Properties

Label 176.2.w.a.5.17
Level $176$
Weight $2$
Character 176.5
Analytic conductor $1.405$
Analytic rank $0$
Dimension $176$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,2,Mod(5,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 5, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 176.w (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40536707557\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 5.17
Character \(\chi\) \(=\) 176.5
Dual form 176.2.w.a.141.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.818556 - 1.15324i) q^{2} +(0.562832 - 0.0891439i) q^{3} +(-0.659933 - 1.88799i) q^{4} +(1.83674 - 0.935866i) q^{5} +(0.357905 - 0.722051i) q^{6} +(0.677755 + 0.932849i) q^{7} +(-2.71750 - 0.784359i) q^{8} +(-2.54434 + 0.826705i) q^{9} +O(q^{10})\) \(q+(0.818556 - 1.15324i) q^{2} +(0.562832 - 0.0891439i) q^{3} +(-0.659933 - 1.88799i) q^{4} +(1.83674 - 0.935866i) q^{5} +(0.357905 - 0.722051i) q^{6} +(0.677755 + 0.932849i) q^{7} +(-2.71750 - 0.784359i) q^{8} +(-2.54434 + 0.826705i) q^{9} +(0.424195 - 2.88426i) q^{10} +(0.00617715 + 3.31662i) q^{11} +(-0.539734 - 1.00379i) q^{12} +(-0.553629 - 0.282088i) q^{13} +(1.63058 - 0.0180259i) q^{14} +(0.950350 - 0.690470i) q^{15} +(-3.12898 + 2.49189i) q^{16} +(2.07344 - 6.38140i) q^{17} +(-1.12929 + 3.61094i) q^{18} +(1.45985 - 0.231217i) q^{19} +(-2.97903 - 2.85013i) q^{20} +(0.464620 + 0.464620i) q^{21} +(3.82992 + 2.70771i) q^{22} +3.07945i q^{23} +(-1.59942 - 0.199214i) q^{24} +(-0.441156 + 0.607199i) q^{25} +(-0.778491 + 0.407563i) q^{26} +(-2.88155 + 1.46823i) q^{27} +(1.31393 - 1.89521i) q^{28} +(-1.02564 + 6.47561i) q^{29} +(-0.0183640 - 1.66117i) q^{30} +(2.03178 + 6.25318i) q^{31} +(0.312507 + 5.64822i) q^{32} +(0.299133 + 1.86615i) q^{33} +(-5.66206 - 7.61471i) q^{34} +(2.11788 + 1.07911i) q^{35} +(3.23990 + 4.25810i) q^{36} +(-3.75796 - 0.595203i) q^{37} +(0.928317 - 1.87282i) q^{38} +(-0.336746 - 0.109416i) q^{39} +(-5.72539 + 1.10255i) q^{40} +(4.37933 - 6.02763i) q^{41} +(0.916136 - 0.155502i) q^{42} +(-5.76502 - 5.76502i) q^{43} +(6.25765 - 2.20041i) q^{44} +(-3.89960 + 3.89960i) q^{45} +(3.55135 + 2.52070i) q^{46} +(7.04298 + 5.11702i) q^{47} +(-1.53895 + 1.68144i) q^{48} +(1.75226 - 5.39291i) q^{49} +(0.339136 + 1.00579i) q^{50} +(0.598137 - 3.77649i) q^{51} +(-0.167220 + 1.23140i) q^{52} +(2.19932 - 4.31641i) q^{53} +(-0.665494 + 4.52495i) q^{54} +(3.11526 + 6.08599i) q^{55} +(-1.11011 - 3.06662i) q^{56} +(0.801037 - 0.260273i) q^{57} +(6.62840 + 6.48345i) q^{58} +(-9.65194 - 1.52872i) q^{59} +(-1.93076 - 1.33858i) q^{60} +(-1.95251 - 3.83201i) q^{61} +(8.87455 + 2.77544i) q^{62} +(-2.49563 - 1.81318i) q^{63} +(6.76956 + 4.26298i) q^{64} -1.28087 q^{65} +(2.39698 + 1.18257i) q^{66} +(-4.43718 + 4.43718i) q^{67} +(-13.4163 + 0.296667i) q^{68} +(0.274514 + 1.73321i) q^{69} +(2.97808 - 1.55911i) q^{70} +(5.08401 + 1.65189i) q^{71} +(7.56265 - 0.250894i) q^{72} +(-5.98512 - 8.23781i) q^{73} +(-3.76251 + 3.84663i) q^{74} +(-0.194169 + 0.381077i) q^{75} +(-1.39993 - 2.60358i) q^{76} +(-3.08972 + 2.25362i) q^{77} +(-0.401828 + 0.298787i) q^{78} +(-4.20811 - 12.9512i) q^{79} +(-3.41505 + 7.50525i) q^{80} +(5.00208 - 3.63422i) q^{81} +(-3.36659 - 9.98438i) q^{82} +(0.338932 + 0.665191i) q^{83} +(0.570578 - 1.18381i) q^{84} +(-2.16376 - 13.6614i) q^{85} +(-11.3675 + 1.92947i) q^{86} +3.73611i q^{87} +(2.58463 - 9.01774i) q^{88} -0.921435i q^{89} +(1.30514 + 7.68922i) q^{90} +(-0.112079 - 0.707638i) q^{91} +(5.81395 - 2.03223i) q^{92} +(1.70098 + 3.33837i) q^{93} +(11.6662 - 3.93369i) q^{94} +(2.46497 - 1.79091i) q^{95} +(0.679393 + 3.15114i) q^{96} +(0.760667 + 2.34109i) q^{97} +(-4.78500 - 6.43518i) q^{98} +(-2.75758 - 8.43349i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8} - 16 q^{10} - 12 q^{11} - 6 q^{13} - 12 q^{15} + 14 q^{16} - 12 q^{17} - 44 q^{18} - 6 q^{19} + 2 q^{20} - 28 q^{21} + 50 q^{22} - 38 q^{24} - 68 q^{26} - 18 q^{27} - 46 q^{28} - 22 q^{29} + 26 q^{30} - 12 q^{31} - 16 q^{32} - 16 q^{33} + 12 q^{34} - 26 q^{35} - 22 q^{36} + 18 q^{37} - 34 q^{38} + 14 q^{40} - 10 q^{42} - 40 q^{43} + 2 q^{44} - 24 q^{45} + 38 q^{46} - 12 q^{47} - 26 q^{48} + 8 q^{49} - 62 q^{50} + 6 q^{51} + 74 q^{52} - 30 q^{53} - 52 q^{54} - 96 q^{56} - 26 q^{58} + 10 q^{59} + 118 q^{60} - 6 q^{61} - 42 q^{62} - 28 q^{63} - 106 q^{64} - 32 q^{65} + 6 q^{66} + 24 q^{67} + 116 q^{68} + 12 q^{69} + 52 q^{70} - 98 q^{72} + 96 q^{74} - 46 q^{75} + 112 q^{76} - 14 q^{77} + 44 q^{78} - 52 q^{79} - 28 q^{80} + 66 q^{82} + 54 q^{83} + 120 q^{84} + 14 q^{85} + 86 q^{86} + 142 q^{88} + 228 q^{90} - 122 q^{91} + 146 q^{92} + 6 q^{93} + 56 q^{94} + 52 q^{95} + 86 q^{96} - 12 q^{97} + 140 q^{98} + 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.818556 1.15324i 0.578806 0.815465i
\(3\) 0.562832 0.0891439i 0.324951 0.0514672i 0.00817235 0.999967i \(-0.497399\pi\)
0.316779 + 0.948499i \(0.397399\pi\)
\(4\) −0.659933 1.88799i −0.329967 0.943993i
\(5\) 1.83674 0.935866i 0.821415 0.418532i 0.00782417 0.999969i \(-0.497509\pi\)
0.813591 + 0.581437i \(0.197509\pi\)
\(6\) 0.357905 0.722051i 0.146114 0.294776i
\(7\) 0.677755 + 0.932849i 0.256167 + 0.352584i 0.917659 0.397368i \(-0.130076\pi\)
−0.661492 + 0.749952i \(0.730076\pi\)
\(8\) −2.71750 0.784359i −0.960780 0.277313i
\(9\) −2.54434 + 0.826705i −0.848112 + 0.275568i
\(10\) 0.424195 2.88426i 0.134142 0.912084i
\(11\) 0.00617715 + 3.31662i 0.00186248 + 0.999998i
\(12\) −0.539734 1.00379i −0.155808 0.289769i
\(13\) −0.553629 0.282088i −0.153549 0.0782371i 0.375528 0.926811i \(-0.377462\pi\)
−0.529076 + 0.848574i \(0.677462\pi\)
\(14\) 1.63058 0.0180259i 0.435791 0.00481761i
\(15\) 0.950350 0.690470i 0.245379 0.178279i
\(16\) −3.12898 + 2.49189i −0.782244 + 0.622972i
\(17\) 2.07344 6.38140i 0.502883 1.54772i −0.301417 0.953492i \(-0.597460\pi\)
0.804300 0.594223i \(-0.202540\pi\)
\(18\) −1.12929 + 3.61094i −0.266176 + 0.851106i
\(19\) 1.45985 0.231217i 0.334912 0.0530448i 0.0132861 0.999912i \(-0.495771\pi\)
0.321626 + 0.946867i \(0.395771\pi\)
\(20\) −2.97903 2.85013i −0.666131 0.637308i
\(21\) 0.464620 + 0.464620i 0.101388 + 0.101388i
\(22\) 3.82992 + 2.70771i 0.816542 + 0.577287i
\(23\) 3.07945i 0.642109i 0.947061 + 0.321054i \(0.104037\pi\)
−0.947061 + 0.321054i \(0.895963\pi\)
\(24\) −1.59942 0.199214i −0.326479 0.0406645i
\(25\) −0.441156 + 0.607199i −0.0882312 + 0.121440i
\(26\) −0.778491 + 0.407563i −0.152675 + 0.0799297i
\(27\) −2.88155 + 1.46823i −0.554555 + 0.282560i
\(28\) 1.31393 1.89521i 0.248310 0.358161i
\(29\) −1.02564 + 6.47561i −0.190456 + 1.20249i 0.688374 + 0.725356i \(0.258325\pi\)
−0.878830 + 0.477135i \(0.841675\pi\)
\(30\) −0.0183640 1.66117i −0.00335280 0.303287i
\(31\) 2.03178 + 6.25318i 0.364919 + 1.12310i 0.950032 + 0.312152i \(0.101050\pi\)
−0.585114 + 0.810951i \(0.698950\pi\)
\(32\) 0.312507 + 5.64822i 0.0552440 + 0.998473i
\(33\) 0.299133 + 1.86615i 0.0520724 + 0.324855i
\(34\) −5.66206 7.61471i −0.971036 1.30591i
\(35\) 2.11788 + 1.07911i 0.357987 + 0.182404i
\(36\) 3.23990 + 4.25810i 0.539983 + 0.709683i
\(37\) −3.75796 0.595203i −0.617805 0.0978507i −0.160316 0.987066i \(-0.551251\pi\)
−0.457489 + 0.889215i \(0.651251\pi\)
\(38\) 0.928317 1.87282i 0.150593 0.303811i
\(39\) −0.336746 0.109416i −0.0539226 0.0175205i
\(40\) −5.72539 + 1.10255i −0.905263 + 0.174328i
\(41\) 4.37933 6.02763i 0.683937 0.941358i −0.316036 0.948747i \(-0.602352\pi\)
0.999973 + 0.00738902i \(0.00235202\pi\)
\(42\) 0.916136 0.155502i 0.141363 0.0239944i
\(43\) −5.76502 5.76502i −0.879158 0.879158i 0.114290 0.993447i \(-0.463541\pi\)
−0.993447 + 0.114290i \(0.963541\pi\)
\(44\) 6.25765 2.20041i 0.943376 0.331724i
\(45\) −3.89960 + 3.89960i −0.581318 + 0.581318i
\(46\) 3.55135 + 2.52070i 0.523617 + 0.371657i
\(47\) 7.04298 + 5.11702i 1.02732 + 0.746395i 0.967771 0.251831i \(-0.0810326\pi\)
0.0595526 + 0.998225i \(0.481033\pi\)
\(48\) −1.53895 + 1.68144i −0.222129 + 0.242696i
\(49\) 1.75226 5.39291i 0.250323 0.770416i
\(50\) 0.339136 + 1.00579i 0.0479611 + 0.142240i
\(51\) 0.598137 3.77649i 0.0837560 0.528814i
\(52\) −0.167220 + 1.23140i −0.0231892 + 0.170765i
\(53\) 2.19932 4.31641i 0.302100 0.592905i −0.689193 0.724578i \(-0.742035\pi\)
0.991293 + 0.131673i \(0.0420348\pi\)
\(54\) −0.665494 + 4.52495i −0.0905623 + 0.615768i
\(55\) 3.11526 + 6.08599i 0.420061 + 0.820634i
\(56\) −1.11011 3.06662i −0.148344 0.409794i
\(57\) 0.801037 0.260273i 0.106100 0.0344740i
\(58\) 6.62840 + 6.48345i 0.870352 + 0.851319i
\(59\) −9.65194 1.52872i −1.25658 0.199022i −0.507584 0.861602i \(-0.669461\pi\)
−0.748991 + 0.662580i \(0.769461\pi\)
\(60\) −1.93076 1.33858i −0.249261 0.172810i
\(61\) −1.95251 3.83201i −0.249993 0.490639i 0.731573 0.681763i \(-0.238787\pi\)
−0.981566 + 0.191124i \(0.938787\pi\)
\(62\) 8.87455 + 2.77544i 1.12707 + 0.352481i
\(63\) −2.49563 1.81318i −0.314419 0.228439i
\(64\) 6.76956 + 4.26298i 0.846195 + 0.532873i
\(65\) −1.28087 −0.158872
\(66\) 2.39698 + 1.18257i 0.295048 + 0.145565i
\(67\) −4.43718 + 4.43718i −0.542088 + 0.542088i −0.924141 0.382052i \(-0.875217\pi\)
0.382052 + 0.924141i \(0.375217\pi\)
\(68\) −13.4163 + 0.296667i −1.62697 + 0.0359762i
\(69\) 0.274514 + 1.73321i 0.0330476 + 0.208654i
\(70\) 2.97808 1.55911i 0.355949 0.186350i
\(71\) 5.08401 + 1.65189i 0.603360 + 0.196044i 0.594739 0.803919i \(-0.297256\pi\)
0.00862184 + 0.999963i \(0.497256\pi\)
\(72\) 7.56265 0.250894i 0.891267 0.0295682i
\(73\) −5.98512 8.23781i −0.700506 0.964163i −0.999950 0.0100493i \(-0.996801\pi\)
0.299444 0.954114i \(-0.403199\pi\)
\(74\) −3.76251 + 3.84663i −0.437383 + 0.447162i
\(75\) −0.194169 + 0.381077i −0.0224207 + 0.0440030i
\(76\) −1.39993 2.60358i −0.160584 0.298651i
\(77\) −3.08972 + 2.25362i −0.352106 + 0.256823i
\(78\) −0.401828 + 0.298787i −0.0454981 + 0.0338310i
\(79\) −4.20811 12.9512i −0.473449 1.45713i −0.848038 0.529935i \(-0.822216\pi\)
0.374589 0.927191i \(-0.377784\pi\)
\(80\) −3.41505 + 7.50525i −0.381814 + 0.839113i
\(81\) 5.00208 3.63422i 0.555786 0.403802i
\(82\) −3.36659 9.98438i −0.371778 1.10259i
\(83\) 0.338932 + 0.665191i 0.0372026 + 0.0730142i 0.908860 0.417102i \(-0.136954\pi\)
−0.871657 + 0.490116i \(0.836954\pi\)
\(84\) 0.570578 1.18381i 0.0622551 0.129165i
\(85\) −2.16376 13.6614i −0.234693 1.48179i
\(86\) −11.3675 + 1.92947i −1.22578 + 0.208060i
\(87\) 3.73611i 0.400553i
\(88\) 2.58463 9.01774i 0.275523 0.961295i
\(89\) 0.921435i 0.0976719i −0.998807 0.0488360i \(-0.984449\pi\)
0.998807 0.0488360i \(-0.0155512\pi\)
\(90\) 1.30514 + 7.68922i 0.137574 + 0.810515i
\(91\) −0.112079 0.707638i −0.0117491 0.0741806i
\(92\) 5.81395 2.03223i 0.606146 0.211874i
\(93\) 1.70098 + 3.33837i 0.176384 + 0.346173i
\(94\) 11.6662 3.93369i 1.20328 0.405729i
\(95\) 2.46497 1.79091i 0.252901 0.183743i
\(96\) 0.679393 + 3.15114i 0.0693402 + 0.321612i
\(97\) 0.760667 + 2.34109i 0.0772340 + 0.237702i 0.982218 0.187744i \(-0.0601174\pi\)
−0.904984 + 0.425445i \(0.860117\pi\)
\(98\) −4.78500 6.43518i −0.483358 0.650051i
\(99\) −2.75758 8.43349i −0.277147 0.847597i
\(100\) 1.43752 + 0.432185i 0.143752 + 0.0432185i
\(101\) −7.99278 + 15.6867i −0.795311 + 1.56089i 0.0322294 + 0.999480i \(0.489739\pi\)
−0.827541 + 0.561406i \(0.810261\pi\)
\(102\) −3.86560 3.78106i −0.382751 0.374381i
\(103\) −6.62345 9.11639i −0.652628 0.898265i 0.346582 0.938020i \(-0.387342\pi\)
−0.999209 + 0.0397547i \(0.987342\pi\)
\(104\) 1.28322 + 1.20082i 0.125831 + 0.117750i
\(105\) 1.28821 + 0.418564i 0.125716 + 0.0408477i
\(106\) −3.17760 6.06957i −0.308636 0.589529i
\(107\) −1.25422 7.91883i −0.121250 0.765542i −0.971127 0.238562i \(-0.923324\pi\)
0.849877 0.526980i \(-0.176676\pi\)
\(108\) 4.67362 + 4.47140i 0.449719 + 0.430261i
\(109\) 2.81914 2.81914i 0.270025 0.270025i −0.559085 0.829110i \(-0.688848\pi\)
0.829110 + 0.559085i \(0.188848\pi\)
\(110\) 9.56863 + 1.38908i 0.912333 + 0.132443i
\(111\) −2.16816 −0.205793
\(112\) −4.44523 1.22998i −0.420035 0.116222i
\(113\) 6.95384 + 5.05226i 0.654162 + 0.475277i 0.864687 0.502312i \(-0.167517\pi\)
−0.210524 + 0.977589i \(0.567517\pi\)
\(114\) 0.355536 1.13684i 0.0332990 0.106475i
\(115\) 2.88195 + 5.65614i 0.268743 + 0.527438i
\(116\) 12.9027 2.33708i 1.19799 0.216993i
\(117\) 1.64182 + 0.260039i 0.151786 + 0.0240406i
\(118\) −9.66363 + 9.87968i −0.889609 + 0.909498i
\(119\) 7.35816 2.39081i 0.674522 0.219165i
\(120\) −3.12415 + 1.13093i −0.285194 + 0.103240i
\(121\) −10.9999 + 0.0409745i −0.999993 + 0.00372496i
\(122\) −6.01747 0.885002i −0.544796 0.0801243i
\(123\) 1.92750 3.78294i 0.173797 0.341096i
\(124\) 10.4651 7.96265i 0.939791 0.715067i
\(125\) −1.85442 + 11.7083i −0.165864 + 1.04723i
\(126\) −4.13384 + 1.39387i −0.368272 + 0.124176i
\(127\) 3.23016 9.94141i 0.286630 0.882157i −0.699275 0.714853i \(-0.746494\pi\)
0.985905 0.167305i \(-0.0535063\pi\)
\(128\) 10.4575 4.31745i 0.924322 0.381613i
\(129\) −3.75866 2.73082i −0.330931 0.240436i
\(130\) −1.04846 + 1.47715i −0.0919562 + 0.129555i
\(131\) 5.67018 5.67018i 0.495406 0.495406i −0.414599 0.910004i \(-0.636078\pi\)
0.910004 + 0.414599i \(0.136078\pi\)
\(132\) 3.32586 1.79629i 0.289479 0.156347i
\(133\) 1.20511 + 1.20511i 0.104496 + 0.104496i
\(134\) 1.48506 + 8.74923i 0.128290 + 0.755818i
\(135\) −3.91860 + 5.39350i −0.337260 + 0.464198i
\(136\) −10.6399 + 15.7151i −0.912361 + 1.34756i
\(137\) 18.7167 + 6.08142i 1.59907 + 0.519571i 0.966878 0.255237i \(-0.0821536\pi\)
0.632196 + 0.774808i \(0.282154\pi\)
\(138\) 2.22352 + 1.10215i 0.189278 + 0.0938212i
\(139\) −1.48903 0.235839i −0.126298 0.0200036i 0.0929656 0.995669i \(-0.470365\pi\)
−0.219263 + 0.975666i \(0.570365\pi\)
\(140\) 0.639692 4.71067i 0.0540639 0.398124i
\(141\) 4.42017 + 2.25219i 0.372245 + 0.189668i
\(142\) 6.06657 4.51092i 0.509096 0.378548i
\(143\) 0.932158 1.83792i 0.0779510 0.153694i
\(144\) 5.90111 8.92694i 0.491759 0.743912i
\(145\) 4.17648 + 12.8539i 0.346838 + 1.06746i
\(146\) −14.3993 + 0.159183i −1.19170 + 0.0131741i
\(147\) 0.505485 3.19151i 0.0416917 0.263231i
\(148\) 1.35627 + 7.48777i 0.111485 + 0.615491i
\(149\) −12.8404 + 6.54251i −1.05193 + 0.535983i −0.892416 0.451213i \(-0.850991\pi\)
−0.159510 + 0.987196i \(0.550991\pi\)
\(150\) 0.280537 + 0.535857i 0.0229057 + 0.0437525i
\(151\) −0.874752 + 1.20399i −0.0711863 + 0.0979795i −0.843125 0.537717i \(-0.819287\pi\)
0.771939 + 0.635696i \(0.219287\pi\)
\(152\) −4.14848 0.516712i −0.336486 0.0419109i
\(153\) 17.9505i 1.45121i
\(154\) 0.0698572 + 5.40790i 0.00562926 + 0.435781i
\(155\) 9.58399 + 9.58399i 0.769805 + 0.769805i
\(156\) 0.0156552 + 0.707979i 0.00125342 + 0.0566837i
\(157\) 1.56049 0.247157i 0.124540 0.0197252i −0.0938531 0.995586i \(-0.529918\pi\)
0.218393 + 0.975861i \(0.429918\pi\)
\(158\) −18.3805 5.74833i −1.46227 0.457313i
\(159\) 0.853068 2.62547i 0.0676527 0.208214i
\(160\) 5.85997 + 10.0818i 0.463271 + 0.797040i
\(161\) −2.87266 + 2.08711i −0.226397 + 0.164487i
\(162\) −0.0966573 8.74342i −0.00759412 0.686948i
\(163\) −3.22949 1.64551i −0.252953 0.128886i 0.322917 0.946427i \(-0.395337\pi\)
−0.575870 + 0.817541i \(0.695337\pi\)
\(164\) −14.2701 4.29028i −1.11431 0.335015i
\(165\) 2.29590 + 3.14768i 0.178735 + 0.245047i
\(166\) 1.04456 + 0.153626i 0.0810736 + 0.0119237i
\(167\) 11.9368 3.87849i 0.923695 0.300127i 0.191713 0.981451i \(-0.438596\pi\)
0.731982 + 0.681324i \(0.238596\pi\)
\(168\) −0.898174 1.62703i −0.0692956 0.125528i
\(169\) −7.41428 10.2049i −0.570329 0.784991i
\(170\) −17.5261 8.68731i −1.34419 0.666286i
\(171\) −3.52319 + 1.79516i −0.269425 + 0.137279i
\(172\) −7.07975 + 14.6888i −0.539826 + 1.12001i
\(173\) 20.6901 3.27699i 1.57304 0.249145i 0.691898 0.721995i \(-0.256775\pi\)
0.881143 + 0.472850i \(0.156775\pi\)
\(174\) 4.30864 + 3.05822i 0.326637 + 0.231843i
\(175\) −0.865420 −0.0654196
\(176\) −8.28397 10.3622i −0.624428 0.781083i
\(177\) −5.56870 −0.418569
\(178\) −1.06264 0.754246i −0.0796481 0.0565331i
\(179\) −23.4028 + 3.70664i −1.74921 + 0.277047i −0.947288 0.320384i \(-0.896188\pi\)
−0.801920 + 0.597431i \(0.796188\pi\)
\(180\) 9.93586 + 4.78891i 0.740575 + 0.356944i
\(181\) 5.60712 2.85697i 0.416774 0.212357i −0.233012 0.972474i \(-0.574858\pi\)
0.649787 + 0.760117i \(0.274858\pi\)
\(182\) −0.907821 0.449987i −0.0672922 0.0333553i
\(183\) −1.44054 1.98273i −0.106487 0.146567i
\(184\) 2.41539 8.36838i 0.178065 0.616925i
\(185\) −7.45943 + 2.42372i −0.548428 + 0.178195i
\(186\) 5.24230 + 0.770995i 0.384384 + 0.0565321i
\(187\) 21.1775 + 6.83739i 1.54865 + 0.500000i
\(188\) 5.01297 16.6739i 0.365608 1.21607i
\(189\) −3.32262 1.69296i −0.241685 0.123145i
\(190\) −0.0476317 4.30866i −0.00345557 0.312583i
\(191\) −15.1328 + 10.9946i −1.09497 + 0.795543i −0.980232 0.197852i \(-0.936603\pi\)
−0.114739 + 0.993396i \(0.536603\pi\)
\(192\) 4.19015 + 1.79588i 0.302398 + 0.129606i
\(193\) −2.81166 + 8.65341i −0.202388 + 0.622886i 0.797422 + 0.603421i \(0.206196\pi\)
−0.999811 + 0.0194650i \(0.993804\pi\)
\(194\) 3.32249 + 1.03908i 0.238541 + 0.0746017i
\(195\) −0.720914 + 0.114182i −0.0516257 + 0.00817671i
\(196\) −11.3381 + 0.250713i −0.809865 + 0.0179081i
\(197\) 14.2804 + 14.2804i 1.01744 + 1.01744i 0.999845 + 0.0175902i \(0.00559942\pi\)
0.0175902 + 0.999845i \(0.494401\pi\)
\(198\) −11.9831 3.72312i −0.851601 0.264591i
\(199\) 17.7250i 1.25649i 0.778014 + 0.628247i \(0.216227\pi\)
−0.778014 + 0.628247i \(0.783773\pi\)
\(200\) 1.67510 1.30404i 0.118447 0.0922092i
\(201\) −2.10184 + 2.89294i −0.148253 + 0.204052i
\(202\) 11.5480 + 22.0581i 0.812517 + 1.55200i
\(203\) −6.73590 + 3.43211i −0.472767 + 0.240887i
\(204\) −7.52469 + 1.36296i −0.526834 + 0.0954260i
\(205\) 2.40264 15.1697i 0.167808 1.05950i
\(206\) −15.9351 + 0.176160i −1.11025 + 0.0122737i
\(207\) −2.54579 7.83515i −0.176945 0.544580i
\(208\) 2.43522 0.496934i 0.168852 0.0344562i
\(209\) 0.775876 + 4.84033i 0.0536685 + 0.334812i
\(210\) 1.53718 1.14300i 0.106075 0.0788743i
\(211\) 15.5873 + 7.94214i 1.07308 + 0.546760i 0.898989 0.437971i \(-0.144303\pi\)
0.174087 + 0.984730i \(0.444303\pi\)
\(212\) −9.60073 1.30374i −0.659381 0.0895415i
\(213\) 3.00870 + 0.476531i 0.206153 + 0.0326514i
\(214\) −10.1590 5.03559i −0.694453 0.344226i
\(215\) −15.9841 5.19356i −1.09011 0.354198i
\(216\) 8.98222 1.72972i 0.611163 0.117693i
\(217\) −4.45622 + 6.13346i −0.302508 + 0.416367i
\(218\) −0.943527 5.55878i −0.0639037 0.376488i
\(219\) −4.10297 4.10297i −0.277253 0.277253i
\(220\) 9.43439 9.89790i 0.636067 0.667317i
\(221\) −2.94803 + 2.94803i −0.198306 + 0.198306i
\(222\) −1.77476 + 2.50041i −0.119114 + 0.167817i
\(223\) 4.29046 + 3.11720i 0.287310 + 0.208743i 0.722100 0.691789i \(-0.243177\pi\)
−0.434789 + 0.900532i \(0.643177\pi\)
\(224\) −5.05713 + 4.11963i −0.337894 + 0.275254i
\(225\) 0.620474 1.90962i 0.0413650 0.127308i
\(226\) 11.5186 3.88390i 0.766205 0.258353i
\(227\) −0.784692 + 4.95435i −0.0520818 + 0.328832i 0.947867 + 0.318668i \(0.103235\pi\)
−0.999948 + 0.0101641i \(0.996765\pi\)
\(228\) −1.02002 1.34058i −0.0675526 0.0887823i
\(229\) −0.598791 + 1.17519i −0.0395693 + 0.0776590i −0.909945 0.414730i \(-0.863876\pi\)
0.870375 + 0.492389i \(0.163876\pi\)
\(230\) 8.88194 + 1.30628i 0.585658 + 0.0861339i
\(231\) −1.53810 + 1.54384i −0.101199 + 0.101577i
\(232\) 7.86636 16.7930i 0.516452 1.10251i
\(233\) 15.0040 4.87511i 0.982948 0.319379i 0.226916 0.973914i \(-0.427136\pi\)
0.756032 + 0.654535i \(0.227136\pi\)
\(234\) 1.64381 1.68056i 0.107459 0.109862i
\(235\) 17.7250 + 2.80736i 1.15625 + 0.183132i
\(236\) 3.48344 + 19.2316i 0.226752 + 1.25187i
\(237\) −3.52298 6.91424i −0.228842 0.449128i
\(238\) 3.26588 10.4428i 0.211696 0.676903i
\(239\) 17.2627 + 12.5421i 1.11663 + 0.811281i 0.983695 0.179844i \(-0.0575592\pi\)
0.132937 + 0.991124i \(0.457559\pi\)
\(240\) −1.25305 + 4.52863i −0.0808841 + 0.292322i
\(241\) 5.41293 0.348677 0.174339 0.984686i \(-0.444221\pi\)
0.174339 + 0.984686i \(0.444221\pi\)
\(242\) −8.95680 + 12.7191i −0.575765 + 0.817615i
\(243\) 9.35180 9.35180i 0.599919 0.599919i
\(244\) −5.94626 + 6.21518i −0.380670 + 0.397886i
\(245\) −1.82859 11.5453i −0.116824 0.737600i
\(246\) −2.78487 5.31942i −0.177557 0.339154i
\(247\) −0.873436 0.283797i −0.0555754 0.0180575i
\(248\) −0.616619 18.5866i −0.0391554 1.18025i
\(249\) 0.250059 + 0.344177i 0.0158469 + 0.0218113i
\(250\) 11.9846 + 11.7225i 0.757973 + 0.741398i
\(251\) 11.3238 22.2241i 0.714750 1.40277i −0.192123 0.981371i \(-0.561537\pi\)
0.906873 0.421404i \(-0.138463\pi\)
\(252\) −1.77631 + 5.90828i −0.111897 + 0.372187i
\(253\) −10.2133 + 0.0190222i −0.642108 + 0.00119592i
\(254\) −8.82078 11.8628i −0.553465 0.744335i
\(255\) −2.43567 7.49621i −0.152527 0.469431i
\(256\) 3.58099 15.5941i 0.223812 0.974632i
\(257\) −3.57470 + 2.59717i −0.222983 + 0.162007i −0.693669 0.720294i \(-0.744007\pi\)
0.470685 + 0.882301i \(0.344007\pi\)
\(258\) −6.22597 + 2.09931i −0.387612 + 0.130697i
\(259\) −1.99174 3.90901i −0.123761 0.242894i
\(260\) 0.845287 + 2.41826i 0.0524225 + 0.149974i
\(261\) −2.74386 17.3240i −0.169840 1.07233i
\(262\) −1.89773 11.1804i −0.117242 0.690730i
\(263\) 29.5194i 1.82024i −0.414340 0.910122i \(-0.635987\pi\)
0.414340 0.910122i \(-0.364013\pi\)
\(264\) 0.650839 5.30588i 0.0400563 0.326554i
\(265\) 9.98640i 0.613460i
\(266\) 2.37623 0.403333i 0.145696 0.0247299i
\(267\) −0.0821403 0.518614i −0.00502691 0.0317386i
\(268\) 11.3056 + 5.44909i 0.690598 + 0.332856i
\(269\) −5.81830 11.4191i −0.354748 0.696232i 0.642814 0.766023i \(-0.277767\pi\)
−0.997562 + 0.0697903i \(0.977767\pi\)
\(270\) 3.01241 + 8.93398i 0.183329 + 0.543704i
\(271\) −10.9173 + 7.93186i −0.663177 + 0.481826i −0.867734 0.497028i \(-0.834424\pi\)
0.204558 + 0.978855i \(0.434424\pi\)
\(272\) 9.41397 + 25.1340i 0.570806 + 1.52397i
\(273\) −0.126163 0.388291i −0.00763575 0.0235004i
\(274\) 22.3340 16.6069i 1.34925 1.00326i
\(275\) −2.01657 1.45939i −0.121604 0.0880048i
\(276\) 3.09112 1.66208i 0.186063 0.100046i
\(277\) −3.01961 + 5.92631i −0.181431 + 0.356078i −0.963753 0.266796i \(-0.914035\pi\)
0.782322 + 0.622874i \(0.214035\pi\)
\(278\) −1.49083 + 1.52416i −0.0894140 + 0.0914131i
\(279\) −10.3391 14.2305i −0.618984 0.851958i
\(280\) −4.90892 4.59367i −0.293364 0.274524i
\(281\) −0.887076 0.288228i −0.0529185 0.0171943i 0.282438 0.959286i \(-0.408857\pi\)
−0.335357 + 0.942091i \(0.608857\pi\)
\(282\) 6.21547 3.25398i 0.370126 0.193772i
\(283\) 1.44468 + 9.12133i 0.0858771 + 0.542207i 0.992692 + 0.120677i \(0.0385066\pi\)
−0.906815 + 0.421530i \(0.861493\pi\)
\(284\) −0.236353 10.6887i −0.0140249 0.634256i
\(285\) 1.22772 1.22772i 0.0727237 0.0727237i
\(286\) −1.35654 2.57944i −0.0802139 0.152526i
\(287\) 8.59099 0.507110
\(288\) −5.46453 14.1126i −0.322001 0.831593i
\(289\) −22.6698 16.4705i −1.33352 0.968855i
\(290\) 18.2423 + 5.70512i 1.07122 + 0.335016i
\(291\) 0.636822 + 1.24983i 0.0373312 + 0.0732665i
\(292\) −11.6031 + 16.7362i −0.679020 + 0.979414i
\(293\) 20.6519 + 3.27093i 1.20649 + 0.191090i 0.727114 0.686517i \(-0.240861\pi\)
0.479381 + 0.877607i \(0.340861\pi\)
\(294\) −3.26681 3.19537i −0.190524 0.186358i
\(295\) −19.1588 + 6.22506i −1.11547 + 0.362437i
\(296\) 9.74539 + 4.56505i 0.566439 + 0.265338i
\(297\) −4.88734 9.54795i −0.283592 0.554028i
\(298\) −2.96549 + 20.1635i −0.171786 + 1.16804i
\(299\) 0.868674 1.70487i 0.0502367 0.0985951i
\(300\) 0.847607 + 0.115102i 0.0489366 + 0.00664542i
\(301\) 1.47063 9.28517i 0.0847655 0.535188i
\(302\) 0.672461 + 1.99434i 0.0386958 + 0.114761i
\(303\) −3.10022 + 9.54150i −0.178103 + 0.548145i
\(304\) −3.99166 + 4.36125i −0.228937 + 0.250135i
\(305\) −7.17250 5.21113i −0.410696 0.298388i
\(306\) 20.7013 + 14.6935i 1.18342 + 0.839972i
\(307\) −22.3468 + 22.3468i −1.27540 + 1.27540i −0.332182 + 0.943215i \(0.607785\pi\)
−0.943215 + 0.332182i \(0.892215\pi\)
\(308\) 6.29380 + 4.34611i 0.358623 + 0.247642i
\(309\) −4.54056 4.54056i −0.258304 0.258304i
\(310\) 18.8977 3.20763i 1.07332 0.182181i
\(311\) 8.53567 11.7483i 0.484014 0.666187i −0.495256 0.868747i \(-0.664926\pi\)
0.979270 + 0.202559i \(0.0649259\pi\)
\(312\) 0.829286 + 0.561466i 0.0469491 + 0.0317868i
\(313\) 30.9315 + 10.0503i 1.74835 + 0.568074i 0.995891 0.0905621i \(-0.0288664\pi\)
0.752462 + 0.658636i \(0.228866\pi\)
\(314\) 0.992313 2.00193i 0.0559994 0.112975i
\(315\) −6.28071 0.994767i −0.353878 0.0560488i
\(316\) −21.6746 + 16.4918i −1.21929 + 0.927735i
\(317\) 5.21338 + 2.65635i 0.292812 + 0.149195i 0.594226 0.804298i \(-0.297458\pi\)
−0.301414 + 0.953493i \(0.597458\pi\)
\(318\) −2.32952 3.13289i −0.130633 0.175684i
\(319\) −21.4835 3.36164i −1.20284 0.188216i
\(320\) 16.4235 + 1.49459i 0.918102 + 0.0835501i
\(321\) −1.41183 4.34517i −0.0788007 0.242524i
\(322\) 0.0555096 + 5.02128i 0.00309343 + 0.279825i
\(323\) 1.55142 9.79527i 0.0863232 0.545023i
\(324\) −10.1624 7.04550i −0.564577 0.391417i
\(325\) 0.415520 0.211718i 0.0230489 0.0117440i
\(326\) −4.54118 + 2.37744i −0.251513 + 0.131674i
\(327\) 1.33539 1.83801i 0.0738475 0.101642i
\(328\) −16.6286 + 12.9451i −0.918163 + 0.714773i
\(329\) 10.0381i 0.553420i
\(330\) 5.50936 0.0711678i 0.303280 0.00391766i
\(331\) 23.5440 + 23.5440i 1.29409 + 1.29409i 0.932231 + 0.361864i \(0.117859\pi\)
0.361864 + 0.932231i \(0.382141\pi\)
\(332\) 1.03220 1.07888i 0.0566492 0.0592112i
\(333\) 10.0536 1.59233i 0.550933 0.0872591i
\(334\) 5.29807 16.9407i 0.289898 0.926956i
\(335\) −3.99735 + 12.3026i −0.218398 + 0.672161i
\(336\) −2.61157 0.296004i −0.142473 0.0161484i
\(337\) 4.17278 3.03170i 0.227306 0.165147i −0.468303 0.883568i \(-0.655135\pi\)
0.695609 + 0.718420i \(0.255135\pi\)
\(338\) −17.8377 + 0.197193i −0.970242 + 0.0107259i
\(339\) 4.36423 + 2.22368i 0.237032 + 0.120774i
\(340\) −24.3646 + 13.1008i −1.32136 + 0.710489i
\(341\) −20.7269 + 6.77727i −1.12242 + 0.367010i
\(342\) −0.813680 + 5.53253i −0.0439988 + 0.299165i
\(343\) 13.8948 4.51469i 0.750248 0.243770i
\(344\) 11.1446 + 20.1883i 0.600875 + 1.08848i
\(345\) 2.12626 + 2.92655i 0.114474 + 0.157560i
\(346\) 13.1568 26.5431i 0.707317 1.42697i
\(347\) −6.61939 + 3.37275i −0.355348 + 0.181059i −0.622547 0.782583i \(-0.713902\pi\)
0.267199 + 0.963641i \(0.413902\pi\)
\(348\) 7.05372 2.46558i 0.378119 0.132169i
\(349\) −7.85324 + 1.24383i −0.420374 + 0.0665807i −0.363038 0.931774i \(-0.618261\pi\)
−0.0573358 + 0.998355i \(0.518261\pi\)
\(350\) −0.708395 + 0.998039i −0.0378653 + 0.0533474i
\(351\) 2.00948 0.107258
\(352\) −18.7310 + 1.07136i −0.998368 + 0.0571035i
\(353\) −28.4965 −1.51671 −0.758357 0.651840i \(-0.773997\pi\)
−0.758357 + 0.651840i \(0.773997\pi\)
\(354\) −4.55829 + 6.42205i −0.242270 + 0.341328i
\(355\) 10.8840 1.72385i 0.577660 0.0914924i
\(356\) −1.73966 + 0.608086i −0.0922016 + 0.0322285i
\(357\) 3.92829 2.00156i 0.207907 0.105934i
\(358\) −14.8818 + 30.0232i −0.786530 + 1.58677i
\(359\) −6.45042 8.87824i −0.340440 0.468576i 0.604130 0.796886i \(-0.293521\pi\)
−0.944570 + 0.328310i \(0.893521\pi\)
\(360\) 13.6558 7.53846i 0.719725 0.397312i
\(361\) −15.9924 + 5.19624i −0.841704 + 0.273486i
\(362\) 1.29496 8.80496i 0.0680617 0.462778i
\(363\) −6.18746 + 1.00364i −0.324757 + 0.0526773i
\(364\) −1.26205 + 0.678597i −0.0661492 + 0.0355682i
\(365\) −18.7026 9.52945i −0.978939 0.498794i
\(366\) −3.46572 + 0.0383131i −0.181156 + 0.00200266i
\(367\) −16.6299 + 12.0823i −0.868072 + 0.630691i −0.930069 0.367385i \(-0.880253\pi\)
0.0619970 + 0.998076i \(0.480253\pi\)
\(368\) −7.67363 9.63551i −0.400016 0.502286i
\(369\) −6.15942 + 18.9567i −0.320647 + 0.986848i
\(370\) −3.31083 + 10.5865i −0.172122 + 0.550365i
\(371\) 5.51716 0.873833i 0.286437 0.0453671i
\(372\) 5.18026 5.41453i 0.268584 0.280730i
\(373\) −15.7818 15.7818i −0.817150 0.817150i 0.168544 0.985694i \(-0.446093\pi\)
−0.985694 + 0.168544i \(0.946093\pi\)
\(374\) 25.2201 18.8259i 1.30410 0.973467i
\(375\) 6.75514i 0.348834i
\(376\) −15.1257 19.4297i −0.780047 1.00201i
\(377\) 2.39451 3.29576i 0.123324 0.169740i
\(378\) −4.67214 + 2.44600i −0.240309 + 0.125809i
\(379\) −13.5786 + 6.91866i −0.697487 + 0.355388i −0.766514 0.642227i \(-0.778011\pi\)
0.0690270 + 0.997615i \(0.478011\pi\)
\(380\) −5.00792 3.47195i −0.256901 0.178107i
\(381\) 0.931822 5.88330i 0.0477387 0.301410i
\(382\) 0.292418 + 26.4515i 0.0149614 + 1.35338i
\(383\) 8.98641 + 27.6573i 0.459184 + 1.41322i 0.866152 + 0.499781i \(0.166586\pi\)
−0.406967 + 0.913443i \(0.633414\pi\)
\(384\) 5.50095 3.36223i 0.280719 0.171578i
\(385\) −3.56593 + 7.03087i −0.181737 + 0.358326i
\(386\) 7.67797 + 10.3258i 0.390799 + 0.525571i
\(387\) 19.4341 + 9.90218i 0.987892 + 0.503356i
\(388\) 3.91796 2.98109i 0.198904 0.151342i
\(389\) 35.8491 + 5.67794i 1.81762 + 0.287883i 0.970069 0.242829i \(-0.0780755\pi\)
0.847552 + 0.530712i \(0.178075\pi\)
\(390\) −0.458429 + 0.924852i −0.0232135 + 0.0468317i
\(391\) 19.6512 + 6.38505i 0.993802 + 0.322906i
\(392\) −8.99174 + 13.2808i −0.454152 + 0.670782i
\(393\) 2.68590 3.69682i 0.135486 0.186480i
\(394\) 28.1580 4.77945i 1.41858 0.240785i
\(395\) −19.8498 19.8498i −0.998752 0.998752i
\(396\) −14.1025 + 10.7718i −0.708676 + 0.541304i
\(397\) 10.5879 10.5879i 0.531390 0.531390i −0.389596 0.920986i \(-0.627385\pi\)
0.920986 + 0.389596i \(0.127385\pi\)
\(398\) 20.4413 + 14.5089i 1.02463 + 0.727267i
\(399\) 0.785702 + 0.570846i 0.0393343 + 0.0285780i
\(400\) −0.132705 2.99922i −0.00663526 0.149961i
\(401\) −0.534116 + 1.64384i −0.0266725 + 0.0820895i −0.963507 0.267684i \(-0.913742\pi\)
0.936834 + 0.349774i \(0.113742\pi\)
\(402\) 1.61578 + 4.79196i 0.0805879 + 0.239001i
\(403\) 0.639094 4.03508i 0.0318355 0.201002i
\(404\) 34.8910 + 4.73807i 1.73589 + 0.235728i
\(405\) 5.78637 11.3564i 0.287527 0.564304i
\(406\) −1.55565 + 10.5775i −0.0772058 + 0.524952i
\(407\) 1.95085 12.4674i 0.0966999 0.617986i
\(408\) −4.58756 + 9.79344i −0.227118 + 0.484848i
\(409\) −11.5442 + 3.75095i −0.570825 + 0.185472i −0.580186 0.814484i \(-0.697020\pi\)
0.00936111 + 0.999956i \(0.497020\pi\)
\(410\) −15.5276 15.1880i −0.766853 0.750084i
\(411\) 11.0765 + 1.75434i 0.546363 + 0.0865353i
\(412\) −12.8406 + 18.5212i −0.632610 + 0.912473i
\(413\) −5.11558 10.0399i −0.251721 0.494031i
\(414\) −11.1197 3.47759i −0.546503 0.170914i
\(415\) 1.24506 + 0.904588i 0.0611175 + 0.0444045i
\(416\) 1.42028 3.21517i 0.0696350 0.157637i
\(417\) −0.859096 −0.0420701
\(418\) 6.21716 + 3.06730i 0.304091 + 0.150027i
\(419\) −14.6244 + 14.6244i −0.714446 + 0.714446i −0.967462 0.253016i \(-0.918578\pi\)
0.253016 + 0.967462i \(0.418578\pi\)
\(420\) −0.0598881 2.70834i −0.00292224 0.132154i
\(421\) −2.61300 16.4978i −0.127350 0.804055i −0.965840 0.259139i \(-0.916561\pi\)
0.838490 0.544917i \(-0.183439\pi\)
\(422\) 21.9183 11.4749i 1.06697 0.558588i
\(423\) −22.1500 7.19696i −1.07697 0.349928i
\(424\) −9.36226 + 10.0048i −0.454672 + 0.485875i
\(425\) 2.96007 + 4.07418i 0.143584 + 0.197627i
\(426\) 3.01234 3.07969i 0.145949 0.149211i
\(427\) 2.25137 4.41856i 0.108951 0.213829i
\(428\) −14.1229 + 7.59385i −0.682658 + 0.367062i
\(429\) 0.360810 1.11754i 0.0174201 0.0539551i
\(430\) −19.0733 + 14.1824i −0.919798 + 0.683934i
\(431\) −11.2825 34.7241i −0.543461 1.67260i −0.724621 0.689148i \(-0.757985\pi\)
0.181160 0.983454i \(-0.442015\pi\)
\(432\) 5.35766 11.7746i 0.257771 0.566503i
\(433\) 21.4361 15.5742i 1.03015 0.748449i 0.0618125 0.998088i \(-0.480312\pi\)
0.968339 + 0.249639i \(0.0803119\pi\)
\(434\) 3.42570 + 10.1597i 0.164439 + 0.487680i
\(435\) 3.49650 + 6.86227i 0.167644 + 0.329021i
\(436\) −7.18294 3.46205i −0.344001 0.165802i
\(437\) 0.712020 + 4.49552i 0.0340605 + 0.215050i
\(438\) −8.09023 + 1.37321i −0.386566 + 0.0656144i
\(439\) 21.6665i 1.03408i 0.855960 + 0.517042i \(0.172967\pi\)
−0.855960 + 0.517042i \(0.827033\pi\)
\(440\) −3.69210 18.9821i −0.176014 0.904937i
\(441\) 15.1700i 0.722380i
\(442\) 0.986664 + 5.81292i 0.0469308 + 0.276492i
\(443\) 3.12174 + 19.7099i 0.148318 + 0.936444i 0.943812 + 0.330482i \(0.107211\pi\)
−0.795494 + 0.605961i \(0.792789\pi\)
\(444\) 1.43084 + 4.09346i 0.0679047 + 0.194267i
\(445\) −0.862340 1.69244i −0.0408788 0.0802292i
\(446\) 7.10687 2.39633i 0.336520 0.113470i
\(447\) −6.64377 + 4.82698i −0.314239 + 0.228308i
\(448\) 0.611382 + 9.20424i 0.0288851 + 0.434859i
\(449\) −7.41955 22.8350i −0.350150 1.07765i −0.958768 0.284188i \(-0.908276\pi\)
0.608618 0.793463i \(-0.291724\pi\)
\(450\) −1.69436 2.27869i −0.0798731 0.107418i
\(451\) 20.0184 + 14.4873i 0.942630 + 0.682182i
\(452\) 4.94953 16.4629i 0.232806 0.774350i
\(453\) −0.385010 + 0.755625i −0.0180893 + 0.0355023i
\(454\) 5.07125 + 4.96035i 0.238006 + 0.232801i
\(455\) −0.868114 1.19486i −0.0406978 0.0560158i
\(456\) −2.38096 + 0.0789894i −0.111499 + 0.00369902i
\(457\) −7.16534 2.32816i −0.335181 0.108907i 0.136591 0.990628i \(-0.456385\pi\)
−0.471772 + 0.881721i \(0.656385\pi\)
\(458\) 0.865139 + 1.65251i 0.0404253 + 0.0772169i
\(459\) 3.39459 + 21.4326i 0.158446 + 1.00039i
\(460\) 8.77682 9.17375i 0.409221 0.427728i
\(461\) 23.1956 23.1956i 1.08033 1.08033i 0.0838489 0.996478i \(-0.473279\pi\)
0.996478 0.0838489i \(-0.0267213\pi\)
\(462\) 0.521399 + 3.03752i 0.0242577 + 0.141318i
\(463\) 22.3270 1.03762 0.518812 0.854888i \(-0.326374\pi\)
0.518812 + 0.854888i \(0.326374\pi\)
\(464\) −12.9273 22.8178i −0.600135 1.05929i
\(465\) 6.24853 + 4.53983i 0.289769 + 0.210529i
\(466\) 6.65947 21.2938i 0.308494 0.986418i
\(467\) −0.692865 1.35982i −0.0320620 0.0629252i 0.874420 0.485170i \(-0.161242\pi\)
−0.906482 + 0.422245i \(0.861242\pi\)
\(468\) −0.592542 3.27134i −0.0273903 0.151218i
\(469\) −7.14654 1.13190i −0.329997 0.0522663i
\(470\) 17.7464 18.1432i 0.818582 0.836883i
\(471\) 0.856259 0.278215i 0.0394543 0.0128195i
\(472\) 25.0300 + 11.7249i 1.15210 + 0.539681i
\(473\) 19.0848 19.1560i 0.877519 0.880794i
\(474\) −10.8575 1.59684i −0.498703 0.0733453i
\(475\) −0.503625 + 0.988420i −0.0231079 + 0.0453518i
\(476\) −9.36971 12.3143i −0.429460 0.564426i
\(477\) −2.02741 + 12.8006i −0.0928289 + 0.586099i
\(478\) 28.5946 9.64168i 1.30789 0.441000i
\(479\) 2.03525 6.26384i 0.0929928 0.286202i −0.893733 0.448600i \(-0.851923\pi\)
0.986725 + 0.162398i \(0.0519228\pi\)
\(480\) 4.19691 + 5.15201i 0.191562 + 0.235156i
\(481\) 1.91262 + 1.38960i 0.0872078 + 0.0633602i
\(482\) 4.43078 6.24241i 0.201817 0.284334i
\(483\) −1.43077 + 1.43077i −0.0651024 + 0.0651024i
\(484\) 7.33657 + 20.7407i 0.333481 + 0.942757i
\(485\) 3.58810 + 3.58810i 0.162927 + 0.162927i
\(486\) −3.12992 18.4399i −0.141976 0.836449i
\(487\) −4.34090 + 5.97473i −0.196705 + 0.270741i −0.895963 0.444128i \(-0.853514\pi\)
0.699259 + 0.714869i \(0.253514\pi\)
\(488\) 2.30026 + 11.9449i 0.104128 + 0.540722i
\(489\) −1.96435 0.638255i −0.0888308 0.0288629i
\(490\) −14.8113 7.34163i −0.669105 0.331661i
\(491\) 14.4445 + 2.28778i 0.651870 + 0.103246i 0.473606 0.880737i \(-0.342952\pi\)
0.178263 + 0.983983i \(0.442952\pi\)
\(492\) −8.41415 1.14261i −0.379339 0.0515129i
\(493\) 39.1968 + 19.9718i 1.76534 + 0.899484i
\(494\) −1.04224 + 0.774980i −0.0468927 + 0.0348680i
\(495\) −12.9576 12.9094i −0.582400 0.580234i
\(496\) −21.9396 14.5031i −0.985118 0.651207i
\(497\) 1.90474 + 5.86219i 0.0854393 + 0.262955i
\(498\) 0.601607 0.00665069i 0.0269586 0.000298024i
\(499\) 3.34487 21.1187i 0.149737 0.945401i −0.792358 0.610056i \(-0.791147\pi\)
0.942095 0.335345i \(-0.108853\pi\)
\(500\) 23.3290 4.22561i 1.04330 0.188975i
\(501\) 6.37265 3.24703i 0.284709 0.145067i
\(502\) −16.3607 31.2507i −0.730212 1.39479i
\(503\) −14.4270 + 19.8570i −0.643267 + 0.885381i −0.998785 0.0492889i \(-0.984305\pi\)
0.355518 + 0.934669i \(0.384305\pi\)
\(504\) 5.35967 + 6.88477i 0.238739 + 0.306672i
\(505\) 36.2926i 1.61500i
\(506\) −8.33826 + 11.7940i −0.370681 + 0.524309i
\(507\) −5.08270 5.08270i −0.225731 0.225731i
\(508\) −20.9009 + 0.462170i −0.927328 + 0.0205055i
\(509\) −28.7521 + 4.55388i −1.27441 + 0.201847i −0.756731 0.653726i \(-0.773205\pi\)
−0.517682 + 0.855573i \(0.673205\pi\)
\(510\) −10.6387 3.32715i −0.471088 0.147329i
\(511\) 3.62819 11.1664i 0.160502 0.493974i
\(512\) −15.0525 16.8944i −0.665235 0.746634i
\(513\) −3.86715 + 2.80965i −0.170739 + 0.124049i
\(514\) 0.0690754 + 6.24842i 0.00304679 + 0.275606i
\(515\) −20.6973 10.5458i −0.912031 0.464703i
\(516\) −2.67529 + 8.89845i −0.117773 + 0.391733i
\(517\) −16.9277 + 23.3905i −0.744480 + 1.02871i
\(518\) −6.13839 0.902786i −0.269705 0.0396661i
\(519\) 11.3529 3.68879i 0.498339 0.161920i
\(520\) 3.48075 + 1.00466i 0.152641 + 0.0440573i
\(521\) −8.50081 11.7004i −0.372427 0.512602i 0.581131 0.813810i \(-0.302610\pi\)
−0.953559 + 0.301208i \(0.902610\pi\)
\(522\) −22.2248 11.0164i −0.972753 0.482173i
\(523\) −11.8625 + 6.04424i −0.518710 + 0.264296i −0.693687 0.720277i \(-0.744015\pi\)
0.174977 + 0.984573i \(0.444015\pi\)
\(524\) −14.4471 6.96327i −0.631126 0.304192i
\(525\) −0.487086 + 0.0771469i −0.0212582 + 0.00336697i
\(526\) −34.0430 24.1633i −1.48435 1.05357i
\(527\) 44.1168 1.92176
\(528\) −5.58622 5.09373i −0.243109 0.221676i
\(529\) 13.5170 0.587696
\(530\) −11.5167 8.17442i −0.500255 0.355074i
\(531\) 25.8216 4.08973i 1.12056 0.177479i
\(532\) 1.47994 3.07052i 0.0641633 0.133124i
\(533\) −4.12485 + 2.10171i −0.178667 + 0.0910353i
\(534\) −0.665323 0.329786i −0.0287914 0.0142713i
\(535\) −9.71464 13.3711i −0.420000 0.578081i
\(536\) 15.5384 8.57768i 0.671155 0.370499i
\(537\) −12.8414 + 4.17243i −0.554149 + 0.180054i
\(538\) −17.9315 2.63723i −0.773084 0.113699i
\(539\) 17.8971 + 5.77828i 0.770881 + 0.248888i
\(540\) 12.7689 + 3.83892i 0.549484 + 0.165201i
\(541\) −21.8674 11.1420i −0.940155 0.479033i −0.0844099 0.996431i \(-0.526901\pi\)
−0.855745 + 0.517398i \(0.826901\pi\)
\(542\) 0.210959 + 19.0829i 0.00906147 + 0.819681i
\(543\) 2.90119 2.10784i 0.124502 0.0904559i
\(544\) 36.6915 + 9.71701i 1.57313 + 0.416613i
\(545\) 2.53969 7.81637i 0.108789 0.334817i
\(546\) −0.551064 0.172341i −0.0235834 0.00737550i
\(547\) −13.7200 + 2.17303i −0.586624 + 0.0929121i −0.442689 0.896675i \(-0.645975\pi\)
−0.143935 + 0.989587i \(0.545975\pi\)
\(548\) −0.870128 39.3502i −0.0371700 1.68096i
\(549\) 8.13578 + 8.13578i 0.347227 + 0.347227i
\(550\) −3.33371 + 1.13100i −0.142150 + 0.0482260i
\(551\) 9.69054i 0.412831i
\(552\) 0.613470 4.92531i 0.0261110 0.209635i
\(553\) 9.22947 12.7033i 0.392477 0.540198i
\(554\) 4.36275 + 8.33335i 0.185356 + 0.354050i
\(555\) −3.98235 + 2.02911i −0.169041 + 0.0861309i
\(556\) 0.537398 + 2.96690i 0.0227907 + 0.125824i
\(557\) −5.30398 + 33.4880i −0.224737 + 1.41893i 0.574789 + 0.818302i \(0.305084\pi\)
−0.799526 + 0.600632i \(0.794916\pi\)
\(558\) −24.8743 + 0.274982i −1.05301 + 0.0116409i
\(559\) 1.56544 + 4.81792i 0.0662110 + 0.203776i
\(560\) −9.31583 + 1.90100i −0.393666 + 0.0803318i
\(561\) 12.5289 + 1.96047i 0.528969 + 0.0827709i
\(562\) −1.05852 + 0.787082i −0.0446509 + 0.0332011i
\(563\) −39.5024 20.1275i −1.66483 0.848271i −0.994328 0.106360i \(-0.966081\pi\)
−0.670498 0.741911i \(-0.733919\pi\)
\(564\) 1.33508 9.83150i 0.0562171 0.413981i
\(565\) 17.5006 + 2.77183i 0.736258 + 0.116612i
\(566\) 11.7016 + 5.80026i 0.491857 + 0.243803i
\(567\) 6.78036 + 2.20307i 0.284748 + 0.0925203i
\(568\) −12.5201 8.47670i −0.525331 0.355674i
\(569\) −6.15186 + 8.46731i −0.257899 + 0.354968i −0.918258 0.395982i \(-0.870404\pi\)
0.660359 + 0.750950i \(0.270404\pi\)
\(570\) −0.410900 2.42081i −0.0172107 0.101397i
\(571\) −24.9121 24.9121i −1.04254 1.04254i −0.999054 0.0434830i \(-0.986155\pi\)
−0.0434830 0.999054i \(-0.513845\pi\)
\(572\) −4.08512 0.546998i −0.170808 0.0228711i
\(573\) −7.53713 + 7.53713i −0.314868 + 0.314868i
\(574\) 7.03220 9.90748i 0.293518 0.413530i
\(575\) −1.86984 1.35852i −0.0779776 0.0566540i
\(576\) −20.7483 5.25003i −0.864511 0.218751i
\(577\) 0.953303 2.93397i 0.0396865 0.122143i −0.929250 0.369451i \(-0.879546\pi\)
0.968937 + 0.247308i \(0.0795459\pi\)
\(578\) −37.5510 + 12.6617i −1.56191 + 0.526655i
\(579\) −0.811097 + 5.12106i −0.0337080 + 0.212824i
\(580\) 21.5117 16.3678i 0.893226 0.679637i
\(581\) −0.390810 + 0.767008i −0.0162135 + 0.0318209i
\(582\) 1.96263 + 0.288649i 0.0813538 + 0.0119649i
\(583\) 14.3295 + 7.26765i 0.593466 + 0.300995i
\(584\) 9.80314 + 27.0807i 0.405657 + 1.12061i
\(585\) 3.25896 1.05890i 0.134741 0.0437801i
\(586\) 20.6769 21.1391i 0.854154 0.873250i
\(587\) 23.4791 + 3.71873i 0.969087 + 0.153488i 0.620859 0.783922i \(-0.286784\pi\)
0.348227 + 0.937410i \(0.386784\pi\)
\(588\) −6.35911 + 1.15183i −0.262245 + 0.0475008i
\(589\) 4.41193 + 8.65890i 0.181790 + 0.356784i
\(590\) −8.50352 + 27.1903i −0.350085 + 1.11941i
\(591\) 9.31047 + 6.76445i 0.382982 + 0.278252i
\(592\) 13.2418 7.50204i 0.544233 0.308332i
\(593\) 19.4873 0.800248 0.400124 0.916461i \(-0.368967\pi\)
0.400124 + 0.916461i \(0.368967\pi\)
\(594\) −15.0117 2.17924i −0.615936 0.0894153i
\(595\) 11.2776 11.2776i 0.462335 0.462335i
\(596\) 20.8260 + 19.9249i 0.853065 + 0.816154i
\(597\) 1.58008 + 9.97622i 0.0646683 + 0.408300i
\(598\) −1.25507 2.39732i −0.0513235 0.0980338i
\(599\) 6.16615 + 2.00350i 0.251942 + 0.0818609i 0.432265 0.901746i \(-0.357714\pi\)
−0.180323 + 0.983607i \(0.557714\pi\)
\(600\) 0.826554 0.883278i 0.0337439 0.0360597i
\(601\) 10.8320 + 14.9090i 0.441847 + 0.608151i 0.970621 0.240612i \(-0.0773481\pi\)
−0.528774 + 0.848763i \(0.677348\pi\)
\(602\) −9.50425 9.29641i −0.387364 0.378894i
\(603\) 7.62144 14.9579i 0.310369 0.609134i
\(604\) 2.85040 + 0.856964i 0.115981 + 0.0348694i
\(605\) −20.1657 + 10.3697i −0.819851 + 0.421589i
\(606\) 8.46595 + 11.3855i 0.343906 + 0.462506i
\(607\) −0.547905 1.68628i −0.0222388 0.0684439i 0.939321 0.343039i \(-0.111456\pi\)
−0.961560 + 0.274595i \(0.911456\pi\)
\(608\) 1.76218 + 8.17327i 0.0714656 + 0.331470i
\(609\) −3.48523 + 2.53217i −0.141229 + 0.102609i
\(610\) −11.8808 + 4.00603i −0.481039 + 0.162199i
\(611\) −2.45574 4.81967i −0.0993488 0.194983i
\(612\) 33.8903 11.8462i 1.36994 0.478852i
\(613\) 2.31996 + 14.6477i 0.0937024 + 0.591613i 0.989203 + 0.146553i \(0.0468179\pi\)
−0.895500 + 0.445061i \(0.853182\pi\)
\(614\) 7.47915 + 44.0633i 0.301834 + 1.77825i
\(615\) 8.75216i 0.352921i
\(616\) 10.1639 3.70074i 0.409517 0.149107i
\(617\) 47.1018i 1.89625i −0.317904 0.948123i \(-0.602979\pi\)
0.317904 0.948123i \(-0.397021\pi\)
\(618\) −8.95307 + 1.51966i −0.360145 + 0.0611298i
\(619\) −4.11326 25.9701i −0.165326 1.04383i −0.921195 0.389102i \(-0.872785\pi\)
0.755869 0.654723i \(-0.227215\pi\)
\(620\) 11.7696 24.4192i 0.472680 0.980700i
\(621\) −4.52132 8.87359i −0.181434 0.356085i
\(622\) −6.56176 19.4604i −0.263103 0.780290i
\(623\) 0.859560 0.624507i 0.0344375 0.0250203i
\(624\) 1.32632 0.496776i 0.0530954 0.0198869i
\(625\) 6.39171 + 19.6716i 0.255668 + 0.786866i
\(626\) 36.9095 27.4448i 1.47520 1.09692i
\(627\) 0.868174 + 2.65513i 0.0346715 + 0.106036i
\(628\) −1.49644 2.78307i −0.0597146 0.111056i
\(629\) −11.5901 + 22.7469i −0.462129 + 0.906979i
\(630\) −6.28832 + 6.42891i −0.250533 + 0.256134i
\(631\) 27.2262 + 37.4736i 1.08386 + 1.49180i 0.855203 + 0.518293i \(0.173432\pi\)
0.228654 + 0.973508i \(0.426568\pi\)
\(632\) 1.27711 + 38.4955i 0.0508005 + 1.53127i
\(633\) 9.48105 + 3.08058i 0.376838 + 0.122442i
\(634\) 7.33085 3.83791i 0.291145 0.152423i
\(635\) −3.37086 21.2828i −0.133769 0.844582i
\(636\) −5.51982 + 0.122057i −0.218875 + 0.00483986i
\(637\) −2.49138 + 2.49138i −0.0987120 + 0.0987120i
\(638\) −21.4622 + 22.0239i −0.849697 + 0.871936i
\(639\) −14.3010 −0.565741
\(640\) 15.1672 17.7169i 0.599536 0.700321i
\(641\) 0.448262 + 0.325681i 0.0177053 + 0.0128636i 0.596603 0.802537i \(-0.296517\pi\)
−0.578897 + 0.815400i \(0.696517\pi\)
\(642\) −6.16669 1.92858i −0.243380 0.0761150i
\(643\) −4.93659 9.68861i −0.194680 0.382081i 0.772945 0.634473i \(-0.218783\pi\)
−0.967625 + 0.252392i \(0.918783\pi\)
\(644\) 5.83619 + 4.04619i 0.229978 + 0.159442i
\(645\) −9.45937 1.49822i −0.372462 0.0589922i
\(646\) −10.0264 9.80714i −0.394483 0.385857i
\(647\) −2.52376 + 0.820020i −0.0992194 + 0.0322383i −0.358206 0.933643i \(-0.616611\pi\)
0.258987 + 0.965881i \(0.416611\pi\)
\(648\) −16.4437 + 5.95256i −0.645968 + 0.233838i
\(649\) 5.01055 32.0212i 0.196681 1.25694i
\(650\) 0.0959642 0.652498i 0.00376403 0.0255931i
\(651\) −1.96135 + 3.84936i −0.0768712 + 0.150868i
\(652\) −0.975445 + 7.18315i −0.0382014 + 0.281314i
\(653\) −6.69635 + 42.2791i −0.262048 + 1.65451i 0.408585 + 0.912720i \(0.366022\pi\)
−0.670634 + 0.741789i \(0.733978\pi\)
\(654\) −1.02658 3.04455i −0.0401424 0.119051i
\(655\) 5.10812 15.7212i 0.199591 0.614277i
\(656\) 1.31736 + 29.7731i 0.0514342 + 1.16245i
\(657\) 22.0384 + 16.0118i 0.859800 + 0.624681i
\(658\) 11.5764 + 8.21676i 0.451294 + 0.320323i
\(659\) −9.96611 + 9.96611i −0.388225 + 0.388225i −0.874054 0.485829i \(-0.838518\pi\)
0.485829 + 0.874054i \(0.338518\pi\)
\(660\) 4.42764 6.41188i 0.172346 0.249582i
\(661\) −30.9888 30.9888i −1.20532 1.20532i −0.972525 0.232799i \(-0.925212\pi\)
−0.232799 0.972525i \(-0.574788\pi\)
\(662\) 46.4240 7.87984i 1.80432 0.306259i
\(663\) −1.39645 + 1.92205i −0.0542335 + 0.0746461i
\(664\) −0.399297 2.07350i −0.0154957 0.0804673i
\(665\) 3.34129 + 1.08565i 0.129570 + 0.0420997i
\(666\) 6.39307 12.8976i 0.247726 0.499772i
\(667\) −19.9413 3.15839i −0.772130 0.122293i
\(668\) −15.2000 19.9769i −0.588106 0.772929i
\(669\) 2.69269 + 1.37199i 0.104105 + 0.0530443i
\(670\) 10.9158 + 14.6802i 0.421713 + 0.567147i
\(671\) 12.6973 6.49940i 0.490172 0.250906i
\(672\) −2.47908 + 2.76947i −0.0956325 + 0.106835i
\(673\) 9.17361 + 28.2335i 0.353617 + 1.08832i 0.956807 + 0.290723i \(0.0938958\pi\)
−0.603191 + 0.797597i \(0.706104\pi\)
\(674\) −0.0806324 7.29384i −0.00310585 0.280948i
\(675\) 0.379710 2.39739i 0.0146150 0.0922757i
\(676\) −14.3737 + 20.7326i −0.552836 + 0.797407i
\(677\) −16.6009 + 8.45856i −0.638023 + 0.325089i −0.742906 0.669396i \(-0.766553\pi\)
0.104883 + 0.994485i \(0.466553\pi\)
\(678\) 6.13681 3.21280i 0.235683 0.123387i
\(679\) −1.66834 + 2.29627i −0.0640250 + 0.0881229i
\(680\) −4.83546 + 38.8220i −0.185431 + 1.48876i
\(681\) 2.85842i 0.109535i
\(682\) −9.15026 + 29.4506i −0.350381 + 1.12772i
\(683\) −23.7922 23.7922i −0.910385 0.910385i 0.0859174 0.996302i \(-0.472618\pi\)
−0.996302 + 0.0859174i \(0.972618\pi\)
\(684\) 5.71430 + 5.46705i 0.218492 + 0.209038i
\(685\) 40.0691 6.34632i 1.53096 0.242481i
\(686\) 6.16713 19.7196i 0.235462 0.752897i
\(687\) −0.232258 + 0.714816i −0.00886119 + 0.0272719i
\(688\) 32.4044 + 3.67283i 1.23541 + 0.140025i
\(689\) −2.43521 + 1.76929i −0.0927743 + 0.0674045i
\(690\) 5.11549 0.0565511i 0.194743 0.00215286i
\(691\) 0.670783 + 0.341781i 0.0255178 + 0.0130020i 0.466703 0.884414i \(-0.345442\pi\)
−0.441185 + 0.897416i \(0.645442\pi\)
\(692\) −19.8410 36.9000i −0.754242 1.40273i
\(693\) 5.99821 8.28824i 0.227853 0.314844i
\(694\) −1.52875 + 10.3945i −0.0580304 + 0.394571i
\(695\) −2.95567 + 0.960355i −0.112115 + 0.0364283i
\(696\) 2.93045 10.1529i 0.111079 0.384843i
\(697\) −29.3844 40.4442i −1.11301 1.53193i
\(698\) −4.99387 + 10.0748i −0.189021 + 0.381338i
\(699\) 8.01018 4.08139i 0.302973 0.154372i
\(700\) 0.571119 + 1.63390i 0.0215863 + 0.0617556i
\(701\) 10.7931 1.70946i 0.407651 0.0645655i 0.0507582 0.998711i \(-0.483836\pi\)
0.356893 + 0.934145i \(0.383836\pi\)
\(702\) 1.64487 2.31742i 0.0620816 0.0874652i
\(703\) −5.62367 −0.212101
\(704\) −14.0969 + 22.4784i −0.531296 + 0.847186i
\(705\) 10.2264 0.385150
\(706\) −23.3259 + 32.8633i −0.877883 + 1.23683i
\(707\) −20.0505 + 3.17568i −0.754076 + 0.119434i
\(708\) 3.67497 + 10.5136i 0.138114 + 0.395126i
\(709\) −3.54743 + 1.80751i −0.133227 + 0.0678823i −0.519333 0.854572i \(-0.673820\pi\)
0.386107 + 0.922454i \(0.373820\pi\)
\(710\) 6.92111 13.9629i 0.259744 0.524018i
\(711\) 21.4137 + 29.4734i 0.803075 + 1.10534i
\(712\) −0.722736 + 2.50400i −0.0270857 + 0.0938412i
\(713\) −19.2563 + 6.25676i −0.721155 + 0.234317i
\(714\) 0.907236 6.16865i 0.0339525 0.230856i
\(715\) −0.00791212 4.24815i −0.000295896 0.158872i
\(716\) 22.4424 + 41.7380i 0.838711 + 1.55982i
\(717\) 10.8341 + 5.52023i 0.404606 + 0.206157i
\(718\) −15.5188 + 0.171558i −0.579156 + 0.00640249i
\(719\) −30.7946 + 22.3736i −1.14844 + 0.834394i −0.988273 0.152696i \(-0.951205\pi\)
−0.160171 + 0.987089i \(0.551205\pi\)
\(720\) 2.48439 21.9191i 0.0925878 0.816877i
\(721\) 4.01515 12.3574i 0.149532 0.460212i
\(722\) −7.09814 + 22.6965i −0.264165 + 0.844676i
\(723\) 3.04657 0.482529i 0.113303 0.0179455i
\(724\) −9.09424 8.70075i −0.337985 0.323361i
\(725\) −3.47952 3.47952i −0.129226 0.129226i
\(726\) −3.90734 + 7.95717i −0.145015 + 0.295318i
\(727\) 47.1718i 1.74950i −0.484571 0.874752i \(-0.661024\pi\)
0.484571 0.874752i \(-0.338976\pi\)
\(728\) −0.250468 + 2.01091i −0.00928298 + 0.0745294i
\(729\) −6.47282 + 8.90907i −0.239734 + 0.329966i
\(730\) −26.2989 + 13.7682i −0.973366 + 0.509585i
\(731\) −48.7423 + 24.8355i −1.80280 + 0.918572i
\(732\) −2.79270 + 4.02818i −0.103221 + 0.148886i
\(733\) −3.13169 + 19.7727i −0.115671 + 0.730321i 0.859871 + 0.510511i \(0.170544\pi\)
−0.975543 + 0.219810i \(0.929456\pi\)
\(734\) 0.321346 + 29.0683i 0.0118611 + 1.07293i
\(735\) −2.05838 6.33504i −0.0759244 0.233671i
\(736\) −17.3934 + 0.962348i −0.641128 + 0.0354726i
\(737\) −14.7439 14.6890i −0.543097 0.541078i
\(738\) 16.8199 + 22.6204i 0.619148 + 0.832670i
\(739\) 11.3664 + 5.79146i 0.418119 + 0.213042i 0.650377 0.759612i \(-0.274611\pi\)
−0.232257 + 0.972654i \(0.574611\pi\)
\(740\) 9.49867 + 12.4838i 0.349178 + 0.458914i
\(741\) −0.516897 0.0818684i −0.0189887 0.00300751i
\(742\) 3.50836 7.07790i 0.128796 0.259838i
\(743\) 7.41112 + 2.40802i 0.271888 + 0.0883416i 0.441788 0.897120i \(-0.354344\pi\)
−0.169900 + 0.985461i \(0.554344\pi\)
\(744\) −2.00394 10.4062i −0.0734679 0.381509i
\(745\) −17.4616 + 24.0338i −0.639742 + 0.880530i
\(746\) −31.1185 + 5.28194i −1.13933 + 0.193386i
\(747\) −1.41227 1.41227i −0.0516723 0.0516723i
\(748\) −1.06681 44.4950i −0.0390063 1.62690i
\(749\) 6.53702 6.53702i 0.238858 0.238858i
\(750\) 7.79031 + 5.52946i 0.284462 + 0.201907i
\(751\) −25.5328 18.5507i −0.931704 0.676923i 0.0147051 0.999892i \(-0.495319\pi\)
−0.946410 + 0.322969i \(0.895319\pi\)
\(752\) −34.7884 + 1.53926i −1.26860 + 0.0561312i
\(753\) 4.39223 13.5179i 0.160062 0.492620i
\(754\) −1.84077 5.45922i −0.0670369 0.198813i
\(755\) −0.479916 + 3.03007i −0.0174659 + 0.110276i
\(756\) −1.00358 + 7.39029i −0.0364997 + 0.268782i
\(757\) 9.47741 18.6005i 0.344462 0.676045i −0.652168 0.758075i \(-0.726140\pi\)
0.996630 + 0.0820294i \(0.0261401\pi\)
\(758\) −3.13598 + 21.3227i −0.113904 + 0.774477i
\(759\) −5.74671 + 0.921164i −0.208592 + 0.0334361i
\(760\) −8.10326 + 2.93336i −0.293936 + 0.106404i
\(761\) −0.979772 + 0.318347i −0.0355167 + 0.0115401i −0.326721 0.945121i \(-0.605944\pi\)
0.291205 + 0.956661i \(0.405944\pi\)
\(762\) −6.02211 5.89042i −0.218158 0.213387i
\(763\) 4.54052 + 0.719148i 0.164378 + 0.0260349i
\(764\) 30.7443 + 21.3148i 1.11229 + 0.771142i
\(765\) 16.7993 + 32.9705i 0.607380 + 1.19205i
\(766\) 39.2515 + 12.2756i 1.41821 + 0.443534i
\(767\) 4.91236 +