Properties

Label 176.2.w.a.5.18
Level $176$
Weight $2$
Character 176.5
Analytic conductor $1.405$
Analytic rank $0$
Dimension $176$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,2,Mod(5,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 5, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 176.w (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40536707557\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 5.18
Character \(\chi\) \(=\) 176.5
Dual form 176.2.w.a.141.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.994957 + 1.00502i) q^{2} +(2.09875 - 0.332409i) q^{3} +(-0.0201206 + 1.99990i) q^{4} +(-1.30316 + 0.663991i) q^{5} +(2.42224 + 1.77855i) q^{6} +(-0.801284 - 1.10287i) q^{7} +(-2.02995 + 1.96959i) q^{8} +(1.44108 - 0.468236i) q^{9} +O(q^{10})\) \(q+(0.994957 + 1.00502i) q^{2} +(2.09875 - 0.332409i) q^{3} +(-0.0201206 + 1.99990i) q^{4} +(-1.30316 + 0.663991i) q^{5} +(2.42224 + 1.77855i) q^{6} +(-0.801284 - 1.10287i) q^{7} +(-2.02995 + 1.96959i) q^{8} +(1.44108 - 0.468236i) q^{9} +(-1.96391 - 0.649052i) q^{10} +(0.499483 - 3.27880i) q^{11} +(0.622557 + 4.20397i) q^{12} +(-0.291323 - 0.148437i) q^{13} +(0.311163 - 1.90262i) q^{14} +(-2.51428 + 1.82673i) q^{15} +(-3.99919 - 0.0804783i) q^{16} +(1.54961 - 4.76919i) q^{17} +(1.90440 + 0.982437i) q^{18} +(2.80693 - 0.444574i) q^{19} +(-1.30170 - 2.61954i) q^{20} +(-2.04830 - 2.04830i) q^{21} +(3.79221 - 2.76027i) q^{22} +0.974737i q^{23} +(-3.60565 + 4.80845i) q^{24} +(-1.68159 + 2.31452i) q^{25} +(-0.140673 - 0.440473i) q^{26} +(-2.81110 + 1.43233i) q^{27} +(2.22176 - 1.58030i) q^{28} +(0.0706530 - 0.446086i) q^{29} +(-4.33750 - 0.709376i) q^{30} +(2.46673 + 7.59180i) q^{31} +(-3.89814 - 4.09933i) q^{32} +(-0.0416137 - 7.04741i) q^{33} +(6.33492 - 3.18776i) q^{34} +(1.77650 + 0.905170i) q^{35} +(0.907428 + 2.89144i) q^{36} +(-9.99855 - 1.58361i) q^{37} +(3.23958 + 2.37868i) q^{38} +(-0.660756 - 0.214692i) q^{39} +(1.33755 - 3.91456i) q^{40} +(-1.60213 + 2.20515i) q^{41} +(0.0206068 - 4.09655i) q^{42} +(7.92591 + 7.92591i) q^{43} +(6.54721 + 1.06489i) q^{44} +(-1.56705 + 1.56705i) q^{45} +(-0.979628 + 0.969822i) q^{46} +(-1.00202 - 0.728009i) q^{47} +(-8.42005 + 1.16046i) q^{48} +(1.58885 - 4.88997i) q^{49} +(-3.99924 + 0.612812i) q^{50} +(1.66691 - 10.5244i) q^{51} +(0.302720 - 0.579630i) q^{52} +(2.47130 - 4.85020i) q^{53} +(-4.23644 - 1.40010i) q^{54} +(1.52619 + 4.60444i) q^{55} +(3.79878 + 0.660577i) q^{56} +(5.74326 - 1.86610i) q^{57} +(0.518621 - 0.372829i) q^{58} +(-3.36063 - 0.532271i) q^{59} +(-3.60269 - 5.06506i) q^{60} +(-5.11921 - 10.0470i) q^{61} +(-5.17561 + 10.0326i) q^{62} +(-1.67112 - 1.21414i) q^{63} +(0.241415 - 7.99636i) q^{64} +0.478200 q^{65} +(7.04136 - 7.05369i) q^{66} +(-5.18996 + 5.18996i) q^{67} +(9.50673 + 3.19501i) q^{68} +(0.324012 + 2.04573i) q^{69} +(0.857826 + 2.68602i) q^{70} +(9.85959 + 3.20357i) q^{71} +(-2.00309 + 3.78884i) q^{72} +(6.99703 + 9.63058i) q^{73} +(-8.35657 - 11.6243i) q^{74} +(-2.75988 + 5.41657i) q^{75} +(0.832627 + 5.62253i) q^{76} +(-4.01633 + 2.07638i) q^{77} +(-0.441654 - 0.877681i) q^{78} +(1.74983 + 5.38543i) q^{79} +(5.26501 - 2.55055i) q^{80} +(-9.10125 + 6.61245i) q^{81} +(-3.81027 + 0.583855i) q^{82} +(-4.08592 - 8.01908i) q^{83} +(4.13761 - 4.05518i) q^{84} +(1.14733 + 7.24393i) q^{85} +(-0.0797380 + 15.8516i) q^{86} -0.959708i q^{87} +(5.44397 + 7.63958i) q^{88} +5.86850i q^{89} +(-3.13406 - 0.0157652i) q^{90} +(0.0697259 + 0.440232i) q^{91} +(-1.94938 - 0.0196123i) q^{92} +(7.70063 + 15.1133i) q^{93} +(-0.265303 - 1.73138i) q^{94} +(-3.36268 + 2.44313i) q^{95} +(-9.54387 - 7.30768i) q^{96} +(3.59783 + 11.0730i) q^{97} +(6.49533 - 3.26849i) q^{98} +(-0.815455 - 4.95889i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8} - 16 q^{10} - 12 q^{11} - 6 q^{13} - 12 q^{15} + 14 q^{16} - 12 q^{17} - 44 q^{18} - 6 q^{19} + 2 q^{20} - 28 q^{21} + 50 q^{22} - 38 q^{24} - 68 q^{26} - 18 q^{27} - 46 q^{28} - 22 q^{29} + 26 q^{30} - 12 q^{31} - 16 q^{32} - 16 q^{33} + 12 q^{34} - 26 q^{35} - 22 q^{36} + 18 q^{37} - 34 q^{38} + 14 q^{40} - 10 q^{42} - 40 q^{43} + 2 q^{44} - 24 q^{45} + 38 q^{46} - 12 q^{47} - 26 q^{48} + 8 q^{49} - 62 q^{50} + 6 q^{51} + 74 q^{52} - 30 q^{53} - 52 q^{54} - 96 q^{56} - 26 q^{58} + 10 q^{59} + 118 q^{60} - 6 q^{61} - 42 q^{62} - 28 q^{63} - 106 q^{64} - 32 q^{65} + 6 q^{66} + 24 q^{67} + 116 q^{68} + 12 q^{69} + 52 q^{70} - 98 q^{72} + 96 q^{74} - 46 q^{75} + 112 q^{76} - 14 q^{77} + 44 q^{78} - 52 q^{79} - 28 q^{80} + 66 q^{82} + 54 q^{83} + 120 q^{84} + 14 q^{85} + 86 q^{86} + 142 q^{88} + 228 q^{90} - 122 q^{91} + 146 q^{92} + 6 q^{93} + 56 q^{94} + 52 q^{95} + 86 q^{96} - 12 q^{97} + 140 q^{98} + 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.994957 + 1.00502i 0.703541 + 0.710655i
\(3\) 2.09875 0.332409i 1.21171 0.191917i 0.482310 0.876001i \(-0.339798\pi\)
0.729403 + 0.684084i \(0.239798\pi\)
\(4\) −0.0201206 + 1.99990i −0.0100603 + 0.999949i
\(5\) −1.30316 + 0.663991i −0.582789 + 0.296946i −0.720420 0.693538i \(-0.756051\pi\)
0.137631 + 0.990484i \(0.456051\pi\)
\(6\) 2.42224 + 1.77855i 0.988876 + 0.726089i
\(7\) −0.801284 1.10287i −0.302857 0.416847i 0.630280 0.776368i \(-0.282940\pi\)
−0.933137 + 0.359521i \(0.882940\pi\)
\(8\) −2.02995 + 1.96959i −0.717697 + 0.696356i
\(9\) 1.44108 0.468236i 0.480360 0.156079i
\(10\) −1.96391 0.649052i −0.621042 0.205248i
\(11\) 0.499483 3.27880i 0.150600 0.988595i
\(12\) 0.622557 + 4.20397i 0.179717 + 1.21358i
\(13\) −0.291323 0.148437i −0.0807985 0.0411689i 0.413124 0.910675i \(-0.364437\pi\)
−0.493923 + 0.869506i \(0.664437\pi\)
\(14\) 0.311163 1.90262i 0.0831619 0.508496i
\(15\) −2.51428 + 1.82673i −0.649185 + 0.471660i
\(16\) −3.99919 0.0804783i −0.999798 0.0201196i
\(17\) 1.54961 4.76919i 0.375835 1.15670i −0.567079 0.823663i \(-0.691927\pi\)
0.942914 0.333037i \(-0.108073\pi\)
\(18\) 1.90440 + 0.982437i 0.448871 + 0.231563i
\(19\) 2.80693 0.444574i 0.643954 0.101992i 0.174088 0.984730i \(-0.444302\pi\)
0.469866 + 0.882738i \(0.344302\pi\)
\(20\) −1.30170 2.61954i −0.291068 0.585747i
\(21\) −2.04830 2.04830i −0.446976 0.446976i
\(22\) 3.79221 2.76027i 0.808503 0.588493i
\(23\) 0.974737i 0.203247i 0.994823 + 0.101623i \(0.0324037\pi\)
−0.994823 + 0.101623i \(0.967596\pi\)
\(24\) −3.60565 + 4.80845i −0.736000 + 0.981521i
\(25\) −1.68159 + 2.31452i −0.336319 + 0.462903i
\(26\) −0.140673 0.440473i −0.0275882 0.0863838i
\(27\) −2.81110 + 1.43233i −0.540997 + 0.275652i
\(28\) 2.22176 1.58030i 0.419873 0.298648i
\(29\) 0.0706530 0.446086i 0.0131199 0.0828360i −0.980260 0.197715i \(-0.936648\pi\)
0.993380 + 0.114879i \(0.0366480\pi\)
\(30\) −4.33750 0.709376i −0.791915 0.129514i
\(31\) 2.46673 + 7.59180i 0.443037 + 1.36353i 0.884622 + 0.466309i \(0.154416\pi\)
−0.441585 + 0.897220i \(0.645584\pi\)
\(32\) −3.89814 4.09933i −0.689100 0.724666i
\(33\) −0.0416137 7.04741i −0.00724402 1.22680i
\(34\) 6.33492 3.18776i 1.08643 0.546697i
\(35\) 1.77650 + 0.905170i 0.300283 + 0.153002i
\(36\) 0.907428 + 2.89144i 0.151238 + 0.481906i
\(37\) −9.99855 1.58361i −1.64375 0.260345i −0.735118 0.677939i \(-0.762873\pi\)
−0.908633 + 0.417595i \(0.862873\pi\)
\(38\) 3.23958 + 2.37868i 0.525530 + 0.385873i
\(39\) −0.660756 0.214692i −0.105806 0.0343783i
\(40\) 1.33755 3.91456i 0.211486 0.618946i
\(41\) −1.60213 + 2.20515i −0.250211 + 0.344386i −0.915585 0.402124i \(-0.868272\pi\)
0.665374 + 0.746510i \(0.268272\pi\)
\(42\) 0.0206068 4.09655i 0.00317969 0.632111i
\(43\) 7.92591 + 7.92591i 1.20869 + 1.20869i 0.971451 + 0.237239i \(0.0762423\pi\)
0.237239 + 0.971451i \(0.423758\pi\)
\(44\) 6.54721 + 1.06489i 0.987030 + 0.160538i
\(45\) −1.56705 + 1.56705i −0.233602 + 0.233602i
\(46\) −0.979628 + 0.969822i −0.144438 + 0.142992i
\(47\) −1.00202 0.728009i −0.146159 0.106191i 0.512303 0.858805i \(-0.328793\pi\)
−0.658462 + 0.752614i \(0.728793\pi\)
\(48\) −8.42005 + 1.16046i −1.21533 + 0.167499i
\(49\) 1.58885 4.88997i 0.226978 0.698566i
\(50\) −3.99924 + 0.612812i −0.565579 + 0.0866648i
\(51\) 1.66691 10.5244i 0.233414 1.47372i
\(52\) 0.302720 0.579630i 0.0419797 0.0803802i
\(53\) 2.47130 4.85020i 0.339459 0.666226i −0.656665 0.754182i \(-0.728033\pi\)
0.996124 + 0.0879560i \(0.0280335\pi\)
\(54\) −4.23644 1.40010i −0.576507 0.190530i
\(55\) 1.52619 + 4.60444i 0.205791 + 0.620862i
\(56\) 3.79878 + 0.660577i 0.507633 + 0.0882733i
\(57\) 5.74326 1.86610i 0.760714 0.247171i
\(58\) 0.518621 0.372829i 0.0680982 0.0489548i
\(59\) −3.36063 0.532271i −0.437516 0.0692958i −0.0662090 0.997806i \(-0.521090\pi\)
−0.371307 + 0.928510i \(0.621090\pi\)
\(60\) −3.60269 5.06506i −0.465105 0.653897i
\(61\) −5.11921 10.0470i −0.655447 1.28639i −0.944323 0.329021i \(-0.893281\pi\)
0.288876 0.957367i \(-0.406719\pi\)
\(62\) −5.17561 + 10.0326i −0.657303 + 1.27414i
\(63\) −1.67112 1.21414i −0.210541 0.152967i
\(64\) 0.241415 7.99636i 0.0301768 0.999545i
\(65\) 0.478200 0.0593134
\(66\) 7.04136 7.05369i 0.866732 0.868249i
\(67\) −5.18996 + 5.18996i −0.634055 + 0.634055i −0.949083 0.315027i \(-0.897986\pi\)
0.315027 + 0.949083i \(0.397986\pi\)
\(68\) 9.50673 + 3.19501i 1.15286 + 0.387452i
\(69\) 0.324012 + 2.04573i 0.0390064 + 0.246277i
\(70\) 0.857826 + 2.68602i 0.102530 + 0.321040i
\(71\) 9.85959 + 3.20357i 1.17012 + 0.380194i 0.828687 0.559712i \(-0.189088\pi\)
0.341431 + 0.939907i \(0.389088\pi\)
\(72\) −2.00309 + 3.78884i −0.236067 + 0.446519i
\(73\) 6.99703 + 9.63058i 0.818940 + 1.12717i 0.989882 + 0.141893i \(0.0453189\pi\)
−0.170942 + 0.985281i \(0.554681\pi\)
\(74\) −8.35657 11.6243i −0.971431 1.35130i
\(75\) −2.75988 + 5.41657i −0.318683 + 0.625451i
\(76\) 0.832627 + 5.62253i 0.0955088 + 0.644948i
\(77\) −4.01633 + 2.07638i −0.457703 + 0.236626i
\(78\) −0.441654 0.877681i −0.0500074 0.0993778i
\(79\) 1.74983 + 5.38543i 0.196871 + 0.605908i 0.999950 + 0.0100342i \(0.00319404\pi\)
−0.803078 + 0.595874i \(0.796806\pi\)
\(80\) 5.26501 2.55055i 0.588646 0.285160i
\(81\) −9.10125 + 6.61245i −1.01125 + 0.734716i
\(82\) −3.81027 + 0.583855i −0.420774 + 0.0644760i
\(83\) −4.08592 8.01908i −0.448488 0.880208i −0.998971 0.0453612i \(-0.985556\pi\)
0.550482 0.834847i \(-0.314444\pi\)
\(84\) 4.13761 4.05518i 0.451450 0.442456i
\(85\) 1.14733 + 7.24393i 0.124445 + 0.785715i
\(86\) −0.0797380 + 15.8516i −0.00859837 + 1.70932i
\(87\) 0.959708i 0.102891i
\(88\) 5.44397 + 7.63958i 0.580329 + 0.814382i
\(89\) 5.86850i 0.622060i 0.950400 + 0.311030i \(0.100674\pi\)
−0.950400 + 0.311030i \(0.899326\pi\)
\(90\) −3.13406 0.0157652i −0.330359 0.00166180i
\(91\) 0.0697259 + 0.440232i 0.00730926 + 0.0461489i
\(92\) −1.94938 0.0196123i −0.203237 0.00204472i
\(93\) 7.70063 + 15.1133i 0.798518 + 1.56718i
\(94\) −0.265303 1.73138i −0.0273640 0.178579i
\(95\) −3.36268 + 2.44313i −0.345003 + 0.250660i
\(96\) −9.54387 7.30768i −0.974067 0.745837i
\(97\) 3.59783 + 11.0730i 0.365304 + 1.12429i 0.949790 + 0.312887i \(0.101296\pi\)
−0.584486 + 0.811404i \(0.698704\pi\)
\(98\) 6.49533 3.26849i 0.656128 0.330167i
\(99\) −0.815455 4.95889i −0.0819563 0.498387i
\(100\) −4.59496 3.40959i −0.459496 0.340959i
\(101\) 0.513411 1.00763i 0.0510863 0.100263i −0.864052 0.503403i \(-0.832081\pi\)
0.915138 + 0.403140i \(0.132081\pi\)
\(102\) 12.2358 8.79610i 1.21152 0.870944i
\(103\) 10.7278 + 14.7655i 1.05704 + 1.45489i 0.882542 + 0.470234i \(0.155831\pi\)
0.174499 + 0.984657i \(0.444169\pi\)
\(104\) 0.883731 0.272468i 0.0866570 0.0267177i
\(105\) 4.02931 + 1.30920i 0.393220 + 0.127765i
\(106\) 7.33337 2.34204i 0.712280 0.227479i
\(107\) −2.88336 18.2048i −0.278745 1.75992i −0.587920 0.808919i \(-0.700053\pi\)
0.309175 0.951005i \(-0.399947\pi\)
\(108\) −2.80795 5.65074i −0.270195 0.543743i
\(109\) 0.489384 0.489384i 0.0468745 0.0468745i −0.683281 0.730156i \(-0.739448\pi\)
0.730156 + 0.683281i \(0.239448\pi\)
\(110\) −3.10905 + 6.11507i −0.296436 + 0.583049i
\(111\) −21.5108 −2.04172
\(112\) 3.11573 + 4.47509i 0.294409 + 0.422856i
\(113\) 0.717768 + 0.521489i 0.0675219 + 0.0490575i 0.621034 0.783783i \(-0.286713\pi\)
−0.553512 + 0.832841i \(0.686713\pi\)
\(114\) 7.58977 + 3.91539i 0.710847 + 0.366710i
\(115\) −0.647217 1.27024i −0.0603533 0.118450i
\(116\) 0.890705 + 0.150274i 0.0826999 + 0.0139526i
\(117\) −0.489323 0.0775012i −0.0452380 0.00716499i
\(118\) −2.80874 3.90708i −0.258565 0.359676i
\(119\) −6.50149 + 2.11246i −0.595991 + 0.193649i
\(120\) 1.50595 8.66029i 0.137474 0.790572i
\(121\) −10.5010 3.27541i −0.954639 0.297764i
\(122\) 5.00403 15.1412i 0.453043 1.37082i
\(123\) −2.62947 + 5.16062i −0.237091 + 0.465317i
\(124\) −15.2325 + 4.78045i −1.36792 + 0.429297i
\(125\) 1.79854 11.3555i 0.160866 1.01567i
\(126\) −0.442461 2.88752i −0.0394176 0.257241i
\(127\) 3.94075 12.1284i 0.349685 1.07622i −0.609342 0.792908i \(-0.708566\pi\)
0.959027 0.283313i \(-0.0914337\pi\)
\(128\) 8.27668 7.71341i 0.731562 0.681775i
\(129\) 19.2691 + 13.9998i 1.69655 + 1.23262i
\(130\) 0.475788 + 0.480599i 0.0417294 + 0.0421514i
\(131\) −2.99499 + 2.99499i −0.261673 + 0.261673i −0.825734 0.564060i \(-0.809238\pi\)
0.564060 + 0.825734i \(0.309238\pi\)
\(132\) 14.0949 + 0.0585747i 1.22681 + 0.00509828i
\(133\) −2.73946 2.73946i −0.237541 0.237541i
\(134\) −10.3798 0.0522132i −0.896678 0.00451054i
\(135\) 2.71225 3.73310i 0.233434 0.321294i
\(136\) 6.24774 + 12.7333i 0.535740 + 1.09187i
\(137\) −0.747402 0.242846i −0.0638548 0.0207477i 0.276915 0.960894i \(-0.410688\pi\)
−0.340770 + 0.940147i \(0.610688\pi\)
\(138\) −1.73362 + 2.36105i −0.147575 + 0.200986i
\(139\) 12.5840 + 1.99311i 1.06736 + 0.169053i 0.665312 0.746565i \(-0.268298\pi\)
0.402048 + 0.915619i \(0.368298\pi\)
\(140\) −1.84599 + 3.53460i −0.156015 + 0.298728i
\(141\) −2.34498 1.19483i −0.197483 0.100623i
\(142\) 6.59022 + 13.0965i 0.553039 + 1.09903i
\(143\) −0.632204 + 0.881048i −0.0528676 + 0.0736769i
\(144\) −5.80084 + 1.75659i −0.483403 + 0.146382i
\(145\) 0.204125 + 0.628232i 0.0169517 + 0.0521719i
\(146\) −2.71716 + 16.6141i −0.224874 + 1.37500i
\(147\) 1.70912 10.7910i 0.140966 0.890023i
\(148\) 3.36825 19.9642i 0.276868 1.64105i
\(149\) 4.94358 2.51888i 0.404994 0.206355i −0.239614 0.970868i \(-0.577021\pi\)
0.644607 + 0.764514i \(0.277021\pi\)
\(150\) −8.18970 + 2.61552i −0.668687 + 0.213557i
\(151\) 8.41729 11.5854i 0.684989 0.942807i −0.314991 0.949095i \(-0.602002\pi\)
0.999980 + 0.00628803i \(0.00200155\pi\)
\(152\) −4.82231 + 6.43098i −0.391141 + 0.521621i
\(153\) 7.59838i 0.614292i
\(154\) −6.08287 1.97057i −0.490172 0.158793i
\(155\) −8.25542 8.25542i −0.663092 0.663092i
\(156\) 0.442658 1.31712i 0.0354410 0.105454i
\(157\) 24.7282 3.91657i 1.97353 0.312576i 0.980000 0.198998i \(-0.0637686\pi\)
0.993529 0.113579i \(-0.0362314\pi\)
\(158\) −3.67144 + 7.11688i −0.292084 + 0.566188i
\(159\) 3.57439 11.0008i 0.283467 0.872423i
\(160\) 7.80181 + 2.75373i 0.616787 + 0.217702i
\(161\) 1.07501 0.781042i 0.0847228 0.0615547i
\(162\) −15.7010 2.56782i −1.23359 0.201747i
\(163\) −7.91181 4.03127i −0.619701 0.315753i 0.115805 0.993272i \(-0.463055\pi\)
−0.735506 + 0.677519i \(0.763055\pi\)
\(164\) −4.37784 3.24847i −0.341852 0.253663i
\(165\) 4.73365 + 9.15624i 0.368514 + 0.712812i
\(166\) 3.99399 12.0851i 0.309994 0.937983i
\(167\) −12.9255 + 4.19974i −1.00020 + 0.324986i −0.762947 0.646461i \(-0.776248\pi\)
−0.237257 + 0.971447i \(0.576248\pi\)
\(168\) 8.19227 + 0.123636i 0.632047 + 0.00953876i
\(169\) −7.57837 10.4307i −0.582952 0.802364i
\(170\) −6.13874 + 8.36048i −0.470820 + 0.641220i
\(171\) 3.83685 1.95497i 0.293411 0.149501i
\(172\) −16.0105 + 15.6915i −1.22079 + 1.19647i
\(173\) −16.9914 + 2.69118i −1.29183 + 0.204606i −0.764263 0.644904i \(-0.776897\pi\)
−0.527571 + 0.849511i \(0.676897\pi\)
\(174\) 0.964523 0.954868i 0.0731203 0.0723884i
\(175\) 3.90005 0.294816
\(176\) −2.26140 + 13.0723i −0.170459 + 0.985365i
\(177\) −7.23004 −0.543443
\(178\) −5.89794 + 5.83890i −0.442070 + 0.437644i
\(179\) −2.54262 + 0.402712i −0.190045 + 0.0301001i −0.250731 0.968057i \(-0.580671\pi\)
0.0606865 + 0.998157i \(0.480671\pi\)
\(180\) −3.10241 3.16547i −0.231240 0.235940i
\(181\) −16.8100 + 8.56514i −1.24948 + 0.636642i −0.948436 0.316968i \(-0.897335\pi\)
−0.301044 + 0.953610i \(0.597335\pi\)
\(182\) −0.373067 + 0.508088i −0.0276536 + 0.0376620i
\(183\) −14.0836 19.3845i −1.04109 1.43294i
\(184\) −1.91984 1.97867i −0.141532 0.145870i
\(185\) 14.0812 4.57525i 1.03527 0.336379i
\(186\) −7.52737 + 22.7764i −0.551933 + 1.67005i
\(187\) −14.8632 7.46297i −1.08691 0.545747i
\(188\) 1.47611 1.98929i 0.107656 0.145084i
\(189\) 3.83217 + 1.95259i 0.278749 + 0.142030i
\(190\) −5.80111 0.948742i −0.420857 0.0688290i
\(191\) 19.5399 14.1966i 1.41386 1.02723i 0.421111 0.907009i \(-0.361640\pi\)
0.992747 0.120219i \(-0.0383597\pi\)
\(192\) −2.15139 16.8626i −0.155263 1.21695i
\(193\) 2.45666 7.56081i 0.176834 0.544239i −0.822878 0.568217i \(-0.807633\pi\)
0.999712 + 0.0239783i \(0.00763327\pi\)
\(194\) −7.54886 + 14.6330i −0.541976 + 1.05059i
\(195\) 1.00362 0.158958i 0.0718708 0.0113832i
\(196\) 9.74747 + 3.27592i 0.696248 + 0.233994i
\(197\) −15.4303 15.4303i −1.09936 1.09936i −0.994485 0.104877i \(-0.966555\pi\)
−0.104877 0.994485i \(-0.533445\pi\)
\(198\) 4.17243 5.75343i 0.296522 0.408878i
\(199\) 2.67826i 0.189857i 0.995484 + 0.0949284i \(0.0302622\pi\)
−0.995484 + 0.0949284i \(0.969738\pi\)
\(200\) −1.14510 8.01041i −0.0809705 0.566422i
\(201\) −9.16724 + 12.6176i −0.646607 + 0.889978i
\(202\) 1.52350 0.486558i 0.107193 0.0342341i
\(203\) −0.548589 + 0.279520i −0.0385034 + 0.0196185i
\(204\) 21.0143 + 3.54541i 1.47129 + 0.248228i
\(205\) 0.623632 3.93746i 0.0435563 0.275004i
\(206\) −4.16593 + 25.4727i −0.290254 + 1.77477i
\(207\) 0.456407 + 1.40468i 0.0317225 + 0.0976317i
\(208\) 1.15311 + 0.617071i 0.0799538 + 0.0427862i
\(209\) −0.0556555 9.42542i −0.00384977 0.651970i
\(210\) 2.69322 + 5.35212i 0.185850 + 0.369332i
\(211\) 16.6028 + 8.45953i 1.14298 + 0.582378i 0.919795 0.392398i \(-0.128355\pi\)
0.223185 + 0.974776i \(0.428355\pi\)
\(212\) 9.65019 + 5.03994i 0.662778 + 0.346144i
\(213\) 21.7577 + 3.44608i 1.49081 + 0.236122i
\(214\) 15.4273 21.0108i 1.05459 1.43627i
\(215\) −15.5914 5.06596i −1.06333 0.345496i
\(216\) 2.88530 8.44429i 0.196320 0.574561i
\(217\) 6.39625 8.80368i 0.434206 0.597633i
\(218\) 0.978756 + 0.00492341i 0.0662897 + 0.000333456i
\(219\) 17.8863 + 17.8863i 1.20864 + 1.20864i
\(220\) −9.23912 + 2.95958i −0.622901 + 0.199535i
\(221\) −1.15936 + 1.15936i −0.0779869 + 0.0779869i
\(222\) −21.4024 21.6188i −1.43643 1.45096i
\(223\) −7.78487 5.65604i −0.521313 0.378756i 0.295785 0.955254i \(-0.404419\pi\)
−0.817098 + 0.576498i \(0.804419\pi\)
\(224\) −1.39752 + 7.58388i −0.0933758 + 0.506720i
\(225\) −1.33958 + 4.12279i −0.0893050 + 0.274853i
\(226\) 0.190043 + 1.24023i 0.0126415 + 0.0824987i
\(227\) −2.71779 + 17.1594i −0.180386 + 1.13891i 0.716807 + 0.697272i \(0.245603\pi\)
−0.897193 + 0.441639i \(0.854397\pi\)
\(228\) 3.61645 + 11.5235i 0.239505 + 0.763162i
\(229\) 4.69308 9.21069i 0.310127 0.608659i −0.682359 0.731018i \(-0.739046\pi\)
0.992486 + 0.122358i \(0.0390457\pi\)
\(230\) 0.632655 1.91429i 0.0417161 0.126225i
\(231\) −7.73905 + 5.69287i −0.509192 + 0.374563i
\(232\) 0.735185 + 1.04469i 0.0482672 + 0.0685873i
\(233\) 12.9192 4.19770i 0.846364 0.275000i 0.146442 0.989219i \(-0.453218\pi\)
0.699922 + 0.714219i \(0.253218\pi\)
\(234\) −0.408966 0.568889i −0.0267349 0.0371894i
\(235\) 1.78918 + 0.283378i 0.116713 + 0.0184855i
\(236\) 1.13211 6.71021i 0.0736938 0.436797i
\(237\) 5.46262 + 10.7210i 0.354835 + 0.696403i
\(238\) −8.59177 4.43230i −0.556922 0.287304i
\(239\) 11.7653 + 8.54800i 0.761035 + 0.552924i 0.899228 0.437481i \(-0.144129\pi\)
−0.138193 + 0.990405i \(0.544129\pi\)
\(240\) 10.2021 7.10310i 0.658543 0.458503i
\(241\) −22.5894 −1.45511 −0.727555 0.686049i \(-0.759343\pi\)
−0.727555 + 0.686049i \(0.759343\pi\)
\(242\) −7.15624 13.8126i −0.460020 0.887908i
\(243\) −10.2105 + 10.2105i −0.655003 + 0.655003i
\(244\) 20.1960 10.0357i 1.29292 0.642472i
\(245\) 1.17638 + 7.42737i 0.0751561 + 0.474517i
\(246\) −7.80272 + 2.49193i −0.497483 + 0.158880i
\(247\) −0.883715 0.287136i −0.0562294 0.0182701i
\(248\) −19.9601 10.5526i −1.26747 0.670088i
\(249\) −11.2409 15.4718i −0.712366 0.980487i
\(250\) 13.2020 9.49071i 0.834967 0.600245i
\(251\) 5.61716 11.0243i 0.354552 0.695848i −0.642993 0.765872i \(-0.722308\pi\)
0.997545 + 0.0700240i \(0.0223076\pi\)
\(252\) 2.46178 3.31764i 0.155078 0.208992i
\(253\) 3.19597 + 0.486865i 0.200929 + 0.0306089i
\(254\) 16.1101 8.10671i 1.01084 0.508660i
\(255\) 4.81590 + 14.8218i 0.301583 + 0.928178i
\(256\) 15.9870 + 0.643696i 0.999190 + 0.0402310i
\(257\) −1.93285 + 1.40430i −0.120568 + 0.0875976i −0.646435 0.762969i \(-0.723741\pi\)
0.525867 + 0.850567i \(0.323741\pi\)
\(258\) 5.10187 + 33.2951i 0.317629 + 2.07286i
\(259\) 6.26515 + 12.2961i 0.389298 + 0.764040i
\(260\) −0.00962167 + 0.956352i −0.000596711 + 0.0593104i
\(261\) −0.107056 0.675928i −0.00662663 0.0418389i
\(262\) −5.98990 0.0301308i −0.370057 0.00186149i
\(263\) 16.1498i 0.995838i −0.867223 0.497919i \(-0.834098\pi\)
0.867223 0.497919i \(-0.165902\pi\)
\(264\) 13.9650 + 14.2239i 0.859486 + 0.875423i
\(265\) 7.96149i 0.489071i
\(266\) 0.0275601 5.47885i 0.00168982 0.335930i
\(267\) 1.95074 + 12.3165i 0.119384 + 0.753758i
\(268\) −10.2750 10.4838i −0.627644 0.640402i
\(269\) 14.8005 + 29.0477i 0.902404 + 1.77107i 0.549804 + 0.835294i \(0.314703\pi\)
0.352601 + 0.935774i \(0.385297\pi\)
\(270\) 6.45041 0.988409i 0.392559 0.0601527i
\(271\) −6.96760 + 5.06225i −0.423251 + 0.307510i −0.778945 0.627093i \(-0.784245\pi\)
0.355693 + 0.934603i \(0.384245\pi\)
\(272\) −6.58098 + 18.9482i −0.399031 + 1.14890i
\(273\) 0.292674 + 0.900759i 0.0177135 + 0.0545164i
\(274\) −0.499569 0.992773i −0.0301800 0.0599756i
\(275\) 6.74890 + 6.66967i 0.406974 + 0.402196i
\(276\) −4.09777 + 0.606829i −0.246657 + 0.0365268i
\(277\) 0.0238196 0.0467486i 0.00143118 0.00280885i −0.890290 0.455394i \(-0.849498\pi\)
0.891721 + 0.452586i \(0.149498\pi\)
\(278\) 10.5174 + 14.6302i 0.630793 + 0.877461i
\(279\) 7.10951 + 9.78540i 0.425635 + 0.585836i
\(280\) −5.38902 + 1.66152i −0.322056 + 0.0992949i
\(281\) −14.5229 4.71878i −0.866365 0.281499i −0.158080 0.987426i \(-0.550530\pi\)
−0.708284 + 0.705927i \(0.750530\pi\)
\(282\) −1.13233 3.54555i −0.0674295 0.211134i
\(283\) −1.20110 7.58343i −0.0713979 0.450788i −0.997326 0.0730875i \(-0.976715\pi\)
0.925928 0.377701i \(-0.123285\pi\)
\(284\) −6.60521 + 19.6537i −0.391947 + 1.16623i
\(285\) −6.24530 + 6.24530i −0.369939 + 0.369939i
\(286\) −1.51448 + 0.241229i −0.0895534 + 0.0142642i
\(287\) 3.71576 0.219335
\(288\) −7.53699 4.08222i −0.444121 0.240547i
\(289\) −6.59065 4.78839i −0.387686 0.281670i
\(290\) −0.428289 + 0.830214i −0.0251500 + 0.0487518i
\(291\) 11.2317 + 22.0435i 0.658414 + 1.29221i
\(292\) −19.4010 + 13.7996i −1.13536 + 0.807559i
\(293\) 8.31646 + 1.31720i 0.485853 + 0.0769516i 0.394556 0.918872i \(-0.370899\pi\)
0.0912975 + 0.995824i \(0.470899\pi\)
\(294\) 12.5456 9.01884i 0.731674 0.525990i
\(295\) 4.73285 1.53779i 0.275557 0.0895339i
\(296\) 23.4157 16.4784i 1.36101 0.957787i
\(297\) 3.29222 + 9.93247i 0.191034 + 0.576340i
\(298\) 7.45016 + 2.46221i 0.431576 + 0.142632i
\(299\) 0.144687 0.283963i 0.00836744 0.0164220i
\(300\) −10.7771 5.62846i −0.622213 0.324959i
\(301\) 2.39037 15.0922i 0.137778 0.869899i
\(302\) 20.0184 3.06746i 1.15193 0.176512i
\(303\) 0.742577 2.28542i 0.0426599 0.131294i
\(304\) −11.2612 + 1.55204i −0.645876 + 0.0890156i
\(305\) 13.3422 + 9.69371i 0.763975 + 0.555060i
\(306\) 7.63650 7.56006i 0.436550 0.432180i
\(307\) −15.0185 + 15.0185i −0.857149 + 0.857149i −0.991001 0.133852i \(-0.957265\pi\)
0.133852 + 0.991001i \(0.457265\pi\)
\(308\) −4.07175 8.07402i −0.232009 0.460060i
\(309\) 27.4231 + 27.4231i 1.56005 + 1.56005i
\(310\) 0.0830531 16.5106i 0.00471710 0.937741i
\(311\) 5.80207 7.98586i 0.329005 0.452837i −0.612185 0.790715i \(-0.709709\pi\)
0.941190 + 0.337878i \(0.109709\pi\)
\(312\) 1.76416 0.865603i 0.0998758 0.0490051i
\(313\) −17.0320 5.53405i −0.962708 0.312803i −0.214839 0.976649i \(-0.568923\pi\)
−0.747869 + 0.663847i \(0.768923\pi\)
\(314\) 28.5398 + 20.9555i 1.61059 + 1.18259i
\(315\) 2.98391 + 0.472605i 0.168124 + 0.0266283i
\(316\) −10.8055 + 3.39113i −0.607858 + 0.190766i
\(317\) −26.9059 13.7092i −1.51118 0.769987i −0.514994 0.857194i \(-0.672206\pi\)
−0.996190 + 0.0872074i \(0.972206\pi\)
\(318\) 14.6124 7.35304i 0.819422 0.412338i
\(319\) −1.42734 0.454469i −0.0799154 0.0254454i
\(320\) 4.99491 + 10.5808i 0.279224 + 0.591485i
\(321\) −12.1029 37.2488i −0.675517 2.07903i
\(322\) 1.85455 + 0.303303i 0.103350 + 0.0169024i
\(323\) 2.22938 14.0757i 0.124046 0.783194i
\(324\) −13.0411 18.3346i −0.724506 1.01859i
\(325\) 0.833446 0.424662i 0.0462313 0.0235560i
\(326\) −3.82042 11.9625i −0.211593 0.662539i
\(327\) 0.864419 1.18977i 0.0478025 0.0657945i
\(328\) −1.09099 7.63190i −0.0602397 0.421401i
\(329\) 1.68844i 0.0930868i
\(330\) −4.49241 + 13.8675i −0.247299 + 0.763379i
\(331\) 8.66781 + 8.66781i 0.476426 + 0.476426i 0.903987 0.427561i \(-0.140627\pi\)
−0.427561 + 0.903987i \(0.640627\pi\)
\(332\) 16.1196 8.01009i 0.884676 0.439611i
\(333\) −15.1502 + 2.39956i −0.830227 + 0.131495i
\(334\) −17.0811 8.81177i −0.934637 0.482159i
\(335\) 3.31724 10.2094i 0.181240 0.557800i
\(336\) 8.02670 + 8.35638i 0.437892 + 0.455878i
\(337\) −17.9847 + 13.0667i −0.979690 + 0.711787i −0.957639 0.287970i \(-0.907020\pi\)
−0.0220509 + 0.999757i \(0.507020\pi\)
\(338\) 2.94292 17.9945i 0.160074 0.978773i
\(339\) 1.67976 + 0.855881i 0.0912321 + 0.0464851i
\(340\) −14.5102 + 2.14878i −0.786927 + 0.116534i
\(341\) 26.1241 4.29592i 1.41470 0.232637i
\(342\) 5.78229 + 1.91099i 0.312670 + 0.103334i
\(343\) −15.7417 + 5.11478i −0.849970 + 0.276172i
\(344\) −31.7000 0.478412i −1.70915 0.0257942i
\(345\) −1.78058 2.45076i −0.0958634 0.131945i
\(346\) −19.6104 14.3991i −1.05426 0.774099i
\(347\) −11.8578 + 6.04187i −0.636562 + 0.324345i −0.742318 0.670047i \(-0.766274\pi\)
0.105756 + 0.994392i \(0.466274\pi\)
\(348\) 1.91932 + 0.0193099i 0.102886 + 0.00103512i
\(349\) 6.77899 1.07369i 0.362871 0.0574732i 0.0276632 0.999617i \(-0.491193\pi\)
0.335208 + 0.942144i \(0.391193\pi\)
\(350\) 3.88039 + 3.91962i 0.207415 + 0.209513i
\(351\) 1.03155 0.0550600
\(352\) −15.3879 + 10.7337i −0.820179 + 0.572107i
\(353\) 6.40106 0.340694 0.170347 0.985384i \(-0.445511\pi\)
0.170347 + 0.985384i \(0.445511\pi\)
\(354\) −7.19358 7.26632i −0.382335 0.386201i
\(355\) −14.9757 + 2.37192i −0.794829 + 0.125889i
\(356\) −11.7364 0.118078i −0.622028 0.00625810i
\(357\) −12.9428 + 6.59468i −0.685005 + 0.349028i
\(358\) −2.93453 2.15470i −0.155095 0.113879i
\(359\) 7.09870 + 9.77052i 0.374655 + 0.515668i 0.954159 0.299301i \(-0.0967535\pi\)
−0.579504 + 0.814970i \(0.696754\pi\)
\(360\) 0.0945879 6.26748i 0.00498522 0.330325i
\(361\) −10.3889 + 3.37554i −0.546782 + 0.177660i
\(362\) −25.3334 8.37244i −1.33149 0.440045i
\(363\) −23.1278 3.38361i −1.21390 0.177594i
\(364\) −0.881823 + 0.130587i −0.0462201 + 0.00684462i
\(365\) −15.5128 7.90419i −0.811979 0.413724i
\(366\) 5.46911 33.4410i 0.285875 1.74799i
\(367\) 12.5129 9.09119i 0.653171 0.474556i −0.211179 0.977447i \(-0.567730\pi\)
0.864350 + 0.502891i \(0.167730\pi\)
\(368\) 0.0784452 3.89816i 0.00408924 0.203206i
\(369\) −1.27628 + 3.92797i −0.0664403 + 0.204482i
\(370\) 18.6084 + 9.59965i 0.967403 + 0.499062i
\(371\) −7.32937 + 1.16086i −0.380522 + 0.0602688i
\(372\) −30.3801 + 15.0964i −1.57513 + 0.782711i
\(373\) −9.30801 9.30801i −0.481950 0.481950i 0.423804 0.905754i \(-0.360695\pi\)
−0.905754 + 0.423804i \(0.860695\pi\)
\(374\) −7.28785 22.3631i −0.376846 1.15637i
\(375\) 24.4303i 1.26157i
\(376\) 3.46793 0.495744i 0.178845 0.0255660i
\(377\) −0.0867983 + 0.119468i −0.00447034 + 0.00615289i
\(378\) 1.85046 + 5.79414i 0.0951774 + 0.298019i
\(379\) 3.14358 1.60174i 0.161475 0.0822757i −0.371385 0.928479i \(-0.621117\pi\)
0.532860 + 0.846203i \(0.321117\pi\)
\(380\) −4.81835 6.77417i −0.247176 0.347508i
\(381\) 4.23906 26.7644i 0.217174 1.37118i
\(382\) 33.7092 + 5.51297i 1.72471 + 0.282068i
\(383\) −2.38644 7.34470i −0.121941 0.375296i 0.871390 0.490591i \(-0.163219\pi\)
−0.993331 + 0.115294i \(0.963219\pi\)
\(384\) 14.8067 18.9397i 0.755599 0.966515i
\(385\) 3.85520 5.37266i 0.196479 0.273816i
\(386\) 10.0430 5.05370i 0.511176 0.257227i
\(387\) 15.1331 + 7.71069i 0.769257 + 0.391956i
\(388\) −22.2172 + 6.97250i −1.12791 + 0.353975i
\(389\) 18.6687 + 2.95683i 0.946539 + 0.149917i 0.610575 0.791958i \(-0.290938\pi\)
0.335963 + 0.941875i \(0.390938\pi\)
\(390\) 1.15832 + 0.850501i 0.0586536 + 0.0430668i
\(391\) 4.64871 + 1.51046i 0.235096 + 0.0763872i
\(392\) 6.40595 + 13.0558i 0.323550 + 0.659416i
\(393\) −5.29016 + 7.28128i −0.266853 + 0.367292i
\(394\) 0.155235 30.8602i 0.00782064 1.55471i
\(395\) −5.85618 5.85618i −0.294656 0.294656i
\(396\) 9.93368 1.53105i 0.499186 0.0769382i
\(397\) −7.86705 + 7.86705i −0.394836 + 0.394836i −0.876407 0.481571i \(-0.840066\pi\)
0.481571 + 0.876407i \(0.340066\pi\)
\(398\) −2.69170 + 2.66475i −0.134923 + 0.133572i
\(399\) −6.66006 4.83882i −0.333420 0.242244i
\(400\) 6.91128 9.12086i 0.345564 0.456043i
\(401\) −3.07439 + 9.46201i −0.153528 + 0.472510i −0.998009 0.0630755i \(-0.979909\pi\)
0.844481 + 0.535586i \(0.179909\pi\)
\(402\) −21.8019 + 3.34076i −1.08738 + 0.166622i
\(403\) 0.408287 2.57782i 0.0203382 0.128410i
\(404\) 2.00482 + 1.04704i 0.0997435 + 0.0520924i
\(405\) 7.46975 14.6602i 0.371175 0.728471i
\(406\) −0.826745 0.273231i −0.0410307 0.0135602i
\(407\) −10.1865 + 31.9922i −0.504924 + 1.58580i
\(408\) 17.3451 + 24.6473i 0.858711 + 1.22022i
\(409\) 0.957283 0.311040i 0.0473346 0.0153800i −0.285254 0.958452i \(-0.592078\pi\)
0.332589 + 0.943072i \(0.392078\pi\)
\(410\) 4.57770 3.29084i 0.226076 0.162523i
\(411\) −1.64933 0.261229i −0.0813556 0.0128855i
\(412\) −29.7454 + 21.1574i −1.46545 + 1.04235i
\(413\) 2.10579 + 4.13285i 0.103619 + 0.203364i
\(414\) −0.957619 + 1.85629i −0.0470644 + 0.0912316i
\(415\) 10.6492 + 7.73709i 0.522748 + 0.379799i
\(416\) 0.527128 + 1.77286i 0.0258446 + 0.0869214i
\(417\) 27.0732 1.32578
\(418\) 9.41734 9.43382i 0.460617 0.461423i
\(419\) 15.5062 15.5062i 0.757529 0.757529i −0.218343 0.975872i \(-0.570065\pi\)
0.975872 + 0.218343i \(0.0700651\pi\)
\(420\) −2.69934 + 8.03187i −0.131714 + 0.391915i
\(421\) −2.51473 15.8774i −0.122560 0.773816i −0.970032 0.242976i \(-0.921877\pi\)
0.847472 0.530840i \(-0.178123\pi\)
\(422\) 8.01706 + 25.1029i 0.390264 + 1.22199i
\(423\) −1.78487 0.579939i −0.0867833 0.0281976i
\(424\) 4.53629 + 14.7131i 0.220302 + 0.714533i
\(425\) 8.43257 + 11.6064i 0.409040 + 0.562995i
\(426\) 18.1846 + 25.2956i 0.881047 + 1.22557i
\(427\) −6.97864 + 13.6963i −0.337720 + 0.662813i
\(428\) 36.4658 5.40013i 1.76264 0.261025i
\(429\) −1.03397 + 2.05925i −0.0499205 + 0.0994215i
\(430\) −10.4214 20.7101i −0.502566 0.998729i
\(431\) 6.95373 + 21.4014i 0.334950 + 1.03087i 0.966747 + 0.255735i \(0.0823175\pi\)
−0.631797 + 0.775134i \(0.717683\pi\)
\(432\) 11.3574 5.50192i 0.546434 0.264711i
\(433\) −25.0480 + 18.1984i −1.20373 + 0.874560i −0.994646 0.103338i \(-0.967048\pi\)
−0.209082 + 0.977898i \(0.567048\pi\)
\(434\) 15.2118 2.33094i 0.730192 0.111889i
\(435\) 0.637237 + 1.25065i 0.0305532 + 0.0599640i
\(436\) 0.968872 + 0.988566i 0.0464006 + 0.0473437i
\(437\) 0.433343 + 2.73602i 0.0207296 + 0.130882i
\(438\) −0.179944 + 35.7721i −0.00859804 + 1.70926i
\(439\) 10.3118i 0.492157i −0.969250 0.246078i \(-0.920858\pi\)
0.969250 0.246078i \(-0.0791420\pi\)
\(440\) −12.1670 6.34082i −0.580037 0.302287i
\(441\) 7.79079i 0.370990i
\(442\) −2.31869 0.0116636i −0.110289 0.000554783i
\(443\) −0.924382 5.83632i −0.0439187 0.277292i 0.955949 0.293532i \(-0.0948306\pi\)
−0.999868 + 0.0162396i \(0.994831\pi\)
\(444\) 0.432811 43.0195i 0.0205403 2.04162i
\(445\) −3.89663 7.64757i −0.184718 0.362530i
\(446\) −2.06119 13.4514i −0.0976003 0.636944i
\(447\) 9.53803 6.92978i 0.451133 0.327767i
\(448\) −9.01241 + 6.14111i −0.425796 + 0.290140i
\(449\) 11.7324 + 36.1085i 0.553684 + 1.70407i 0.699393 + 0.714738i \(0.253454\pi\)
−0.145708 + 0.989328i \(0.546546\pi\)
\(450\) −5.47629 + 2.75570i −0.258155 + 0.129905i
\(451\) 6.43000 + 6.35451i 0.302777 + 0.299222i
\(452\) −1.05737 + 1.42497i −0.0497343 + 0.0670250i
\(453\) 13.8147 27.1128i 0.649070 1.27387i
\(454\) −19.9496 + 14.3415i −0.936281 + 0.673078i
\(455\) −0.383174 0.527394i −0.0179635 0.0247246i
\(456\) −7.98310 + 15.1000i −0.373843 + 0.707121i
\(457\) −7.69704 2.50092i −0.360052 0.116988i 0.123404 0.992356i \(-0.460619\pi\)
−0.483456 + 0.875368i \(0.660619\pi\)
\(458\) 13.9263 4.44761i 0.650734 0.207823i
\(459\) 2.47495 + 15.6263i 0.115521 + 0.729371i
\(460\) 2.55336 1.26881i 0.119051 0.0591586i
\(461\) −12.9040 + 12.9040i −0.600997 + 0.600997i −0.940577 0.339580i \(-0.889715\pi\)
0.339580 + 0.940577i \(0.389715\pi\)
\(462\) −13.4215 2.11372i −0.624423 0.0983392i
\(463\) −10.8927 −0.506224 −0.253112 0.967437i \(-0.581454\pi\)
−0.253112 + 0.967437i \(0.581454\pi\)
\(464\) −0.318455 + 1.77830i −0.0147839 + 0.0825553i
\(465\) −20.0702 14.5819i −0.930735 0.676219i
\(466\) 17.0728 + 8.80748i 0.790882 + 0.407999i
\(467\) −0.139100 0.272998i −0.00643677 0.0126329i 0.887766 0.460296i \(-0.152257\pi\)
−0.894203 + 0.447663i \(0.852257\pi\)
\(468\) 0.164840 0.977038i 0.00761973 0.0451636i
\(469\) 9.88251 + 1.56524i 0.456332 + 0.0722759i
\(470\) 1.49536 + 2.08010i 0.0689756 + 0.0959480i
\(471\) 50.5965 16.4398i 2.33136 0.757506i
\(472\) 7.87027 5.53858i 0.362259 0.254934i
\(473\) 29.9463 22.0286i 1.37693 1.01288i
\(474\) −5.33972 + 16.1570i −0.245261 + 0.742114i
\(475\) −3.69115 + 7.24428i −0.169361 + 0.332391i
\(476\) −4.09390 13.0448i −0.187644 0.597909i
\(477\) 1.29031 8.14668i 0.0590791 0.373011i
\(478\) 3.11509 + 20.3292i 0.142481 + 0.929838i
\(479\) −11.5273 + 35.4773i −0.526695 + 1.62100i 0.234246 + 0.972177i \(0.424738\pi\)
−0.760940 + 0.648822i \(0.775262\pi\)
\(480\) 17.2894 + 3.18601i 0.789149 + 0.145421i
\(481\) 2.67774 + 1.94549i 0.122094 + 0.0887068i
\(482\) −22.4755 22.7027i −1.02373 1.03408i
\(483\) 1.99655 1.99655i 0.0908464 0.0908464i
\(484\) 6.76177 20.9351i 0.307353 0.951596i
\(485\) −12.0409 12.0409i −0.546749 0.546749i
\(486\) −20.4207 0.102722i −0.926303 0.00465956i
\(487\) 14.7294 20.2733i 0.667452 0.918669i −0.332247 0.943192i \(-0.607807\pi\)
0.999699 + 0.0245231i \(0.00780674\pi\)
\(488\) 30.1802 + 10.3122i 1.36620 + 0.466811i
\(489\) −17.9449 5.83066i −0.811498 0.263672i
\(490\) −6.29419 + 8.57220i −0.284342 + 0.387252i
\(491\) 12.8584 + 2.03657i 0.580290 + 0.0919090i 0.439678 0.898156i \(-0.355093\pi\)
0.140613 + 0.990065i \(0.455093\pi\)
\(492\) −10.2678 5.36250i −0.462908 0.241760i
\(493\) −2.01799 1.02821i −0.0908855 0.0463085i
\(494\) −0.590681 1.17384i −0.0265760 0.0528135i
\(495\) 4.35532 + 5.92075i 0.195757 + 0.266118i
\(496\) −9.25394 30.5596i −0.415514 1.37217i
\(497\) −4.36720 13.4409i −0.195896 0.602905i
\(498\) 4.36521 26.6912i 0.195610 1.19606i
\(499\) 2.98992 18.8776i 0.133847 0.845077i −0.825819 0.563935i \(-0.809287\pi\)
0.959666 0.281142i \(-0.0907131\pi\)
\(500\) 22.6737 + 3.82538i 1.01400 + 0.171076i
\(501\) −25.7313 + 13.1108i −1.14959 + 0.585745i
\(502\) 16.6685 5.32336i 0.743950 0.237593i
\(503\) −11.9669 + 16.4711i −0.533579 + 0.734409i −0.987671 0.156546i \(-0.949964\pi\)
0.454091 + 0.890955i \(0.349964\pi\)
\(504\) 5.78366 0.826779i 0.257624 0.0368277i
\(505\) 1.65399i 0.0736018i
\(506\) 2.69054 + 3.69641i 0.119609 + 0.164326i
\(507\) −19.3724 19.3724i −0.860357 0.860357i
\(508\) 24.1763 + 8.12514i 1.07265 + 0.360495i
\(509\) −11.2185 + 1.77683i −0.497251 + 0.0787568i −0.400023 0.916505i \(-0.630998\pi\)
−0.0972283 + 0.995262i \(0.530998\pi\)
\(510\) −10.1046 + 19.5871i −0.447438 + 0.867333i
\(511\) 5.01470 15.4337i 0.221837 0.682745i
\(512\) 15.2595 + 16.7077i 0.674381 + 0.738384i
\(513\) −7.25380 + 5.27020i −0.320263 + 0.232685i
\(514\) −3.33444 0.545331i −0.147076 0.0240535i
\(515\) −23.7842 12.1186i −1.04806 0.534011i
\(516\) −28.3860 + 38.2546i −1.24962 + 1.68407i
\(517\) −2.88748 + 2.92179i −0.126991 + 0.128500i
\(518\) −6.12419 + 18.5306i −0.269082 + 0.814190i
\(519\) −34.7662 + 11.2962i −1.52607 + 0.495849i
\(520\) −0.970723 + 0.941859i −0.0425690 + 0.0413032i
\(521\) 4.62797 + 6.36985i 0.202755 + 0.279068i 0.898271 0.439443i \(-0.144824\pi\)
−0.695516 + 0.718511i \(0.744824\pi\)
\(522\) 0.572803 0.780113i 0.0250709 0.0341446i
\(523\) 7.04138 3.58776i 0.307898 0.156882i −0.293214 0.956047i \(-0.594725\pi\)
0.601112 + 0.799165i \(0.294725\pi\)
\(524\) −5.92941 6.04993i −0.259027 0.264292i
\(525\) 8.18523 1.29641i 0.357233 0.0565801i
\(526\) 16.2308 16.0683i 0.707697 0.700613i
\(527\) 40.0293 1.74370
\(528\) −0.400742 + 28.1873i −0.0174401 + 1.22669i
\(529\) 22.0499 0.958691
\(530\) −8.00144 + 7.92134i −0.347560 + 0.344081i
\(531\) −5.09216 + 0.806520i −0.220981 + 0.0350000i
\(532\) 5.53376 5.42352i 0.239919 0.235140i
\(533\) 0.794063 0.404595i 0.0343947 0.0175250i
\(534\) −10.4374 + 14.2149i −0.451670 + 0.615140i
\(535\) 15.8453 + 21.8092i 0.685052 + 0.942893i
\(536\) 0.313269 20.7575i 0.0135312 0.896587i
\(537\) −5.20246 + 1.69038i −0.224503 + 0.0729454i
\(538\) −14.4675 + 43.7760i −0.623740 + 1.88732i
\(539\) −15.2396 7.65196i −0.656416 0.329593i
\(540\) 7.41125 + 5.49935i 0.318929 + 0.236654i
\(541\) 26.3331 + 13.4174i 1.13215 + 0.576859i 0.916668 0.399650i \(-0.130868\pi\)
0.215481 + 0.976508i \(0.430868\pi\)
\(542\) −12.0201 1.96583i −0.516308 0.0844396i
\(543\) −32.4329 + 23.5639i −1.39183 + 1.01122i
\(544\) −25.5911 + 12.2387i −1.09721 + 0.524728i
\(545\) −0.312797 + 0.962691i −0.0133988 + 0.0412372i
\(546\) −0.614080 + 1.19036i −0.0262802 + 0.0509427i
\(547\) −2.21190 + 0.350331i −0.0945741 + 0.0149791i −0.203542 0.979066i \(-0.565245\pi\)
0.108968 + 0.994045i \(0.465245\pi\)
\(548\) 0.500705 1.48984i 0.0213890 0.0636429i
\(549\) −12.0816 12.0816i −0.515628 0.515628i
\(550\) 0.0117351 + 13.4188i 0.000500387 + 0.572180i
\(551\) 1.28354i 0.0546808i
\(552\) −4.68698 3.51456i −0.199491 0.149590i
\(553\) 4.53733 6.24510i 0.192947 0.265569i
\(554\) 0.0706827 0.0225737i 0.00300302 0.000959067i
\(555\) 28.0320 14.2830i 1.18989 0.606280i
\(556\) −4.23921 + 25.1266i −0.179783 + 1.06561i
\(557\) 1.95053 12.3151i 0.0826465 0.521809i −0.911282 0.411783i \(-0.864906\pi\)
0.993929 0.110027i \(-0.0350937\pi\)
\(558\) −2.76084 + 16.8812i −0.116876 + 0.714639i
\(559\) −1.13251 3.48549i −0.0478999 0.147421i
\(560\) −7.03170 3.76292i −0.297144 0.159012i
\(561\) −33.6749 10.7222i −1.42176 0.452693i
\(562\) −9.70722 19.2908i −0.409474 0.813732i
\(563\) 7.50226 + 3.82259i 0.316183 + 0.161103i 0.604879 0.796318i \(-0.293222\pi\)
−0.288696 + 0.957421i \(0.593222\pi\)
\(564\) 2.43672 4.66568i 0.102604 0.196461i
\(565\) −1.28163 0.202990i −0.0539185 0.00853985i
\(566\) 6.42644 8.75232i 0.270124 0.367887i
\(567\) 14.5854 + 4.73908i 0.612529 + 0.199023i
\(568\) −26.3242 + 12.9163i −1.10454 + 0.541954i
\(569\) 12.6161 17.3645i 0.528893 0.727959i −0.458068 0.888917i \(-0.651458\pi\)
0.986961 + 0.160958i \(0.0514585\pi\)
\(570\) −12.4904 0.0628303i −0.523167 0.00263167i
\(571\) 28.3041 + 28.3041i 1.18449 + 1.18449i 0.978568 + 0.205922i \(0.0660192\pi\)
0.205922 + 0.978568i \(0.433981\pi\)
\(572\) −1.74929 1.28207i −0.0731413 0.0536061i
\(573\) 36.2903 36.2903i 1.51605 1.51605i
\(574\) 3.69703 + 3.73441i 0.154311 + 0.155871i
\(575\) −2.25605 1.63911i −0.0940836 0.0683557i
\(576\) −3.39628 11.6364i −0.141512 0.484852i
\(577\) 7.75783 23.8761i 0.322962 0.993976i −0.649389 0.760456i \(-0.724975\pi\)
0.972352 0.233520i \(-0.0750245\pi\)
\(578\) −1.74500 11.3880i −0.0725825 0.473677i
\(579\) 2.64262 16.6849i 0.109824 0.693399i
\(580\) −1.26051 + 0.395589i −0.0523398 + 0.0164259i
\(581\) −5.57004 + 10.9318i −0.231084 + 0.453528i
\(582\) −10.9790 + 33.2204i −0.455094 + 1.37703i
\(583\) −14.6685 10.5255i −0.607505 0.435921i
\(584\) −33.1719 5.76833i −1.37266 0.238695i
\(585\) 0.689125 0.223910i 0.0284918 0.00925755i
\(586\) 6.95072 + 9.66875i 0.287132 + 0.399412i
\(587\) −26.4169 4.18403i −1.09034 0.172693i −0.414727 0.909946i \(-0.636123\pi\)
−0.675617 + 0.737253i \(0.736123\pi\)
\(588\) 21.5464 + 3.63519i 0.888560 + 0.149913i
\(589\) 10.2991 + 20.2130i 0.424365 + 0.832864i
\(590\) 6.25449 + 3.22655i 0.257493 + 0.132835i
\(591\) −37.5135 27.2551i −1.54310 1.12113i
\(592\) 39.8587 + 7.13784i 1.63818 + 0.293363i
\(593\) 30.0848 1.23543 0.617717 0.786400i \(-0.288058\pi\)
0.617717 + 0.786400i \(0.288058\pi\)
\(594\) −6.70669 + 13.1911i −0.275179 + 0.541238i
\(595\) 7.06980 7.06980i 0.289834 0.289834i
\(596\) 4.93803 + 9.93733i 0.202270 + 0.407049i
\(597\) 0.890278 + 5.62099i 0.0364366 + 0.230052i
\(598\) 0.429345 0.137119i 0.0175572 0.00560721i
\(599\) 0.235692 + 0.0765811i 0.00963013 + 0.00312902i 0.313828 0.949480i \(-0.398388\pi\)
−0.304198 + 0.952609i \(0.598388\pi\)
\(600\) −5.06600 16.4312i −0.206819 0.670801i
\(601\) −8.94261 12.3084i −0.364777 0.502072i 0.586695 0.809808i \(-0.300429\pi\)
−0.951472 + 0.307736i \(0.900429\pi\)
\(602\) 17.5462 12.6137i 0.715131 0.514097i
\(603\) −5.04903 + 9.90929i −0.205613 + 0.403537i
\(604\) 23.0003 + 17.0668i 0.935868 + 0.694439i
\(605\) 15.8593 2.70423i 0.644773 0.109943i
\(606\) 3.03572 1.52759i 0.123318 0.0620541i
\(607\) −10.1502 31.2391i −0.411984 1.26796i −0.914921 0.403634i \(-0.867747\pi\)
0.502936 0.864324i \(-0.332253\pi\)
\(608\) −12.7643 9.77352i −0.517660 0.396369i
\(609\) −1.05844 + 0.768999i −0.0428900 + 0.0311614i
\(610\) 3.53262 + 23.0540i 0.143031 + 0.933430i
\(611\) 0.183848 + 0.360822i 0.00743769 + 0.0145973i
\(612\) 15.1960 + 0.152884i 0.614261 + 0.00617996i
\(613\) −2.64568 16.7042i −0.106858 0.674676i −0.981724 0.190311i \(-0.939050\pi\)
0.874866 0.484366i \(-0.160950\pi\)
\(614\) −30.0366 0.151092i −1.21218 0.00609758i
\(615\) 8.47103i 0.341585i
\(616\) 4.06332 12.1255i 0.163716 0.488550i
\(617\) 18.1853i 0.732112i 0.930593 + 0.366056i \(0.119292\pi\)
−0.930593 + 0.366056i \(0.880708\pi\)
\(618\) −0.275888 + 54.8456i −0.0110979 + 2.20621i
\(619\) −1.09765 6.93030i −0.0441183 0.278552i 0.955760 0.294147i \(-0.0950357\pi\)
−0.999878 + 0.0155953i \(0.995036\pi\)
\(620\) 16.6761 16.3439i 0.669729 0.656387i
\(621\) −1.39615 2.74009i −0.0560254 0.109956i
\(622\) 13.7987 2.11441i 0.553279 0.0847801i
\(623\) 6.47221 4.70234i 0.259304 0.188395i
\(624\) 2.62521 + 0.911773i 0.105092 + 0.0365001i
\(625\) 0.775867 + 2.38787i 0.0310347 + 0.0955149i
\(626\) −11.3843 22.6236i −0.455010 0.904222i
\(627\) −3.24990 19.7631i −0.129789 0.789262i
\(628\) 7.33520 + 49.5328i 0.292706 + 1.97657i
\(629\) −23.0464 + 45.2310i −0.918919 + 1.80348i
\(630\) 2.49389 + 3.46910i 0.0993588 + 0.138212i
\(631\) −6.25835 8.61387i −0.249141 0.342913i 0.666069 0.745890i \(-0.267975\pi\)
−0.915210 + 0.402977i \(0.867975\pi\)
\(632\) −14.1592 7.48571i −0.563221 0.297765i
\(633\) 37.6570 + 12.2355i 1.49673 + 0.486318i
\(634\) −12.9922 40.6810i −0.515985 1.61565i
\(635\) 2.91773 + 18.4218i 0.115787 + 0.731048i
\(636\) 21.9286 + 7.36976i 0.869527 + 0.292230i
\(637\) −1.18872 + 1.18872i −0.0470987 + 0.0470987i
\(638\) −0.963388 1.88667i −0.0381409 0.0746941i
\(639\) 15.7085 0.621418
\(640\) −5.66417 + 15.5474i −0.223896 + 0.614565i
\(641\) 37.3331 + 27.1241i 1.47457 + 1.07134i 0.979257 + 0.202622i \(0.0649464\pi\)
0.495312 + 0.868715i \(0.335054\pi\)
\(642\) 25.3939 49.2246i 1.00222 1.94274i
\(643\) −5.19572 10.1972i −0.204899 0.402137i 0.765574 0.643348i \(-0.222455\pi\)
−0.970473 + 0.241211i \(0.922455\pi\)
\(644\) 1.54037 + 2.16563i 0.0606993 + 0.0853378i
\(645\) −34.4065 5.44945i −1.35475 0.214572i
\(646\) 16.3645 11.7642i 0.643852 0.462855i
\(647\) −0.639048 + 0.207639i −0.0251236 + 0.00816315i −0.321552 0.946892i \(-0.604204\pi\)
0.296428 + 0.955055i \(0.404204\pi\)
\(648\) 5.45129 31.3487i 0.214147 1.23149i
\(649\) −3.42378 + 10.7530i −0.134395 + 0.422091i
\(650\) 1.25604 + 0.415107i 0.0492658 + 0.0162819i
\(651\) 10.4977 20.6029i 0.411437 0.807491i
\(652\) 8.22132 15.7417i 0.321972 0.616493i
\(653\) −5.83038 + 36.8116i −0.228160 + 1.44055i 0.561741 + 0.827313i \(0.310132\pi\)
−0.789901 + 0.613235i \(0.789868\pi\)
\(654\) 2.05580 0.315014i 0.0803881 0.0123180i
\(655\) 1.91429 5.89158i 0.0747975 0.230203i
\(656\) 6.58471 8.68987i 0.257090 0.339282i
\(657\) 14.5927 + 10.6022i 0.569314 + 0.413631i
\(658\) −1.69691 + 1.67993i −0.0661526 + 0.0654904i
\(659\) 7.94577 7.94577i 0.309523 0.309523i −0.535201 0.844724i \(-0.679764\pi\)
0.844724 + 0.535201i \(0.179764\pi\)
\(660\) −18.4068 + 9.28258i −0.716484 + 0.361324i
\(661\) 26.9410 + 26.9410i 1.04789 + 1.04789i 0.998794 + 0.0490907i \(0.0156323\pi\)
0.0490907 + 0.998794i \(0.484368\pi\)
\(662\) −0.0872018 + 17.3354i −0.00338919 + 0.673759i
\(663\) −2.04782 + 2.81858i −0.0795308 + 0.109465i
\(664\) 24.0885 + 8.23074i 0.934817 + 0.319415i
\(665\) 5.38892 + 1.75097i 0.208973 + 0.0678996i
\(666\) −17.4854 12.8388i −0.677546 0.497493i
\(667\) 0.434816 + 0.0688682i 0.0168362 + 0.00266659i
\(668\) −8.13899 25.9342i −0.314907 1.00342i
\(669\) −18.2186 9.28284i −0.704372 0.358895i
\(670\) 13.5612 6.82405i 0.523914 0.263636i
\(671\) −35.4991 + 11.7665i −1.37043 + 0.454242i
\(672\) −0.412094 + 16.3812i −0.0158969 + 0.631919i
\(673\) −12.9243 39.7769i −0.498195 1.53329i −0.811918 0.583771i \(-0.801577\pi\)
0.313724 0.949514i \(-0.398423\pi\)
\(674\) −31.0263 5.07419i −1.19509 0.195450i
\(675\) 1.41199 8.91494i 0.0543475 0.343136i
\(676\) 21.0129 14.9461i 0.808188 0.574850i
\(677\) −18.6978 + 9.52701i −0.718615 + 0.366153i −0.774748 0.632270i \(-0.782123\pi\)
0.0561323 + 0.998423i \(0.482123\pi\)
\(678\) 0.811115 + 2.53976i 0.0311507 + 0.0975387i
\(679\) 9.32921 12.8406i 0.358022 0.492776i
\(680\) −16.5966 12.4451i −0.636451 0.477247i
\(681\) 36.9167i 1.41465i
\(682\) 30.3098 + 21.9809i 1.16062 + 0.841692i
\(683\) −21.0391 21.0391i −0.805040 0.805040i 0.178839 0.983878i \(-0.442766\pi\)
−0.983878 + 0.178839i \(0.942766\pi\)
\(684\) 3.83255 + 7.71265i 0.146541 + 0.294901i
\(685\) 1.13523 0.179803i 0.0433749 0.00686990i
\(686\) −20.8027 10.7317i −0.794252 0.409737i
\(687\) 6.78788 20.8909i 0.258974 0.797039i
\(688\) −31.0594 32.3351i −1.18413 1.23276i
\(689\) −1.43989 + 1.04614i −0.0548556 + 0.0398549i
\(690\) 0.691456 4.22792i 0.0263233 0.160954i
\(691\) 3.00626 + 1.53176i 0.114363 + 0.0582711i 0.510236 0.860034i \(-0.329558\pi\)
−0.395873 + 0.918305i \(0.629558\pi\)
\(692\) −5.04021 34.0353i −0.191600 1.29383i
\(693\) −4.81562 + 4.87282i −0.182930 + 0.185103i
\(694\) −17.8702 5.90594i −0.678345 0.224186i
\(695\) −17.7223 + 5.75833i −0.672246 + 0.218426i
\(696\) 1.89023 + 1.94816i 0.0716491 + 0.0738448i
\(697\) 8.03411 + 11.0580i 0.304314 + 0.418852i
\(698\) 7.82388 + 5.74473i 0.296138 + 0.217441i
\(699\) 25.7188 13.1044i 0.972774 0.495653i
\(700\) −0.0784714 + 7.79971i −0.00296594 + 0.294801i
\(701\) 4.74349 0.751295i 0.179159 0.0283760i −0.0662102 0.997806i \(-0.521091\pi\)
0.245369 + 0.969430i \(0.421091\pi\)
\(702\) 1.02635 + 1.03673i 0.0387370 + 0.0391287i
\(703\) −28.7693 −1.08505
\(704\) −26.0979 4.78559i −0.983600 0.180364i
\(705\) 3.84923 0.144970
\(706\) 6.36878 + 6.43318i 0.239692 + 0.242116i
\(707\) −1.52267 + 0.241168i −0.0572660 + 0.00907004i
\(708\) 0.145473 14.4594i 0.00546720 0.543416i
\(709\) −36.2613 + 18.4761i −1.36182 + 0.693883i −0.973723 0.227735i \(-0.926868\pi\)
−0.388099 + 0.921618i \(0.626868\pi\)
\(710\) −17.2840 12.6909i −0.648658 0.476281i
\(711\) 5.04330 + 6.94150i 0.189138 + 0.260327i
\(712\) −11.5585 11.9128i −0.433175 0.446450i
\(713\) −7.40002 + 2.40441i −0.277133 + 0.0900459i
\(714\) −19.5053 6.44631i −0.729968 0.241247i
\(715\) 0.238853 1.56792i 0.00893258 0.0586369i
\(716\) −0.754224 5.09309i −0.0281867 0.190338i
\(717\) 27.5339 + 14.0292i 1.02827 + 0.523930i
\(718\) −2.75664 + 16.8556i −0.102877 + 0.629044i
\(719\) −18.6321 + 13.5370i −0.694859 + 0.504845i −0.878254 0.478195i \(-0.841291\pi\)
0.183395 + 0.983039i \(0.441291\pi\)
\(720\) 6.39304 6.14082i 0.238255 0.228855i
\(721\) 7.68851 23.6628i 0.286335 0.881248i
\(722\) −13.7289 7.08246i −0.510938 0.263582i
\(723\) −47.4095 + 7.50892i −1.76318 + 0.279260i
\(724\) −16.7912 33.7907i −0.624040 1.25582i
\(725\) 0.913663 + 0.913663i 0.0339326 + 0.0339326i
\(726\) −19.6106 26.6104i −0.727817 0.987605i
\(727\) 40.9440i 1.51853i 0.650781 + 0.759265i \(0.274442\pi\)
−0.650781 + 0.759265i \(0.725558\pi\)
\(728\) −1.00862 0.756319i −0.0373819 0.0280310i
\(729\) 1.80215 2.48044i 0.0667462 0.0918683i
\(730\) −7.49076 23.4550i −0.277246 0.868108i
\(731\) 50.0822 25.5182i 1.85236 0.943824i
\(732\) 39.0504 27.7758i 1.44334 1.02662i
\(733\) −7.90950 + 49.9386i −0.292144 + 1.84453i 0.207425 + 0.978251i \(0.433492\pi\)
−0.499569 + 0.866274i \(0.666508\pi\)
\(734\) 21.5866 + 3.53039i 0.796778 + 0.130309i
\(735\) 4.93785 + 15.1971i 0.182135 + 0.560555i
\(736\) 3.99577 3.79966i 0.147286 0.140057i
\(737\) 14.4245 + 19.6091i 0.531335 + 0.722312i
\(738\) −5.21752 + 2.62549i −0.192060 + 0.0966455i
\(739\) −38.6450 19.6906i −1.42158 0.724332i −0.437033 0.899446i \(-0.643971\pi\)
−0.984548 + 0.175114i \(0.943971\pi\)
\(740\) 8.86672 + 28.2530i 0.325947 + 1.03860i
\(741\) −1.95014 0.308872i −0.0716403 0.0113467i
\(742\) −8.45909 6.21114i −0.310543 0.228018i
\(743\) −33.0592 10.7416i −1.21283 0.394071i −0.368361 0.929683i \(-0.620081\pi\)
−0.844464 + 0.535612i \(0.820081\pi\)
\(744\) −45.3990 15.5122i −1.66441 0.568707i
\(745\) −4.76974 + 6.56498i −0.174750 + 0.240522i
\(746\) 0.0936425 18.6158i 0.00342850 0.681572i
\(747\) −9.64297 9.64297i −0.352818 0.352818i
\(748\) 15.2242 29.5748i 0.556654 1.08136i
\(749\) −17.7672 + 17.7672i −0.649199 + 0.649199i
\(750\) 24.5529 24.3071i 0.896544 0.887569i
\(751\) −11.0836 8.05268i −0.404445 0.293846i 0.366904 0.930259i \(-0.380418\pi\)
−0.771349 + 0.636412i \(0.780418\pi\)
\(752\) 3.94867 + 2.99209i 0.143993 + 0.109110i
\(753\) 8.12444 25.0044i 0.296071 0.911213i
\(754\) −0.206428 + 0.0316313i −0.00751765 + 0.00115194i
\(755\) −3.27643 + 20.6866i −0.119242 + 0.752862i
\(756\) −3.98209 + 7.62467i −0.144827 + 0.277307i
\(757\) −4.05375 + 7.95593i −0.147336 + 0.289163i −0.952866 0.303392i \(-0.901881\pi\)
0.805530 + 0.592555i \(0.201881\pi\)
\(758\) 4.73750 + 1.56570i 0.172074 + 0.0568687i
\(759\) 6.86937 0.0405625i 0.249342 0.00147232i
\(760\) 2.01411 11.5825i 0.0730594 0.420143i
\(761\) −15.9723 + 5.18970i −0.578994 + 0.188127i −0.583850 0.811862i \(-0.698454\pi\)
0.00485585 + 0.999988i \(0.498454\pi\)
\(762\) 31.1164 22.3691i 1.12723 0.810347i
\(763\) −0.931865 0.147593i −0.0337358 0.00534322i
\(764\) 27.9986 + 39.3635i 1.01295 + 1.42412i
\(765\) 5.04526 + 9.90187i 0.182412 + 0.358003i
\(766\) 5.00715 9.70607i 0.180916 0.350694i
\(767\) 0.900020