143747\pi\)
0.175805 + 0.984425i \(0.443747\pi\)
\(692\) 13.0987 + 4.65287i 0.497939 + 0.176876i
\(693\) −4.09421 20.8782i −0.155526 0.793099i
\(694\) −41.0394 + 9.26527i −1.55784 + 0.351705i
\(695\) 2.67398 0.868830i 0.101430 0.0329566i
\(696\) 4.18224 4.51108i 0.158527 0.170992i
\(697\) 11.5554 + 15.9046i 0.437691 + 0.602431i
\(698\) 45.2435 + 4.17952i 1.71249 + 0.158197i
\(699\) −10.7522 + 5.47854i −0.406687 + 0.207217i
\(700\) −17.2467 9.38595i −0.651863 0.354756i
\(701\) 3.38065 0.535443i 0.127686 0.0202234i −0.0922646 0.995735i \(-0.529411\pi\)
0.219950 + 0.975511i \(0.429411\pi\)
\(702\) −8.72751 2.22103i −0.329399 0.0838274i
\(703\) −74.1186 −2.79544
\(704\) −16.5435 + 20.7440i −0.623505 + 0.781819i
\(705\) −3.82008 −0.143873
\(706\) 5.44386 + 1.38539i 0.204882 + 0.0521397i
\(707\) 29.7073 4.70518i 1.11726 0.176957i
\(708\) 1.29325 + 0.703810i 0.0486033 + 0.0264508i
\(709\) −7.20426 + 3.67075i −0.270562 + 0.137858i −0.584008 0.811748i \(-0.698516\pi\)
0.313446 + 0.949606i \(0.398516\pi\)
\(710\) 16.4117 + 1.51609i 0.615921 + 0.0568978i
\(711\) 1.04902 + 1.44386i 0.0393415 + 0.0541489i
\(712\) 31.2140 33.6682i 1.16979 1.26177i
\(713\) 0.651410 0.211656i 0.0243955 0.00792657i
\(714\) −7.73804 + 1.74698i −0.289589 + 0.0653791i
\(715\) −5.19143 4.82504i −0.194149 0.180446i
\(716\) 17.7949 + 6.32104i 0.665028 + 0.236228i
\(717\) −2.10655 1.07334i −0.0786706 0.0400847i
\(718\) 7.79243 + 19.5596i 0.290811 + 0.729956i
\(719\) 20.9384 15.2126i 0.780869 0.567335i −0.124371 0.992236i \(-0.539691\pi\)
0.905240 + 0.424901i \(0.139691\pi\)
\(720\) 9.11421 + 1.95585i 0.339667 + 0.0728903i
\(721\) 8.53633 26.2721i 0.317910 0.978425i
\(722\) −40.8109 + 2.65492i −1.51882 + 0.0988059i
\(723\) 9.11378 1.44348i 0.338945 0.0536836i
\(724\) 10.0649 + 0.273371i 0.374059 + 0.0101597i
\(725\) 15.7025 + 15.7025i 0.583175 + 0.583175i
\(726\) −0.124925 + 6.57703i −0.00463640 + 0.244096i
\(727\) 6.69795i 0.248413i −0.992256 0.124207i \(-0.960361\pi\)
0.992256 0.124207i \(-0.0396385\pi\)
\(728\) 9.26365 13.8203i 0.343334 0.512213i
\(729\) −10.4731 + 14.4150i −0.387894 + 0.533890i
\(730\) 0.951165 + 0.834969i 0.0352042 + 0.0309036i
\(731\) −29.5304 + 15.0465i −1.09222 + 0.556515i
\(732\) −0.0291500 0.223095i −0.00107742 0.00824585i
\(733\) 1.82388 11.5155i 0.0673665 0.425335i −0.930838 0.365433i \(-0.880921\pi\)
0.998204 0.0599026i \(-0.0190790\pi\)
\(734\) −18.4110 + 7.33485i −0.679562 + 0.270734i
\(735\) −0.197495 0.607828i −0.00728472 0.0224201i
\(736\) 5.96539 2.00879i 0.219887 0.0740449i
\(737\) 23.5929 0.863001i 0.869056 0.0317890i
\(738\) 7.17999 11.3673i 0.264299 0.418437i
\(739\) −19.2382 9.80237i −0.707690 0.360586i 0.0628105 0.998025i \(-0.479994\pi\)
−0.770501 + 0.637439i \(0.779994\pi\)
\(740\) 17.3899 + 3.24055i 0.639264 + 0.119125i
\(741\) −7.47933 1.18461i −0.274760 0.0435177i
\(742\) −14.9247 1.37872i −0.547902 0.0506143i
\(743\) 29.6848 + 9.64518i 1.08903 + 0.353847i 0.797871 0.602828i \(-0.205959\pi\)
0.291158 + 0.956675i \(0.405959\pi\)
\(744\) 0.200874 0.708282i 0.00736439 0.0259669i
\(745\) −1.45690 + 2.00525i −0.0533766 + 0.0734666i
\(746\) 11.4204 + 19.2172i 0.418129 + 0.703591i
\(747\) −14.8219 14.8219i −0.542304 0.542304i
\(748\) −38.6953 + 0.364072i −1.41484 + 0.0133118i
\(749\) 11.0111 11.0111i 0.402336 0.402336i
\(750\) 1.13518 4.46066i 0.0414507 0.162880i
\(751\) −33.7586 24.5270i −1.23187 0.895004i −0.234838 0.972034i \(-0.575456\pi\)
−0.997029 + 0.0770306i \(0.975456\pi\)
\(752\) 2.37455 43.6806i 0.0865909 1.59287i
\(753\) −0.847646 + 2.60879i −0.0308899 + 0.0950695i
\(754\) −14.4728 + 12.0250i −0.527070 + 0.437925i
\(755\) −1.98714 + 12.5463i −0.0723195 + 0.456607i
\(756\) 6.33159 + 9.23178i 0.230278 + 0.335757i
\(757\) −4.77221 + 9.36599i −0.173449 + 0.340413i −0.961323 0.275424i \(-0.911182\pi\)
0.787874 + 0.615837i \(0.211182\pi\)
\(758\) −6.53263 + 1.47484i −0.237276 + 0.0535685i
\(759\) 0.870519 1.29522i 0.0315978 0.0470135i
\(760\) 16.0585 + 1.92444i 0.582502 + 0.0698069i
\(761\) −31.7885 + 10.3287i −1.15233 + 0.374415i −0.822021 0.569457i \(-0.807154\pi\)
−0.330311 + 0.943872i \(0.607154\pi\)
\(762\) −0.840132 + 1.95284i −0.0304348 + 0.0707438i
\(763\) 18.2018 + 2.88288i 0.658948 + 0.104367i
\(764\) 7.32770 0.957449i 0.265107 0.0346393i
\(765\) 6.17211 + 12.1135i 0.223153 + 0.437963i
\(766\) 2.36411 + 36.3406i 0.0854188 + 1.31304i