Properties

Label 176.2.w.a.5.20
Level $176$
Weight $2$
Character 176.5
Analytic conductor $1.405$
Analytic rank $0$
Dimension $176$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,2,Mod(5,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 5, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 176.w (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40536707557\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 5.20
Character \(\chi\) \(=\) 176.5
Dual form 176.2.w.a.141.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.29627 - 0.565399i) q^{2} +(-2.20058 + 0.348538i) q^{3} +(1.36065 - 1.46582i) q^{4} +(2.16222 - 1.10171i) q^{5} +(-2.65549 + 1.69601i) q^{6} +(-0.296642 - 0.408292i) q^{7} +(0.934999 - 2.66942i) q^{8} +(1.86792 - 0.606923i) q^{9} +O(q^{10})\) \(q+(1.29627 - 0.565399i) q^{2} +(-2.20058 + 0.348538i) q^{3} +(1.36065 - 1.46582i) q^{4} +(2.16222 - 1.10171i) q^{5} +(-2.65549 + 1.69601i) q^{6} +(-0.296642 - 0.408292i) q^{7} +(0.934999 - 2.66942i) q^{8} +(1.86792 - 0.606923i) q^{9} +(2.17993 - 2.65063i) q^{10} +(1.83832 - 2.76054i) q^{11} +(-2.48333 + 3.69990i) q^{12} +(2.58533 + 1.31729i) q^{13} +(-0.615377 - 0.361538i) q^{14} +(-4.37416 + 3.17801i) q^{15} +(-0.297270 - 3.98894i) q^{16} +(-1.17273 + 3.60929i) q^{17} +(2.07818 - 1.84286i) q^{18} +(-6.38754 + 1.01169i) q^{19} +(1.32712 - 4.66847i) q^{20} +(0.795090 + 0.795090i) q^{21} +(0.822153 - 4.61780i) q^{22} +6.48120i q^{23} +(-1.12715 + 6.20015i) q^{24} +(0.522514 - 0.719179i) q^{25} +(4.09609 + 0.245828i) q^{26} +(2.05655 - 1.04787i) q^{27} +(-1.00211 - 0.120718i) q^{28} +(0.445865 - 2.81508i) q^{29} +(-3.87326 + 6.59272i) q^{30} +(2.28815 + 7.04219i) q^{31} +(-2.64068 - 5.00268i) q^{32} +(-3.08321 + 6.71553i) q^{33} +(0.520510 + 5.34169i) q^{34} +(-1.09122 - 0.556006i) q^{35} +(1.65194 - 3.56385i) q^{36} +(-6.10347 - 0.966695i) q^{37} +(-7.70799 + 4.92293i) q^{38} +(-6.14836 - 1.99772i) q^{39} +(-0.919238 - 6.80196i) q^{40} +(-3.80859 + 5.24208i) q^{41} +(1.48020 + 0.581111i) q^{42} +(3.62371 + 3.62371i) q^{43} +(-1.54516 - 6.45077i) q^{44} +(3.37020 - 3.37020i) q^{45} +(3.66446 + 8.40140i) q^{46} +(-0.0522518 - 0.0379632i) q^{47} +(2.04446 + 8.67438i) q^{48} +(2.08441 - 6.41516i) q^{49} +(0.270698 - 1.22768i) q^{50} +(1.32271 - 8.35129i) q^{51} +(5.44864 - 1.99726i) q^{52} +(-0.652264 + 1.28014i) q^{53} +(2.07339 - 2.52109i) q^{54} +(0.933537 - 7.99419i) q^{55} +(-1.36726 + 0.410107i) q^{56} +(13.7037 - 4.45260i) q^{57} +(-1.01368 - 3.90121i) q^{58} +(7.29113 + 1.15480i) q^{59} +(-1.29329 + 10.7359i) q^{60} +(-3.93306 - 7.71907i) q^{61} +(6.94771 + 7.83489i) q^{62} +(-0.801905 - 0.582618i) q^{63} +(-6.25155 - 4.99180i) q^{64} +7.04132 q^{65} +(-0.199737 + 10.4484i) q^{66} +(7.22982 - 7.22982i) q^{67} +(3.69491 + 6.62999i) q^{68} +(-2.25894 - 14.2624i) q^{69} +(-1.72889 - 0.103760i) q^{70} +(-7.03336 - 2.28528i) q^{71} +(0.126371 - 5.55372i) q^{72} +(5.86821 + 8.07690i) q^{73} +(-8.45833 + 2.19779i) q^{74} +(-0.899174 + 1.76473i) q^{75} +(-7.20825 + 10.7395i) q^{76} +(-1.67243 + 0.0683218i) q^{77} +(-9.09947 + 0.886679i) q^{78} +(-4.66763 - 14.3655i) q^{79} +(-5.03740 - 8.29746i) q^{80} +(-8.92723 + 6.48601i) q^{81} +(-1.97311 + 8.94854i) q^{82} +(3.36125 + 6.59683i) q^{83} +(2.24730 - 0.0836224i) q^{84} +(1.44068 + 9.09609i) q^{85} +(6.74616 + 2.64848i) q^{86} +6.35022i q^{87} +(-5.65021 - 7.48833i) q^{88} -1.47886i q^{89} +(2.46319 - 6.27421i) q^{90} +(-0.229077 - 1.44633i) q^{91} +(9.50028 + 8.81863i) q^{92} +(-7.48973 - 14.6994i) q^{93} +(-0.0891970 - 0.0196675i) q^{94} +(-12.6967 + 9.22468i) q^{95} +(7.55467 + 10.0884i) q^{96} +(-3.41921 - 10.5232i) q^{97} +(-0.925156 - 9.49433i) q^{98} +(1.75839 - 6.27218i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8} - 16 q^{10} - 12 q^{11} - 6 q^{13} - 12 q^{15} + 14 q^{16} - 12 q^{17} - 44 q^{18} - 6 q^{19} + 2 q^{20} - 28 q^{21} + 50 q^{22} - 38 q^{24} - 68 q^{26} - 18 q^{27} - 46 q^{28} - 22 q^{29} + 26 q^{30} - 12 q^{31} - 16 q^{32} - 16 q^{33} + 12 q^{34} - 26 q^{35} - 22 q^{36} + 18 q^{37} - 34 q^{38} + 14 q^{40} - 10 q^{42} - 40 q^{43} + 2 q^{44} - 24 q^{45} + 38 q^{46} - 12 q^{47} - 26 q^{48} + 8 q^{49} - 62 q^{50} + 6 q^{51} + 74 q^{52} - 30 q^{53} - 52 q^{54} - 96 q^{56} - 26 q^{58} + 10 q^{59} + 118 q^{60} - 6 q^{61} - 42 q^{62} - 28 q^{63} - 106 q^{64} - 32 q^{65} + 6 q^{66} + 24 q^{67} + 116 q^{68} + 12 q^{69} + 52 q^{70} - 98 q^{72} + 96 q^{74} - 46 q^{75} + 112 q^{76} - 14 q^{77} + 44 q^{78} - 52 q^{79} - 28 q^{80} + 66 q^{82} + 54 q^{83} + 120 q^{84} + 14 q^{85} + 86 q^{86} + 142 q^{88} + 228 q^{90} - 122 q^{91} + 146 q^{92} + 6 q^{93} + 56 q^{94} + 52 q^{95} + 86 q^{96} - 12 q^{97} + 140 q^{98} + 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.29627 0.565399i 0.916604 0.399797i
\(3\) −2.20058 + 0.348538i −1.27051 + 0.201229i −0.755039 0.655680i \(-0.772382\pi\)
−0.515468 + 0.856909i \(0.672382\pi\)
\(4\) 1.36065 1.46582i 0.680324 0.732911i
\(5\) 2.16222 1.10171i 0.966974 0.492698i 0.102148 0.994769i \(-0.467428\pi\)
0.864826 + 0.502071i \(0.167428\pi\)
\(6\) −2.65549 + 1.69601i −1.08410 + 0.692392i
\(7\) −0.296642 0.408292i −0.112120 0.154320i 0.749269 0.662266i \(-0.230405\pi\)
−0.861389 + 0.507946i \(0.830405\pi\)
\(8\) 0.934999 2.66942i 0.330572 0.943781i
\(9\) 1.86792 0.606923i 0.622639 0.202308i
\(10\) 2.17993 2.65063i 0.689353 0.838202i
\(11\) 1.83832 2.76054i 0.554273 0.832335i
\(12\) −2.48333 + 3.69990i −0.716874 + 1.06807i
\(13\) 2.58533 + 1.31729i 0.717042 + 0.365351i 0.774137 0.633018i \(-0.218184\pi\)
−0.0570956 + 0.998369i \(0.518184\pi\)
\(14\) −0.615377 0.361538i −0.164466 0.0966250i
\(15\) −4.37416 + 3.17801i −1.12940 + 0.820559i
\(16\) −0.297270 3.98894i −0.0743174 0.997235i
\(17\) −1.17273 + 3.60929i −0.284429 + 0.875382i 0.702141 + 0.712038i \(0.252228\pi\)
−0.986569 + 0.163343i \(0.947772\pi\)
\(18\) 2.07818 1.84286i 0.489831 0.434366i
\(19\) −6.38754 + 1.01169i −1.46540 + 0.232097i −0.837603 0.546279i \(-0.816044\pi\)
−0.627799 + 0.778376i \(0.716044\pi\)
\(20\) 1.32712 4.66847i 0.296752 1.04390i
\(21\) 0.795090 + 0.795090i 0.173503 + 0.173503i
\(22\) 0.822153 4.61780i 0.175284 0.984518i
\(23\) 6.48120i 1.35142i 0.737166 + 0.675711i \(0.236163\pi\)
−0.737166 + 0.675711i \(0.763837\pi\)
\(24\) −1.12715 + 6.20015i −0.230078 + 1.26560i
\(25\) 0.522514 0.719179i 0.104503 0.143836i
\(26\) 4.09609 + 0.245828i 0.803309 + 0.0482108i
\(27\) 2.05655 1.04787i 0.395783 0.201662i
\(28\) −1.00211 0.120718i −0.189381 0.0228136i
\(29\) 0.445865 2.81508i 0.0827951 0.522748i −0.911079 0.412231i \(-0.864750\pi\)
0.993874 0.110516i \(-0.0352505\pi\)
\(30\) −3.87326 + 6.59272i −0.707158 + 1.20366i
\(31\) 2.28815 + 7.04219i 0.410963 + 1.26482i 0.915812 + 0.401607i \(0.131548\pi\)
−0.504849 + 0.863208i \(0.668452\pi\)
\(32\) −2.64068 5.00268i −0.466811 0.884357i
\(33\) −3.08321 + 6.71553i −0.536718 + 1.16902i
\(34\) 0.520510 + 5.34169i 0.0892667 + 0.916092i
\(35\) −1.09122 0.556006i −0.184450 0.0939822i
\(36\) 1.65194 3.56385i 0.275323 0.593974i
\(37\) −6.10347 0.966695i −1.00340 0.158924i −0.366952 0.930240i \(-0.619599\pi\)
−0.636452 + 0.771316i \(0.719599\pi\)
\(38\) −7.70799 + 4.92293i −1.25040 + 0.798605i
\(39\) −6.14836 1.99772i −0.984526 0.319892i
\(40\) −0.919238 6.80196i −0.145344 1.07548i
\(41\) −3.80859 + 5.24208i −0.594803 + 0.818675i −0.995220 0.0976573i \(-0.968865\pi\)
0.400418 + 0.916333i \(0.368865\pi\)
\(42\) 1.48020 + 0.581111i 0.228399 + 0.0896674i
\(43\) 3.62371 + 3.62371i 0.552611 + 0.552611i 0.927194 0.374583i \(-0.122214\pi\)
−0.374583 + 0.927194i \(0.622214\pi\)
\(44\) −1.54516 6.45077i −0.232942 0.972491i
\(45\) 3.37020 3.37020i 0.502400 0.502400i
\(46\) 3.66446 + 8.40140i 0.540295 + 1.23872i
\(47\) −0.0522518 0.0379632i −0.00762171 0.00553750i 0.583968 0.811777i \(-0.301499\pi\)
−0.591590 + 0.806239i \(0.701499\pi\)
\(48\) 2.04446 + 8.67438i 0.295093 + 1.25204i
\(49\) 2.08441 6.41516i 0.297773 0.916452i
\(50\) 0.270698 1.22768i 0.0382825 0.173620i
\(51\) 1.32271 8.35129i 0.185217 1.16941i
\(52\) 5.44864 1.99726i 0.755591 0.276971i
\(53\) −0.652264 + 1.28014i −0.0895954 + 0.175841i −0.931456 0.363854i \(-0.881461\pi\)
0.841860 + 0.539695i \(0.181461\pi\)
\(54\) 2.07339 2.52109i 0.282153 0.343077i
\(55\) 0.933537 7.99419i 0.125878 1.07794i
\(56\) −1.36726 + 0.410107i −0.182708 + 0.0548029i
\(57\) 13.7037 4.45260i 1.81510 0.589762i
\(58\) −1.01368 3.90121i −0.133103 0.512254i
\(59\) 7.29113 + 1.15480i 0.949224 + 0.150342i 0.611802 0.791011i \(-0.290445\pi\)
0.337422 + 0.941353i \(0.390445\pi\)
\(60\) −1.29329 + 10.7359i −0.166963 + 1.38600i
\(61\) −3.93306 7.71907i −0.503577 0.988326i −0.993203 0.116393i \(-0.962867\pi\)
0.489626 0.871933i \(-0.337133\pi\)
\(62\) 6.94771 + 7.83489i 0.882360 + 0.995032i
\(63\) −0.801905 0.582618i −0.101030 0.0734029i
\(64\) −6.25155 4.99180i −0.781444 0.623975i
\(65\) 7.04132 0.873369
\(66\) −0.199737 + 10.4484i −0.0245859 + 1.28611i
\(67\) 7.22982 7.22982i 0.883264 0.883264i −0.110601 0.993865i \(-0.535278\pi\)
0.993865 + 0.110601i \(0.0352777\pi\)
\(68\) 3.69491 + 6.62999i 0.448073 + 0.804005i
\(69\) −2.25894 14.2624i −0.271945 1.71699i
\(70\) −1.72889 0.103760i −0.206642 0.0124016i
\(71\) −7.03336 2.28528i −0.834706 0.271212i −0.139680 0.990197i \(-0.544607\pi\)
−0.695026 + 0.718984i \(0.744607\pi\)
\(72\) 0.126371 5.55372i 0.0148929 0.654512i
\(73\) 5.86821 + 8.07690i 0.686822 + 0.945330i 0.999990 0.00436795i \(-0.00139037\pi\)
−0.313168 + 0.949698i \(0.601390\pi\)
\(74\) −8.45833 + 2.19779i −0.983261 + 0.255488i
\(75\) −0.899174 + 1.76473i −0.103828 + 0.203773i
\(76\) −7.20825 + 10.7395i −0.826843 + 1.23191i
\(77\) −1.67243 + 0.0683218i −0.190591 + 0.00778599i
\(78\) −9.09947 + 0.886679i −1.03031 + 0.100397i
\(79\) −4.66763 14.3655i −0.525149 1.61624i −0.764020 0.645192i \(-0.776777\pi\)
0.238871 0.971051i \(-0.423223\pi\)
\(80\) −5.03740 8.29746i −0.563199 0.927684i
\(81\) −8.92723 + 6.48601i −0.991914 + 0.720668i
\(82\) −1.97311 + 8.94854i −0.217894 + 0.988201i
\(83\) 3.36125 + 6.59683i 0.368946 + 0.724096i 0.998607 0.0527736i \(-0.0168062\pi\)
−0.629661 + 0.776870i \(0.716806\pi\)
\(84\) 2.24730 0.0836224i 0.245200 0.00912395i
\(85\) 1.44068 + 9.09609i 0.156264 + 0.986609i
\(86\) 6.74616 + 2.64848i 0.727457 + 0.285593i
\(87\) 6.35022i 0.680816i
\(88\) −5.65021 7.48833i −0.602314 0.798259i
\(89\) 1.47886i 0.156759i −0.996924 0.0783793i \(-0.975025\pi\)
0.996924 0.0783793i \(-0.0249745\pi\)
\(90\) 2.46319 6.27421i 0.259643 0.661359i
\(91\) −0.229077 1.44633i −0.0240138 0.151617i
\(92\) 9.50028 + 8.81863i 0.990473 + 0.919406i
\(93\) −7.48973 14.6994i −0.776649 1.52426i
\(94\) −0.0891970 0.0196675i −0.00919996 0.00202855i
\(95\) −12.6967 + 9.22468i −1.30265 + 0.946433i
\(96\) 7.55467 + 10.0884i 0.771045 + 1.02965i
\(97\) −3.41921 10.5232i −0.347168 1.06847i −0.960413 0.278580i \(-0.910136\pi\)
0.613245 0.789893i \(-0.289864\pi\)
\(98\) −0.925156 9.49433i −0.0934548 0.959072i
\(99\) 1.75839 6.27218i 0.176724 0.630378i
\(100\) −0.343230 1.74446i −0.0343230 0.174446i
\(101\) −6.38396 + 12.5292i −0.635228 + 1.24670i 0.319037 + 0.947742i \(0.396640\pi\)
−0.954265 + 0.298962i \(0.903360\pi\)
\(102\) −3.00721 11.5734i −0.297758 1.14594i
\(103\) −0.599514 0.825160i −0.0590719 0.0813055i 0.778459 0.627695i \(-0.216002\pi\)
−0.837531 + 0.546390i \(0.816002\pi\)
\(104\) 5.93368 5.66965i 0.581845 0.555955i
\(105\) 2.59512 + 0.843204i 0.253257 + 0.0822883i
\(106\) −0.121723 + 2.02820i −0.0118228 + 0.196996i
\(107\) −0.714121 4.50879i −0.0690367 0.435881i −0.997862 0.0653618i \(-0.979180\pi\)
0.928825 0.370519i \(-0.120820\pi\)
\(108\) 1.26226 4.44031i 0.121461 0.427269i
\(109\) 1.02597 1.02597i 0.0982700 0.0982700i −0.656263 0.754533i \(-0.727864\pi\)
0.754533 + 0.656263i \(0.227864\pi\)
\(110\) −3.30978 10.8905i −0.315575 1.03837i
\(111\) 13.7681 1.30681
\(112\) −1.54047 + 1.30466i −0.145561 + 0.123279i
\(113\) 15.1865 + 11.0337i 1.42863 + 1.03796i 0.990270 + 0.139161i \(0.0444407\pi\)
0.438360 + 0.898799i \(0.355559\pi\)
\(114\) 15.2462 13.5198i 1.42794 1.26625i
\(115\) 7.14037 + 14.0138i 0.665843 + 1.30679i
\(116\) −3.51974 4.48390i −0.326800 0.416319i
\(117\) 5.62868 + 0.891496i 0.520372 + 0.0824188i
\(118\) 10.1042 2.62546i 0.930169 0.241693i
\(119\) 1.82153 0.591850i 0.166979 0.0542548i
\(120\) 4.39360 + 14.6479i 0.401079 + 1.33716i
\(121\) −4.24119 10.1495i −0.385563 0.922682i
\(122\) −9.46268 7.78228i −0.856711 0.704575i
\(123\) 6.55406 12.8631i 0.590960 1.15982i
\(124\) 13.4360 + 6.22793i 1.20659 + 0.559285i
\(125\) −1.56064 + 9.85352i −0.139588 + 0.881326i
\(126\) −1.36890 0.301836i −0.121951 0.0268897i
\(127\) −3.01471 + 9.27832i −0.267512 + 0.823318i 0.723592 + 0.690228i \(0.242490\pi\)
−0.991104 + 0.133090i \(0.957510\pi\)
\(128\) −10.9261 2.93612i −0.965738 0.259519i
\(129\) −9.23728 6.71128i −0.813297 0.590895i
\(130\) 9.12748 3.98115i 0.800533 0.349170i
\(131\) −1.79863 + 1.79863i −0.157147 + 0.157147i −0.781301 0.624154i \(-0.785444\pi\)
0.624154 + 0.781301i \(0.285444\pi\)
\(132\) 5.64860 + 13.6569i 0.491647 + 1.18868i
\(133\) 2.30788 + 2.30788i 0.200118 + 0.200118i
\(134\) 5.28410 13.4596i 0.456476 1.16273i
\(135\) 3.29228 4.53143i 0.283354 0.390003i
\(136\) 8.53820 + 6.50519i 0.732144 + 0.557815i
\(137\) 4.36718 + 1.41898i 0.373113 + 0.121232i 0.489570 0.871964i \(-0.337154\pi\)
−0.116457 + 0.993196i \(0.537154\pi\)
\(138\) −10.9922 17.2108i −0.935714 1.46508i
\(139\) −17.1122 2.71030i −1.45144 0.229885i −0.619605 0.784914i \(-0.712707\pi\)
−0.831831 + 0.555029i \(0.812707\pi\)
\(140\) −2.29978 + 0.843010i −0.194367 + 0.0712474i
\(141\) 0.128216 + 0.0653294i 0.0107977 + 0.00550173i
\(142\) −10.4092 + 1.01431i −0.873525 + 0.0851188i
\(143\) 8.38909 4.71532i 0.701531 0.394315i
\(144\) −2.97626 7.27059i −0.248021 0.605883i
\(145\) −2.13734 6.57804i −0.177496 0.546277i
\(146\) 12.1735 + 7.15199i 1.00748 + 0.591903i
\(147\) −2.35099 + 14.8436i −0.193907 + 1.22428i
\(148\) −9.72168 + 7.63127i −0.799117 + 0.627287i
\(149\) −13.8811 + 7.07278i −1.13719 + 0.579425i −0.918127 0.396287i \(-0.870299\pi\)
−0.219058 + 0.975712i \(0.570299\pi\)
\(150\) −0.167800 + 2.79596i −0.0137008 + 0.228289i
\(151\) 11.1272 15.3152i 0.905516 1.24634i −0.0631594 0.998003i \(-0.520118\pi\)
0.968675 0.248332i \(-0.0798823\pi\)
\(152\) −3.27173 + 17.9969i −0.265372 + 1.45974i
\(153\) 7.45362i 0.602589i
\(154\) −2.12930 + 1.03415i −0.171584 + 0.0833344i
\(155\) 12.7059 + 12.7059i 1.02056 + 1.02056i
\(156\) −11.2941 + 6.29420i −0.904249 + 0.503940i
\(157\) −4.27755 + 0.677497i −0.341385 + 0.0540701i −0.324773 0.945792i \(-0.605288\pi\)
−0.0166121 + 0.999862i \(0.505288\pi\)
\(158\) −14.1727 15.9825i −1.12752 1.27150i
\(159\) 0.989184 3.04439i 0.0784474 0.241436i
\(160\) −11.2212 7.90764i −0.887115 0.625154i
\(161\) 2.64622 1.92259i 0.208552 0.151522i
\(162\) −7.90495 + 13.4551i −0.621071 + 1.05713i
\(163\) −10.2841 5.23999i −0.805510 0.410428i 0.00220763 0.999998i \(-0.499297\pi\)
−0.807717 + 0.589570i \(0.799297\pi\)
\(164\) 2.50180 + 12.7154i 0.195358 + 0.992902i
\(165\) 0.731952 + 17.9172i 0.0569824 + 1.39486i
\(166\) 8.08694 + 6.65085i 0.627669 + 0.516206i
\(167\) −8.55566 + 2.77990i −0.662057 + 0.215115i −0.620723 0.784030i \(-0.713161\pi\)
−0.0413341 + 0.999145i \(0.513161\pi\)
\(168\) 2.86583 1.37902i 0.221104 0.106394i
\(169\) −2.69253 3.70595i −0.207118 0.285073i
\(170\) 7.01043 + 10.9765i 0.537675 + 0.841856i
\(171\) −11.3174 + 5.76650i −0.865462 + 0.440975i
\(172\) 10.2423 0.381118i 0.780969 0.0290600i
\(173\) −13.1487 + 2.08255i −0.999678 + 0.158334i −0.634763 0.772707i \(-0.718902\pi\)
−0.364916 + 0.931041i \(0.618902\pi\)
\(174\) 3.59041 + 8.23163i 0.272188 + 0.624038i
\(175\) −0.448635 −0.0339136
\(176\) −11.5581 6.51230i −0.871225 0.490883i
\(177\) −16.4472 −1.23625
\(178\) −0.836144 1.91700i −0.0626716 0.143685i
\(179\) 22.0394 3.49070i 1.64730 0.260907i 0.737316 0.675548i \(-0.236093\pi\)
0.909985 + 0.414641i \(0.136093\pi\)
\(180\) −0.354455 9.52577i −0.0264195 0.710009i
\(181\) 22.1755 11.2990i 1.64829 0.839848i 0.651603 0.758560i \(-0.274097\pi\)
0.996691 0.0812872i \(-0.0259031\pi\)
\(182\) −1.11470 1.74532i −0.0826272 0.129372i
\(183\) 11.3454 + 15.6156i 0.838678 + 1.15434i
\(184\) 17.3010 + 6.05991i 1.27545 + 0.446743i
\(185\) −14.2621 + 4.63403i −1.04857 + 0.340700i
\(186\) −18.0198 14.8198i −1.32127 1.08664i
\(187\) 7.80775 + 9.87239i 0.570960 + 0.721941i
\(188\) −0.126744 + 0.0249373i −0.00924373 + 0.00181874i
\(189\) −1.03789 0.528833i −0.0754957 0.0384670i
\(190\) −11.2428 + 19.1364i −0.815635 + 1.38830i
\(191\) 0.828414 0.601878i 0.0599419 0.0435504i −0.557411 0.830237i \(-0.688205\pi\)
0.617353 + 0.786686i \(0.288205\pi\)
\(192\) 15.4969 + 8.80597i 1.11839 + 0.635516i
\(193\) 1.55237 4.77770i 0.111742 0.343907i −0.879512 0.475877i \(-0.842131\pi\)
0.991254 + 0.131971i \(0.0421306\pi\)
\(194\) −10.3821 11.7078i −0.745388 0.840569i
\(195\) −15.4950 + 2.45417i −1.10962 + 0.175747i
\(196\) −6.56733 11.7842i −0.469095 0.841726i
\(197\) −16.0968 16.0968i −1.14685 1.14685i −0.987168 0.159685i \(-0.948952\pi\)
−0.159685 0.987168i \(-0.551048\pi\)
\(198\) −1.26694 9.12465i −0.0900372 0.648461i
\(199\) 1.57300i 0.111507i −0.998445 0.0557534i \(-0.982244\pi\)
0.998445 0.0557534i \(-0.0177561\pi\)
\(200\) −1.43124 2.06724i −0.101204 0.146176i
\(201\) −13.3900 + 18.4297i −0.944455 + 1.29993i
\(202\) −1.19135 + 19.8508i −0.0838230 + 1.39670i
\(203\) −1.28164 + 0.653028i −0.0899534 + 0.0458336i
\(204\) −10.4418 13.3020i −0.731069 0.931329i
\(205\) −2.45979 + 15.5305i −0.171799 + 1.08470i
\(206\) −1.24368 0.730669i −0.0866512 0.0509081i
\(207\) 3.93359 + 12.1063i 0.273403 + 0.841449i
\(208\) 4.48606 10.7043i 0.311052 0.742211i
\(209\) −8.94951 + 19.4929i −0.619051 + 1.34835i
\(210\) 3.84073 0.374252i 0.265035 0.0258258i
\(211\) −2.96577 1.51113i −0.204172 0.104031i 0.348915 0.937154i \(-0.386550\pi\)
−0.553087 + 0.833124i \(0.686550\pi\)
\(212\) 0.988956 + 2.69792i 0.0679218 + 0.185294i
\(213\) 16.2740 + 2.57755i 1.11508 + 0.176611i
\(214\) −3.47496 5.44086i −0.237543 0.371929i
\(215\) 11.8275 + 3.84300i 0.806631 + 0.262090i
\(216\) −0.874314 6.46954i −0.0594895 0.440197i
\(217\) 2.19651 3.02324i 0.149109 0.205231i
\(218\) 0.749855 1.91002i 0.0507866 0.129363i
\(219\) −15.7286 15.7286i −1.06284 1.06284i
\(220\) −10.4478 12.2457i −0.704393 0.825603i
\(221\) −7.78638 + 7.78638i −0.523769 + 0.523769i
\(222\) 17.8473 7.78448i 1.19783 0.522460i
\(223\) 7.47929 + 5.43403i 0.500851 + 0.363889i 0.809342 0.587338i \(-0.199824\pi\)
−0.308491 + 0.951227i \(0.599824\pi\)
\(224\) −1.25922 + 2.56217i −0.0841351 + 0.171192i
\(225\) 0.539527 1.66049i 0.0359685 0.110700i
\(226\) 25.9243 + 5.71620i 1.72446 + 0.380236i
\(227\) 2.02261 12.7703i 0.134245 0.847592i −0.825024 0.565098i \(-0.808838\pi\)
0.959269 0.282494i \(-0.0911617\pi\)
\(228\) 12.1192 26.1456i 0.802614 1.73154i
\(229\) 12.5206 24.5731i 0.827386 1.62384i 0.0467045 0.998909i \(-0.485128\pi\)
0.780682 0.624929i \(-0.214872\pi\)
\(230\) 17.1792 + 14.1285i 1.13277 + 0.931607i
\(231\) 3.65651 0.733253i 0.240581 0.0482445i
\(232\) −7.09774 3.82230i −0.465990 0.250946i
\(233\) −6.48147 + 2.10596i −0.424615 + 0.137966i −0.513526 0.858074i \(-0.671661\pi\)
0.0889115 + 0.996040i \(0.471661\pi\)
\(234\) 7.80036 2.02683i 0.509925 0.132498i
\(235\) −0.154804 0.0245186i −0.0100983 0.00159942i
\(236\) 11.6134 9.11622i 0.755968 0.593415i
\(237\) 15.2784 + 29.9856i 0.992440 + 1.94777i
\(238\) 2.02657 1.79709i 0.131363 0.116488i
\(239\) 6.79547 + 4.93720i 0.439562 + 0.319361i 0.785461 0.618911i \(-0.212426\pi\)
−0.345899 + 0.938272i \(0.612426\pi\)
\(240\) 13.9772 + 16.5035i 0.902225 + 1.06530i
\(241\) 3.64549 0.234826 0.117413 0.993083i \(-0.462540\pi\)
0.117413 + 0.993083i \(0.462540\pi\)
\(242\) −11.2363 10.7586i −0.722294 0.691586i
\(243\) 12.4882 12.4882i 0.801120 0.801120i
\(244\) −16.6663 4.73778i −1.06695 0.303305i
\(245\) −2.56067 16.1674i −0.163595 1.03290i
\(246\) 1.22309 20.3797i 0.0779816 1.29936i
\(247\) −17.8466 5.79871i −1.13555 0.368963i
\(248\) 20.9380 + 0.476427i 1.32956 + 0.0302532i
\(249\) −9.69597 13.3454i −0.614457 0.845727i
\(250\) 3.54814 + 13.6552i 0.224404 + 0.863633i
\(251\) 3.23733 6.35361i 0.204338 0.401036i −0.765981 0.642863i \(-0.777747\pi\)
0.970319 + 0.241827i \(0.0777465\pi\)
\(252\) −1.94512 + 0.382711i −0.122531 + 0.0241086i
\(253\) 17.8916 + 11.9145i 1.12484 + 0.749057i
\(254\) 1.33806 + 13.7318i 0.0839575 + 0.861607i
\(255\) −6.34067 19.5146i −0.397068 1.22205i
\(256\) −15.8233 + 2.37158i −0.988954 + 0.148224i
\(257\) 24.2033 17.5847i 1.50976 1.09691i 0.543479 0.839422i \(-0.317107\pi\)
0.966283 0.257484i \(-0.0828934\pi\)
\(258\) −15.7686 3.47690i −0.981709 0.216463i
\(259\) 1.41585 + 2.77876i 0.0879766 + 0.172664i
\(260\) 9.58077 10.3213i 0.594174 0.640102i
\(261\) −0.875700 5.52895i −0.0542044 0.342233i
\(262\) −1.31458 + 3.34847i −0.0812148 + 0.206869i
\(263\) 0.207999i 0.0128257i 0.999979 + 0.00641287i \(0.00204129\pi\)
−0.999979 + 0.00641287i \(0.997959\pi\)
\(264\) 15.0437 + 14.5094i 0.925877 + 0.892991i
\(265\) 3.48655i 0.214177i
\(266\) 4.29651 + 1.68677i 0.263436 + 0.103422i
\(267\) 0.515438 + 3.25435i 0.0315443 + 0.199163i
\(268\) −0.760385 20.4349i −0.0464479 1.24826i
\(269\) −7.06273 13.8614i −0.430623 0.845144i −0.999738 0.0228867i \(-0.992714\pi\)
0.569116 0.822258i \(-0.307286\pi\)
\(270\) 1.70563 7.73542i 0.103801 0.470763i
\(271\) −12.5416 + 9.11201i −0.761848 + 0.553515i −0.899477 0.436969i \(-0.856052\pi\)
0.137629 + 0.990484i \(0.456052\pi\)
\(272\) 14.7459 + 3.60501i 0.894099 + 0.218586i
\(273\) 1.00821 + 3.10294i 0.0610194 + 0.187798i
\(274\) 6.46335 0.629808i 0.390465 0.0380481i
\(275\) −1.02478 2.76450i −0.0617964 0.166706i
\(276\) −23.9798 16.0949i −1.44341 0.968800i
\(277\) −7.16904 + 14.0700i −0.430746 + 0.845387i 0.568988 + 0.822346i \(0.307335\pi\)
−0.999735 + 0.0230413i \(0.992665\pi\)
\(278\) −23.7145 + 6.16191i −1.42230 + 0.369567i
\(279\) 8.54814 + 11.7655i 0.511764 + 0.704383i
\(280\) −2.50450 + 2.39306i −0.149673 + 0.143013i
\(281\) −2.62470 0.852816i −0.156576 0.0508748i 0.229680 0.973266i \(-0.426232\pi\)
−0.386256 + 0.922391i \(0.626232\pi\)
\(282\) 0.203140 + 0.0121915i 0.0120968 + 0.000725994i
\(283\) −0.302154 1.90773i −0.0179612 0.113403i 0.977079 0.212878i \(-0.0682836\pi\)
−0.995040 + 0.0994752i \(0.968284\pi\)
\(284\) −12.9197 + 7.20019i −0.766646 + 0.427253i
\(285\) 24.7250 24.7250i 1.46458 1.46458i
\(286\) 8.20853 10.8555i 0.485380 0.641900i
\(287\) 3.27009 0.193027
\(288\) −7.96882 7.74190i −0.469567 0.456196i
\(289\) 2.10160 + 1.52690i 0.123624 + 0.0898177i
\(290\) −6.48979 7.31849i −0.381093 0.429757i
\(291\) 11.1920 + 21.9655i 0.656087 + 1.28764i
\(292\) 19.8239 + 2.38807i 1.16010 + 0.139751i
\(293\) −16.4535 2.60599i −0.961226 0.152243i −0.343948 0.938989i \(-0.611765\pi\)
−0.617278 + 0.786745i \(0.711765\pi\)
\(294\) 5.34502 + 20.5706i 0.311728 + 1.19970i
\(295\) 17.0373 5.53575i 0.991949 0.322304i
\(296\) −8.28725 + 15.3888i −0.481686 + 0.894458i
\(297\) 0.887914 7.60350i 0.0515220 0.441200i
\(298\) −13.9948 + 17.0166i −0.810696 + 0.985746i
\(299\) −8.53763 + 16.7560i −0.493744 + 0.969026i
\(300\) 1.36332 + 3.71921i 0.0787112 + 0.214728i
\(301\) 0.404590 2.55448i 0.0233202 0.147238i
\(302\) 5.76464 26.1440i 0.331718 1.50442i
\(303\) 9.68152 29.7967i 0.556189 1.71177i
\(304\) 5.93438 + 25.1788i 0.340360 + 1.44410i
\(305\) −17.0083 12.3573i −0.973893 0.707574i
\(306\) 4.21427 + 9.66193i 0.240914 + 0.552336i
\(307\) −18.4211 + 18.4211i −1.05135 + 1.05135i −0.0527421 + 0.998608i \(0.516796\pi\)
−0.998608 + 0.0527421i \(0.983204\pi\)
\(308\) −2.17544 + 2.54445i −0.123957 + 0.144983i
\(309\) 1.60688 + 1.60688i 0.0914122 + 0.0914122i
\(310\) 23.6542 + 9.28643i 1.34347 + 0.527434i
\(311\) −7.31962 + 10.0746i −0.415057 + 0.571278i −0.964443 0.264291i \(-0.914862\pi\)
0.549385 + 0.835569i \(0.314862\pi\)
\(312\) −11.0815 + 14.5447i −0.627364 + 0.823429i
\(313\) −19.4894 6.33250i −1.10161 0.357934i −0.298887 0.954289i \(-0.596615\pi\)
−0.802721 + 0.596354i \(0.796615\pi\)
\(314\) −5.16181 + 3.29674i −0.291298 + 0.186046i
\(315\) −2.37577 0.376285i −0.133859 0.0212012i
\(316\) −27.4083 12.7045i −1.54183 0.714682i
\(317\) 19.9321 + 10.1559i 1.11950 + 0.570414i 0.912970 0.408026i \(-0.133783\pi\)
0.206531 + 0.978440i \(0.433783\pi\)
\(318\) −0.439044 4.50565i −0.0246204 0.252664i
\(319\) −6.95151 6.40584i −0.389210 0.358658i
\(320\) −19.0167 3.90599i −1.06307 0.218352i
\(321\) 3.14297 + 9.67306i 0.175423 + 0.539898i
\(322\) 2.34320 3.98838i 0.130581 0.222264i
\(323\) 3.83939 24.2409i 0.213629 1.34880i
\(324\) −2.63948 + 21.9109i −0.146638 + 1.21727i
\(325\) 2.29824 1.17101i 0.127483 0.0649560i
\(326\) −16.2936 0.977866i −0.902421 0.0541590i
\(327\) −1.90014 + 2.61532i −0.105078 + 0.144628i
\(328\) 10.4323 + 15.0681i 0.576025 + 0.831994i
\(329\) 0.0325955i 0.00179705i
\(330\) 11.0792 + 22.8118i 0.609890 + 1.25575i
\(331\) −4.44744 4.44744i −0.244453 0.244453i 0.574236 0.818690i \(-0.305299\pi\)
−0.818690 + 0.574236i \(0.805299\pi\)
\(332\) 14.2433 + 4.04897i 0.781701 + 0.222216i
\(333\) −11.9875 + 1.89863i −0.656911 + 0.104044i
\(334\) −9.51872 + 8.44087i −0.520841 + 0.461864i
\(335\) 7.66733 23.5976i 0.418911 1.28928i
\(336\) 2.93521 3.40792i 0.160129 0.185917i
\(337\) 22.2209 16.1445i 1.21045 0.879445i 0.215180 0.976574i \(-0.430966\pi\)
0.995272 + 0.0971296i \(0.0309661\pi\)
\(338\) −5.58560 3.28157i −0.303816 0.178494i
\(339\) −37.2649 18.9874i −2.02395 1.03126i
\(340\) 15.2935 + 10.2648i 0.829407 + 0.556687i
\(341\) 23.6466 + 6.62925i 1.28054 + 0.358994i
\(342\) −11.4101 + 13.8738i −0.616985 + 0.750209i
\(343\) −6.59742 + 2.14363i −0.356227 + 0.115745i
\(344\) 13.0614 6.28503i 0.704221 0.338866i
\(345\) −20.5973 28.3498i −1.10892 1.52630i
\(346\) −15.8669 + 10.1338i −0.853008 + 0.544798i
\(347\) 1.95361 0.995413i 0.104875 0.0534366i −0.400766 0.916180i \(-0.631256\pi\)
0.505641 + 0.862744i \(0.331256\pi\)
\(348\) 9.30830 + 8.64043i 0.498977 + 0.463175i
\(349\) 10.7307 1.69958i 0.574403 0.0909764i 0.137526 0.990498i \(-0.456085\pi\)
0.436876 + 0.899522i \(0.356085\pi\)
\(350\) −0.581553 + 0.253657i −0.0310853 + 0.0135586i
\(351\) 6.69721 0.357471
\(352\) −18.6645 1.90679i −0.994822 0.101632i
\(353\) 20.9460 1.11484 0.557422 0.830229i \(-0.311791\pi\)
0.557422 + 0.830229i \(0.311791\pi\)
\(354\) −21.3201 + 9.29924i −1.13315 + 0.494249i
\(355\) −17.7254 + 2.80742i −0.940765 + 0.149003i
\(356\) −2.16774 2.01221i −0.114890 0.106647i
\(357\) −3.80214 + 1.93729i −0.201231 + 0.102532i
\(358\) 26.5954 16.9859i 1.40561 0.897735i
\(359\) 7.88207 + 10.8487i 0.416000 + 0.572574i 0.964669 0.263465i \(-0.0848654\pi\)
−0.548669 + 0.836039i \(0.684865\pi\)
\(360\) −5.84533 12.1476i −0.308076 0.640234i
\(361\) 21.7071 7.05306i 1.14248 0.371214i
\(362\) 22.3571 27.1846i 1.17506 1.42879i
\(363\) 12.8706 + 20.8566i 0.675530 + 1.09469i
\(364\) −2.43176 1.63217i −0.127459 0.0855488i
\(365\) 21.5867 + 10.9990i 1.12990 + 0.575714i
\(366\) 23.5358 + 13.8274i 1.23024 + 0.722772i
\(367\) −21.4543 + 15.5874i −1.11990 + 0.813658i −0.984194 0.177091i \(-0.943331\pi\)
−0.135709 + 0.990749i \(0.543331\pi\)
\(368\) 25.8531 1.92666i 1.34769 0.100434i
\(369\) −3.93260 + 12.1033i −0.204723 + 0.630073i
\(370\) −15.8675 + 14.0707i −0.824910 + 0.731502i
\(371\) 0.716160 0.113429i 0.0371812 0.00588892i
\(372\) −31.7376 9.02214i −1.64552 0.467776i
\(373\) 9.64946 + 9.64946i 0.499630 + 0.499630i 0.911323 0.411693i \(-0.135062\pi\)
−0.411693 + 0.911323i \(0.635062\pi\)
\(374\) 15.7028 + 8.38282i 0.811973 + 0.433465i
\(375\) 22.2274i 1.14782i
\(376\) −0.150195 + 0.103986i −0.00774571 + 0.00536268i
\(377\) 4.86099 6.69059i 0.250354 0.344583i
\(378\) −1.64440 0.0986888i −0.0845786 0.00507600i
\(379\) −32.2961 + 16.4557i −1.65894 + 0.845271i −0.663679 + 0.748018i \(0.731006\pi\)
−0.995260 + 0.0972535i \(0.968994\pi\)
\(380\) −3.75399 + 31.1626i −0.192575 + 1.59861i
\(381\) 3.40027 21.4685i 0.174201 1.09986i
\(382\) 0.733550 1.24858i 0.0375317 0.0638830i
\(383\) −3.83741 11.8103i −0.196083 0.603480i −0.999962 0.00868833i \(-0.997234\pi\)
0.803880 0.594792i \(-0.202766\pi\)
\(384\) 25.0671 + 2.65301i 1.27920 + 0.135386i
\(385\) −3.54089 + 1.99025i −0.180460 + 0.101433i
\(386\) −0.689011 7.07092i −0.0350697 0.359900i
\(387\) 8.96811 + 4.56948i 0.455875 + 0.232280i
\(388\) −20.0775 9.30648i −1.01928 0.472465i
\(389\) 11.9245 + 1.88865i 0.604596 + 0.0957586i 0.451225 0.892410i \(-0.350987\pi\)
0.153371 + 0.988169i \(0.450987\pi\)
\(390\) −18.6982 + 11.9421i −0.946820 + 0.604714i
\(391\) −23.3925 7.60069i −1.18301 0.384384i
\(392\) −15.1758 11.5623i −0.766494 0.583986i
\(393\) 3.33115 4.58494i 0.168034 0.231279i
\(394\) −29.9670 11.7648i −1.50972 0.592701i
\(395\) −25.9190 25.9190i −1.30413 1.30413i
\(396\) −6.80136 11.1117i −0.341781 0.558385i
\(397\) −13.3702 + 13.3702i −0.671032 + 0.671032i −0.957954 0.286922i \(-0.907368\pi\)
0.286922 + 0.957954i \(0.407368\pi\)
\(398\) −0.889370 2.03903i −0.0445801 0.102208i
\(399\) −5.88305 4.27429i −0.294521 0.213982i
\(400\) −3.02409 1.87049i −0.151204 0.0935243i
\(401\) 1.19810 3.68736i 0.0598301 0.184138i −0.916674 0.399635i \(-0.869137\pi\)
0.976505 + 0.215497i \(0.0691370\pi\)
\(402\) −6.93692 + 31.4606i −0.345982 + 1.56911i
\(403\) −3.36101 + 21.2206i −0.167424 + 1.05707i
\(404\) 9.67929 + 26.4056i 0.481563 + 1.31373i
\(405\) −12.1570 + 23.8594i −0.604084 + 1.18558i
\(406\) −1.29213 + 1.57114i −0.0641275 + 0.0779743i
\(407\) −13.8887 + 15.0718i −0.688438 + 0.747081i
\(408\) −21.0563 11.3393i −1.04244 0.561380i
\(409\) 18.3773 5.97115i 0.908699 0.295254i 0.182876 0.983136i \(-0.441459\pi\)
0.725823 + 0.687882i \(0.241459\pi\)
\(410\) 5.59236 + 21.5225i 0.276187 + 1.06292i
\(411\) −10.1049 1.60046i −0.498438 0.0789449i
\(412\) −2.02527 0.243972i −0.0997777 0.0120197i
\(413\) −1.69136 3.31947i −0.0832262 0.163341i
\(414\) 11.9439 + 13.4691i 0.587011 + 0.661969i
\(415\) 14.5355 + 10.5607i 0.713522 + 0.518404i
\(416\) −0.237052 16.4121i −0.0116224 0.804671i
\(417\) 38.6014 1.89032
\(418\) −0.579768 + 30.3281i −0.0283574 + 1.48340i
\(419\) 10.8145 10.8145i 0.528324 0.528324i −0.391748 0.920072i \(-0.628130\pi\)
0.920072 + 0.391748i \(0.128130\pi\)
\(420\) 4.76703 2.65667i 0.232607 0.129632i
\(421\) 2.10311 + 13.2785i 0.102499 + 0.647155i 0.984430 + 0.175776i \(0.0562436\pi\)
−0.881931 + 0.471379i \(0.843756\pi\)
\(422\) −4.69884 0.282002i −0.228736 0.0137276i
\(423\) −0.120643 0.0391992i −0.00586586 0.00190593i
\(424\) 2.80736 + 2.93809i 0.136337 + 0.142686i
\(425\) 1.98296 + 2.72931i 0.0961876 + 0.132391i
\(426\) 22.5529 5.86009i 1.09269 0.283922i
\(427\) −1.98493 + 3.89564i −0.0960574 + 0.188523i
\(428\) −7.58075 5.08810i −0.366429 0.245943i
\(429\) −16.8174 + 13.3004i −0.811953 + 0.642148i
\(430\) 17.5045 1.70569i 0.844144 0.0822559i
\(431\) −5.60027 17.2359i −0.269756 0.830222i −0.990560 0.137083i \(-0.956227\pi\)
0.720804 0.693139i \(-0.243773\pi\)
\(432\) −4.79122 7.89196i −0.230518 0.379702i
\(433\) −21.7092 + 15.7726i −1.04328 + 0.757985i −0.970923 0.239394i \(-0.923051\pi\)
−0.0723544 + 0.997379i \(0.523051\pi\)
\(434\) 1.13795 5.16085i 0.0546231 0.247729i
\(435\) 6.99608 + 13.7306i 0.335436 + 0.658331i
\(436\) −0.107905 2.89987i −0.00516770 0.138879i
\(437\) −6.55694 41.3989i −0.313661 1.98038i
\(438\) −29.2815 11.4956i −1.39912 0.549283i
\(439\) 11.2151i 0.535266i 0.963521 + 0.267633i \(0.0862414\pi\)
−0.963521 + 0.267633i \(0.913759\pi\)
\(440\) −20.4669 9.96655i −0.975723 0.475137i
\(441\) 13.2481i 0.630861i
\(442\) −5.69087 + 14.4957i −0.270687 + 0.689490i
\(443\) −0.0697898 0.440636i −0.00331581 0.0209352i 0.985975 0.166893i \(-0.0533735\pi\)
−0.989291 + 0.145958i \(0.953374\pi\)
\(444\) 18.7336 20.1816i 0.889057 0.957777i
\(445\) −1.62927 3.19762i −0.0772346 0.151581i
\(446\) 12.7676 + 2.81520i 0.604563 + 0.133304i
\(447\) 28.0814 20.4023i 1.32821 0.964998i
\(448\) −0.183642 + 4.03324i −0.00867625 + 0.190553i
\(449\) 3.89920 + 12.0005i 0.184015 + 0.566339i 0.999930 0.0118324i \(-0.00376645\pi\)
−0.815915 + 0.578172i \(0.803766\pi\)
\(450\) −0.239466 2.45750i −0.0112885 0.115848i
\(451\) 7.46959 + 20.1504i 0.351729 + 0.948845i
\(452\) 36.8370 7.24783i 1.73266 0.340909i
\(453\) −19.1483 + 37.5807i −0.899666 + 1.76569i
\(454\) −4.59843 17.6973i −0.215815 0.830577i
\(455\) −2.08875 2.87492i −0.0979221 0.134778i
\(456\) 0.927100 40.7441i 0.0434154 1.90802i
\(457\) 20.3430 + 6.60984i 0.951605 + 0.309195i 0.743368 0.668883i \(-0.233227\pi\)
0.208238 + 0.978078i \(0.433227\pi\)
\(458\) 2.33655 38.9326i 0.109180 1.81920i
\(459\) 1.37027 + 8.65155i 0.0639588 + 0.403820i
\(460\) 30.2572 + 8.60130i 1.41075 + 0.401038i
\(461\) −10.5175 + 10.5175i −0.489850 + 0.489850i −0.908259 0.418409i \(-0.862588\pi\)
0.418409 + 0.908259i \(0.362588\pi\)
\(462\) 4.32525 3.01788i 0.201229 0.140405i
\(463\) 18.9631 0.881292 0.440646 0.897681i \(-0.354749\pi\)
0.440646 + 0.897681i \(0.354749\pi\)
\(464\) −11.3617 0.941691i −0.527455 0.0437169i
\(465\) −32.3889 23.5319i −1.50200 1.09127i
\(466\) −7.21105 + 6.39451i −0.334045 + 0.296220i
\(467\) 12.8334 + 25.1870i 0.593859 + 1.16551i 0.970937 + 0.239333i \(0.0769289\pi\)
−0.377078 + 0.926182i \(0.623071\pi\)
\(468\) 8.96543 7.03763i 0.414427 0.325315i
\(469\) −5.09655 0.807214i −0.235337 0.0372737i
\(470\) −0.214531 + 0.0557433i −0.00989559 + 0.00257125i
\(471\) 9.17696 2.98178i 0.422852 0.137393i
\(472\) 9.89984 18.3833i 0.455677 0.846161i
\(473\) 16.6649 3.34188i 0.766255 0.153660i
\(474\) 36.7588 + 30.2311i 1.68839 + 1.38856i
\(475\) −2.61000 + 5.12240i −0.119755 + 0.235032i
\(476\) 1.61091 3.47533i 0.0738360 0.159292i
\(477\) −0.441429 + 2.78707i −0.0202116 + 0.127611i
\(478\) 11.6003 + 2.55781i 0.530584 + 0.116991i
\(479\) −3.84064 + 11.8203i −0.175483 + 0.540081i −0.999655 0.0262580i \(-0.991641\pi\)
0.824172 + 0.566339i \(0.191641\pi\)
\(480\) 27.4493 + 13.4904i 1.25289 + 0.615749i
\(481\) −14.5061 10.5393i −0.661420 0.480550i
\(482\) 4.72555 2.06115i 0.215243 0.0938830i
\(483\) −5.15314 + 5.15314i −0.234476 + 0.234476i
\(484\) −20.6481 7.59307i −0.938551 0.345140i
\(485\) −18.9866 18.9866i −0.862137 0.862137i
\(486\) 9.12733 23.2490i 0.414024 1.05459i
\(487\) −18.6722 + 25.7001i −0.846118 + 1.16458i 0.138587 + 0.990350i \(0.455744\pi\)
−0.984705 + 0.174231i \(0.944256\pi\)
\(488\) −24.2828 + 3.28166i −1.09923 + 0.148554i
\(489\) 24.4573 + 7.94665i 1.10600 + 0.359360i
\(490\) −12.4604 19.5096i −0.562901 0.881353i
\(491\) 30.0460 + 4.75882i 1.35596 + 0.214762i 0.791737 0.610863i \(-0.209177\pi\)
0.564219 + 0.825625i \(0.309177\pi\)
\(492\) −9.93720 27.1092i −0.448004 1.22218i
\(493\) 9.63757 + 4.91059i 0.434055 + 0.221162i
\(494\) −26.4126 + 2.57373i −1.18836 + 0.115797i
\(495\) −3.10809 15.4991i −0.139698 0.696631i
\(496\) 27.4107 11.2207i 1.23078 0.503825i
\(497\) 1.15333 + 3.54957i 0.0517338 + 0.159220i
\(498\) −20.1141 11.8171i −0.901333 0.529539i
\(499\) 4.02547 25.4158i 0.180205 1.13777i −0.717301 0.696764i \(-0.754623\pi\)
0.897505 0.441003i \(-0.145377\pi\)
\(500\) 12.3200 + 15.6948i 0.550968 + 0.701893i
\(501\) 17.8585 9.09938i 0.797861 0.406530i
\(502\) 0.604137 10.0664i 0.0269639 0.449285i
\(503\) 9.48967 13.0614i 0.423123 0.582379i −0.543234 0.839581i \(-0.682801\pi\)
0.966358 + 0.257202i \(0.0828005\pi\)
\(504\) −2.30503 + 1.59587i −0.102674 + 0.0710857i
\(505\) 34.1242i 1.51851i
\(506\) 29.9289 + 5.32853i 1.33050 + 0.236882i
\(507\) 7.21680 + 7.21680i 0.320509 + 0.320509i
\(508\) 9.49841 + 17.0436i 0.421424 + 0.756186i
\(509\) 4.37730 0.693297i 0.194021 0.0307298i −0.0586678 0.998278i \(-0.518685\pi\)
0.252688 + 0.967548i \(0.418685\pi\)
\(510\) −19.2527 21.7112i −0.852526 0.961388i
\(511\) 1.55698 4.79189i 0.0688767 0.211981i
\(512\) −19.1704 + 12.0207i −0.847219 + 0.531243i
\(513\) −12.0762 + 8.77387i −0.533177 + 0.387376i
\(514\) 21.4317 36.4792i 0.945313 1.60903i
\(515\) −2.20537 1.12369i −0.0971800 0.0495157i
\(516\) −22.4062 + 4.40852i −0.986380 + 0.194074i
\(517\) −0.200854 + 0.0744551i −0.00883356 + 0.00327453i
\(518\) 3.40644 + 2.80152i 0.149670 + 0.123092i
\(519\) 28.2090 9.16566i 1.23824 0.402328i
\(520\) 6.58363 18.7962i 0.288711 0.824269i
\(521\) −4.31168 5.93452i −0.188898 0.259996i 0.704055 0.710145i \(-0.251371\pi\)
−0.892953 + 0.450149i \(0.851371\pi\)
\(522\) −4.26121 6.67191i −0.186508 0.292022i
\(523\) 14.4327 7.35384i 0.631099 0.321561i −0.109017 0.994040i \(-0.534770\pi\)
0.740116 + 0.672479i \(0.234770\pi\)
\(524\) 0.189168 + 5.08379i 0.00826386 + 0.222086i
\(525\) 0.987258 0.156366i 0.0430875 0.00682438i
\(526\) 0.117602 + 0.269623i 0.00512769 + 0.0117561i
\(527\) −28.1007 −1.22409
\(528\) 27.7044 + 10.3024i 1.20568 + 0.448355i
\(529\) −19.0059 −0.826343
\(530\) 1.97129 + 4.51952i 0.0856274 + 0.196315i
\(531\) 14.3201 2.26808i 0.621440 0.0984264i
\(532\) 6.52314 0.242727i 0.282814 0.0105236i
\(533\) −16.7518 + 8.53548i −0.725602 + 0.369713i
\(534\) 2.50815 + 3.92710i 0.108538 + 0.169942i
\(535\) −6.51145 8.96224i −0.281514 0.387471i
\(536\) −12.5395 26.0593i −0.541625 1.12559i
\(537\) −47.2829 + 15.3631i −2.04041 + 0.662968i
\(538\) −16.9924 13.9749i −0.732596 0.602501i
\(539\) −13.8775 17.5472i −0.597747 0.755812i
\(540\) −2.16264 10.9916i −0.0930652 0.473002i
\(541\) −25.7969 13.1442i −1.10909 0.565112i −0.199203 0.979958i \(-0.563835\pi\)
−0.909892 + 0.414846i \(0.863835\pi\)
\(542\) −11.1054 + 18.9027i −0.477019 + 0.811938i
\(543\) −44.8610 + 32.5934i −1.92517 + 1.39872i
\(544\) 21.1529 3.66420i 0.906925 0.157101i
\(545\) 1.08805 3.34869i 0.0466071 0.143442i
\(546\) 3.06131 + 3.45222i 0.131012 + 0.147741i
\(547\) 20.6323 3.26784i 0.882175 0.139723i 0.301119 0.953587i \(-0.402640\pi\)
0.581056 + 0.813864i \(0.302640\pi\)
\(548\) 8.02217 4.47077i 0.342690 0.190982i
\(549\) −12.0315 12.0315i −0.513493 0.513493i
\(550\) −2.89144 3.00414i −0.123291 0.128097i
\(551\) 18.4325i 0.785252i
\(552\) −40.1844 7.30528i −1.71036 0.310933i
\(553\) −4.48070 + 6.16716i −0.190539 + 0.262254i
\(554\) −1.33786 + 22.2920i −0.0568402 + 0.947096i
\(555\) 29.7697 15.1684i 1.26365 0.643864i
\(556\) −27.2565 + 21.3956i −1.15593 + 0.907377i
\(557\) −3.74177 + 23.6246i −0.158544 + 1.00101i 0.772212 + 0.635365i \(0.219150\pi\)
−0.930756 + 0.365641i \(0.880850\pi\)
\(558\) 17.7329 + 10.4182i 0.750695 + 0.441038i
\(559\) 4.59501 + 14.1420i 0.194348 + 0.598142i
\(560\) −1.89349 + 4.51811i −0.0800144 + 0.190925i
\(561\) −20.6225 19.0037i −0.870683 0.802337i
\(562\) −3.88451 + 0.378518i −0.163858 + 0.0159668i
\(563\) −21.8656 11.1411i −0.921524 0.469540i −0.0721872 0.997391i \(-0.522998\pi\)
−0.849337 + 0.527851i \(0.822998\pi\)
\(564\) 0.270218 0.0990517i 0.0113782 0.00417083i
\(565\) 44.9925 + 7.12612i 1.89285 + 0.299798i
\(566\) −1.47030 2.30210i −0.0618013 0.0967644i
\(567\) 5.29638 + 1.72090i 0.222427 + 0.0722709i
\(568\) −12.6765 + 16.6382i −0.531896 + 0.698124i
\(569\) −7.42810 + 10.2239i −0.311402 + 0.428609i −0.935818 0.352484i \(-0.885337\pi\)
0.624416 + 0.781092i \(0.285337\pi\)
\(570\) 18.0709 46.0298i 0.756905 1.92798i
\(571\) 14.1392 + 14.1392i 0.591708 + 0.591708i 0.938093 0.346385i \(-0.112591\pi\)
−0.346385 + 0.938093i \(0.612591\pi\)
\(572\) 4.50280 18.7128i 0.188271 0.782422i
\(573\) −1.61322 + 1.61322i −0.0673931 + 0.0673931i
\(574\) 4.23893 1.84890i 0.176930 0.0771718i
\(575\) 4.66114 + 3.38651i 0.194383 + 0.141227i
\(576\) −14.7070 5.53006i −0.612793 0.230419i
\(577\) 2.99248 9.20989i 0.124578 0.383413i −0.869246 0.494380i \(-0.835395\pi\)
0.993824 + 0.110968i \(0.0353950\pi\)
\(578\) 3.58756 + 0.791040i 0.149223 + 0.0329029i
\(579\) −1.75091 + 11.0548i −0.0727652 + 0.459421i
\(580\) −12.5504 5.81745i −0.521127 0.241557i
\(581\) 1.69635 3.32927i 0.0703764 0.138121i
\(582\) 26.9272 + 22.1454i 1.11617 + 0.917956i
\(583\) 2.33481 + 4.15390i 0.0966981 + 0.172037i
\(584\) 27.0474 8.11280i 1.11923 0.335710i
\(585\) 13.1526 4.27354i 0.543794 0.176689i
\(586\) −22.8017 + 5.92474i −0.941930 + 0.244749i
\(587\) 0.666929 + 0.105631i 0.0275271 + 0.00435986i 0.170183 0.985413i \(-0.445564\pi\)
−0.142656 + 0.989772i \(0.545564\pi\)
\(588\) 18.5592 + 23.6431i 0.765368 + 0.975023i
\(589\) −21.7401 42.6674i −0.895786 1.75808i
\(590\) 18.9551 16.8087i 0.780368 0.692003i
\(591\) 41.0328 + 29.8121i 1.68786 + 1.22631i
\(592\) −2.04171 + 24.6337i −0.0839137 + 1.01244i
\(593\) 8.02354 0.329487 0.164744 0.986336i \(-0.447320\pi\)
0.164744 + 0.986336i \(0.447320\pi\)
\(594\) −3.14803 10.3582i −0.129165 0.425004i
\(595\) 3.28650 3.28650i 0.134733 0.134733i
\(596\) −8.51988 + 29.9708i −0.348988 + 1.22765i
\(597\) 0.548249 + 3.46151i 0.0224384 + 0.141670i
\(598\) −1.59326 + 26.5476i −0.0651532 + 1.08561i
\(599\) 33.6271 + 10.9261i 1.37397 + 0.446428i 0.900681 0.434481i \(-0.143068\pi\)
0.473284 + 0.880910i \(0.343068\pi\)
\(600\) 3.87007 + 4.05029i 0.157995 + 0.165352i
\(601\) 0.862127 + 1.18662i 0.0351669 + 0.0484031i 0.826238 0.563321i \(-0.190476\pi\)
−0.791071 + 0.611724i \(0.790476\pi\)
\(602\) −0.919840 3.54006i −0.0374899 0.144282i
\(603\) 9.11677 17.8927i 0.371264 0.728646i
\(604\) −7.30924 37.1491i −0.297409 1.51157i
\(605\) −20.3522 17.2729i −0.827433 0.702244i
\(606\) −4.29709 44.0985i −0.174557 1.79138i
\(607\) −3.49406 10.7536i −0.141819 0.436475i 0.854769 0.519009i \(-0.173699\pi\)
−0.996588 + 0.0825336i \(0.973699\pi\)
\(608\) 21.9286 + 29.2833i 0.889323 + 1.18759i
\(609\) 2.59275 1.88374i 0.105063 0.0763331i
\(610\) −29.0342 6.40191i −1.17556 0.259206i
\(611\) −0.0850797 0.166978i −0.00344196 0.00675522i
\(612\) 10.9257 + 10.1418i 0.441644 + 0.409956i
\(613\) 1.36591 + 8.62398i 0.0551684 + 0.348319i 0.999796 + 0.0201764i \(0.00642280\pi\)
−0.944628 + 0.328143i \(0.893577\pi\)
\(614\) −13.4635 + 34.2941i −0.543345 + 1.38400i
\(615\) 35.0335i 1.41269i
\(616\) −1.38134 + 4.52829i −0.0556558 + 0.182450i
\(617\) 29.9332i 1.20506i 0.798095 + 0.602532i \(0.205841\pi\)
−0.798095 + 0.602532i \(0.794159\pi\)
\(618\) 2.99148 + 1.17443i 0.120335 + 0.0472424i
\(619\) −1.65751 10.4651i −0.0666211 0.420629i −0.998347 0.0574678i \(-0.981697\pi\)
0.931726 0.363161i \(-0.118303\pi\)
\(620\) 35.9129 1.33632i 1.44230 0.0536681i
\(621\) 6.79142 + 13.3289i 0.272530 + 0.534871i
\(622\) −3.79207 + 17.1979i −0.152048 + 0.689574i
\(623\) −0.603806 + 0.438691i −0.0241910 + 0.0175758i
\(624\) −6.14108 + 25.1193i −0.245840 + 1.00558i
\(625\) 8.85474 + 27.2521i 0.354189 + 1.09008i
\(626\) −28.8440 + 2.81065i −1.15284 + 0.112336i
\(627\) 12.9001 46.0149i 0.515182 1.83766i
\(628\) −4.82715 + 7.19196i −0.192624 + 0.286990i
\(629\) 10.6468 20.8955i 0.424516 0.833159i
\(630\) −3.29240 + 0.855488i −0.131172 + 0.0340835i
\(631\) −14.1680 19.5006i −0.564021 0.776309i 0.427810 0.903869i \(-0.359285\pi\)
−0.991831 + 0.127560i \(0.959285\pi\)
\(632\) −42.7117 0.971872i −1.69898 0.0386590i
\(633\) 7.05310 + 2.29169i 0.280336 + 0.0910866i
\(634\) 31.5797 + 1.89526i 1.25419 + 0.0752704i
\(635\) 3.70352 + 23.3831i 0.146970 + 0.927930i
\(636\) −3.11661 5.59232i −0.123582 0.221750i
\(637\) 13.8395 13.8395i 0.548342 0.548342i
\(638\) −12.6329 4.37334i −0.500142 0.173142i
\(639\) −14.5247 −0.574589
\(640\) −26.8593 + 5.68880i −1.06171 + 0.224870i
\(641\) 15.5856 + 11.3236i 0.615593 + 0.447254i 0.851379 0.524551i \(-0.175767\pi\)
−0.235787 + 0.971805i \(0.575767\pi\)
\(642\) 9.54328 + 10.7619i 0.376643 + 0.424738i
\(643\) −5.78873 11.3610i −0.228285 0.448035i 0.748243 0.663425i \(-0.230898\pi\)
−0.976528 + 0.215390i \(0.930898\pi\)
\(644\) 0.782400 6.49487i 0.0308309 0.255934i
\(645\) −27.3669 4.33449i −1.07757 0.170670i
\(646\) −8.72890 33.5937i −0.343434 1.32172i
\(647\) −11.6007 + 3.76929i −0.456070 + 0.148186i −0.528038 0.849221i \(-0.677072\pi\)
0.0719677 + 0.997407i \(0.477072\pi\)
\(648\) 8.96691 + 29.8949i 0.352253 + 1.17438i
\(649\) 16.5913 18.0046i 0.651265 0.706742i
\(650\) 2.31706 2.81737i 0.0908825 0.110506i
\(651\) −3.77990 + 7.41846i −0.148146 + 0.290752i
\(652\) −21.6739 + 7.94482i −0.848815 + 0.311143i
\(653\) 0.567328 3.58197i 0.0222013 0.140173i −0.974098 0.226127i \(-0.927394\pi\)
0.996299 + 0.0859534i \(0.0273936\pi\)
\(654\) −0.984404 + 4.46451i −0.0384932 + 0.174576i
\(655\) −1.90748 + 5.87061i −0.0745313 + 0.229384i
\(656\) 22.0425 + 13.6339i 0.860616 + 0.532316i
\(657\) 15.8634 + 11.5254i 0.618890 + 0.449650i
\(658\) 0.0184294 + 0.0422526i 0.000718454 + 0.00164718i
\(659\) −13.4698 + 13.4698i −0.524710 + 0.524710i −0.918990 0.394280i \(-0.870994\pi\)
0.394280 + 0.918990i \(0.370994\pi\)
\(660\) 27.2594 + 23.3062i 1.06107 + 0.907191i
\(661\) −6.93577 6.93577i −0.269770 0.269770i 0.559237 0.829008i \(-0.311094\pi\)
−0.829008 + 0.559237i \(0.811094\pi\)
\(662\) −8.27967 3.25052i −0.321799 0.126335i
\(663\) 14.4207 19.8484i 0.560055 0.770850i
\(664\) 20.7525 2.80455i 0.805351 0.108838i
\(665\) 7.53274 + 2.44753i 0.292107 + 0.0949113i
\(666\) −14.4656 + 9.23886i −0.560530 + 0.357998i
\(667\) 18.2451 + 2.88974i 0.706453 + 0.111891i
\(668\) −7.56641 + 16.3235i −0.292753 + 0.631577i
\(669\) −18.3528 9.35121i −0.709559 0.361538i
\(670\) −3.40310 34.9241i −0.131473 1.34923i
\(671\) −28.5390 3.33270i −1.10174 0.128658i
\(672\) 1.87800 6.07716i 0.0724454 0.234432i
\(673\) 8.38617 + 25.8100i 0.323263 + 0.994902i 0.972218 + 0.234075i \(0.0752062\pi\)
−0.648955 + 0.760827i \(0.724794\pi\)
\(674\) 19.6764 33.4913i 0.757905 1.29004i
\(675\) 0.320974 2.02655i 0.0123543 0.0780020i
\(676\) −9.09585 1.09573i −0.349841 0.0421433i
\(677\) −16.3099 + 8.31032i −0.626841 + 0.319392i −0.738397 0.674367i \(-0.764417\pi\)
0.111555 + 0.993758i \(0.464417\pi\)
\(678\) −59.0410 3.54336i −2.26746 0.136082i
\(679\) −3.28228 + 4.51767i −0.125962 + 0.173372i
\(680\) 25.6283 + 4.65906i 0.982799 + 0.178667i
\(681\) 28.8070i 1.10389i
\(682\) 34.4006 4.77644i 1.31727 0.182899i
\(683\) −20.9614 20.9614i −0.802065 0.802065i 0.181353 0.983418i \(-0.441952\pi\)
−0.983418 + 0.181353i \(0.941952\pi\)
\(684\) −6.94633 + 24.4355i −0.265600 + 0.934313i
\(685\) 11.0061 1.74320i 0.420521 0.0666041i
\(686\) −7.34005 + 6.50890i −0.280245 + 0.248511i
\(687\) −18.9880 + 58.4391i −0.724438 + 2.22959i
\(688\) 13.3775 15.5320i 0.510014 0.592151i
\(689\) −3.37264 + 2.45036i −0.128487 + 0.0933514i
\(690\) −42.7287 25.1034i −1.62665 0.955669i
\(691\) 15.6308 + 7.96432i 0.594626 + 0.302977i 0.725283 0.688451i \(-0.241709\pi\)
−0.130658 + 0.991428i \(0.541709\pi\)
\(692\) −14.8381 + 22.1073i −0.564061 + 0.840394i
\(693\) −3.08250 + 1.14266i −0.117094 + 0.0434059i
\(694\) 1.96960 2.39489i 0.0747652 0.0909089i
\(695\) −39.9862 + 12.9923i −1.51676 + 0.492827i
\(696\) 16.9514 + 5.93745i 0.642541 + 0.225059i
\(697\) −14.4537 19.8939i −0.547475 0.753534i
\(698\) 12.9490 8.27026i 0.490127 0.313034i
\(699\) 13.5290 6.89337i 0.511714 0.260731i
\(700\) −0.610434 + 0.657619i −0.0230722 + 0.0248556i
\(701\) 28.1000 4.45060i 1.06132 0.168097i 0.398723 0.917072i \(-0.369454\pi\)
0.662599 + 0.748975i \(0.269454\pi\)
\(702\) 8.68141 3.78659i 0.327659 0.142916i
\(703\) 39.9642 1.50728
\(704\) −25.2724 + 8.08118i −0.952490 + 0.304571i
\(705\) 0.349205 0.0131518
\(706\) 27.1518 11.8429i 1.02187 0.445712i
\(707\) 7.00933 1.11017i 0.263613 0.0417522i
\(708\) −22.3789 + 24.1087i −0.841051 + 0.906061i
\(709\) −16.2476 + 8.27855i −0.610190 + 0.310907i −0.731641 0.681690i \(-0.761245\pi\)
0.121451 + 0.992597i \(0.461245\pi\)
\(710\) −21.3896 + 13.6611i −0.802738 + 0.512692i
\(711\) −17.4375 24.0007i −0.653957 0.900095i
\(712\) −3.94768 1.38273i −0.147946 0.0518200i
\(713\) −45.6418 + 14.8299i −1.70930 + 0.555385i
\(714\) −3.83327 + 4.66098i −0.143457 + 0.174433i
\(715\) 12.9442 19.4379i 0.484085 0.726935i
\(716\) 24.8711 37.0554i 0.929478 1.38483i
\(717\) −16.6748 8.49623i −0.622732 0.317298i
\(718\) 16.3512 + 9.60642i 0.610220 + 0.358508i
\(719\) −32.9401 + 23.9324i −1.22846 + 0.892528i −0.996774 0.0802624i \(-0.974424\pi\)
−0.231686 + 0.972791i \(0.574424\pi\)
\(720\) −14.4454 12.4417i −0.538347 0.463673i
\(721\) −0.159066 + 0.489554i −0.00592392 + 0.0182319i
\(722\) 24.1505 21.4159i 0.898790 0.797016i
\(723\) −8.02220 + 1.27059i −0.298349 + 0.0472538i
\(724\) 13.6108 47.8793i 0.505841 1.77942i
\(725\) −1.79158 1.79158i −0.0665375 0.0665375i
\(726\) 28.4761 + 19.7588i 1.05685 + 0.733320i
\(727\) 16.7266i 0.620357i −0.950678 0.310178i \(-0.899611\pi\)
0.950678 0.310178i \(-0.100389\pi\)
\(728\) −4.07505 0.740820i −0.151032 0.0274566i
\(729\) −3.67072 + 5.05231i −0.135953 + 0.187123i
\(730\) 34.2011 + 2.05259i 1.26584 + 0.0759697i
\(731\) −17.3287 + 8.82940i −0.640924 + 0.326567i
\(732\) 38.3269 + 4.61702i 1.41660 + 0.170650i
\(733\) 4.11442 25.9774i 0.151970 0.959498i −0.787363 0.616490i \(-0.788554\pi\)
0.939332 0.343008i \(-0.111446\pi\)
\(734\) −18.9975 + 32.3358i −0.701210 + 1.19354i
\(735\) 11.2699 + 34.6852i 0.415697 + 1.27938i
\(736\) 32.4233 17.1148i 1.19514 0.630859i
\(737\) −6.66754 33.2489i −0.245602 1.22474i
\(738\) 1.74546 + 17.9127i 0.0642514 + 0.659375i
\(739\) 7.79988 + 3.97424i 0.286923 + 0.146195i 0.591529 0.806284i \(-0.298525\pi\)
−0.304605 + 0.952479i \(0.598525\pi\)
\(740\) −12.6130 + 27.2109i −0.463663 + 1.00029i
\(741\) 41.2940 + 6.54032i 1.51697 + 0.240265i
\(742\) 0.864207 0.551950i 0.0317260 0.0202627i
\(743\) 37.4996 + 12.1844i 1.37573 + 0.447001i 0.901263 0.433273i \(-0.142641\pi\)
0.474465 + 0.880274i \(0.342641\pi\)
\(744\) −46.2418 + 6.24926i −1.69531 + 0.229109i
\(745\) −22.2219 + 30.5858i −0.814147 + 1.12058i
\(746\) 17.9641 + 7.05254i 0.657713 + 0.258212i
\(747\) 10.2823 + 10.2823i 0.376210 + 0.376210i
\(748\) 25.0948 + 1.98807i 0.917556 + 0.0726912i
\(749\) −1.62906 + 1.62906i −0.0595247 + 0.0595247i
\(750\) −12.5674 28.8128i −0.458895 1.05210i
\(751\) 13.8317 + 10.0493i 0.504724 + 0.366704i 0.810819 0.585298i \(-0.199022\pi\)
−0.306094 + 0.952001i \(0.599022\pi\)
\(752\) −0.135900 + 0.219715i −0.00495576 + 0.00801217i
\(753\) −4.90953 + 15.1100i −0.178913 + 0.550638i
\(754\) 2.51833 11.4212i 0.0917122 0.415937i
\(755\) 7.18650 45.3738i 0.261543 1.65132i
\(756\) −2.18739 + 0.801812i −0.0795544 + 0.0291616i
\(757\) 8.47926 16.6415i 0.308184 0.604845i −0.684021 0.729462i \(-0.739770\pi\)
0.992205 + 0.124617i \(0.0397704\pi\)
\(758\) −32.5605 + 39.5912i −1.18265 + 1.43802i
\(759\) −43.5246 19.9829i −1.57984 0.725334i
\(760\) 12.7531 + 42.5178i 0.462604 + 1.54228i
\(761\) 28.1054 9.13198i 1.01882 0.331034i 0.248458 0.968643i \(-0.420076\pi\)
0.770360 + 0.637609i \(0.220076\pi\)
\(762\) −7.73056 29.7515i −0.280049 1.07778i
\(763\) −0.723241 0.114550i −0.0261831 0.00414699i
\(764\) 0.244934 2.03325i 0.00886141 0.0735605i
\(765\) 8.21170 + 16.1164i 0.296895 + 0.582688i
\(766\) −11.6519 13.1398i −0.421000 0.474759i
\(767\) 17.3288