Properties

Label 176.2.w.a.5.15
Level $176$
Weight $2$
Character 176.5
Analytic conductor $1.405$
Analytic rank $0$
Dimension $176$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,2,Mod(5,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 5, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 176.w (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40536707557\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 5.15
Character \(\chi\) \(=\) 176.5
Dual form 176.2.w.a.141.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.664023 + 1.24863i) q^{2} +(-1.67818 + 0.265797i) q^{3} +(-1.11815 + 1.65824i) q^{4} +(-1.78176 + 0.907854i) q^{5} +(-1.44623 - 1.91892i) q^{6} +(-2.03350 - 2.79887i) q^{7} +(-2.81300 - 0.295040i) q^{8} +(-0.107544 + 0.0349431i) q^{9} +O(q^{10})\) \(q+(0.664023 + 1.24863i) q^{2} +(-1.67818 + 0.265797i) q^{3} +(-1.11815 + 1.65824i) q^{4} +(-1.78176 + 0.907854i) q^{5} +(-1.44623 - 1.91892i) q^{6} +(-2.03350 - 2.79887i) q^{7} +(-2.81300 - 0.295040i) q^{8} +(-0.107544 + 0.0349431i) q^{9} +(-2.31670 - 1.62192i) q^{10} +(0.981376 + 3.16811i) q^{11} +(1.43569 - 3.08001i) q^{12} +(4.46145 + 2.27322i) q^{13} +(2.14446 - 4.39759i) q^{14} +(2.74881 - 1.99713i) q^{15} +(-1.49950 - 3.70830i) q^{16} +(-1.05393 + 3.24368i) q^{17} +(-0.115042 - 0.111079i) q^{18} +(-6.57711 + 1.04171i) q^{19} +(0.486834 - 3.96970i) q^{20} +(4.15649 + 4.15649i) q^{21} +(-3.30413 + 3.32907i) q^{22} -0.0211838i q^{23} +(4.79912 - 0.252557i) q^{24} +(-0.588445 + 0.809925i) q^{25} +(0.124098 + 7.08017i) q^{26} +(4.71290 - 2.40134i) q^{27} +(6.91493 - 0.242477i) q^{28} +(-1.11741 + 7.05502i) q^{29} +(4.31894 + 2.10610i) q^{30} +(-0.963612 - 2.96569i) q^{31} +(3.63459 - 4.33472i) q^{32} +(-2.48899 - 5.05579i) q^{33} +(-4.74998 + 0.837905i) q^{34} +(6.16417 + 3.14080i) q^{35} +(0.0623056 - 0.217404i) q^{36} +(6.64870 + 1.05305i) q^{37} +(-5.66807 - 7.52065i) q^{38} +(-8.09132 - 2.62903i) q^{39} +(5.27995 - 2.02810i) q^{40} +(2.21625 - 3.05041i) q^{41} +(-2.42991 + 7.94992i) q^{42} +(2.38995 + 2.38995i) q^{43} +(-6.35079 - 1.91505i) q^{44} +(0.159894 - 0.159894i) q^{45} +(0.0264507 - 0.0140665i) q^{46} +(3.38468 + 2.45911i) q^{47} +(3.50208 + 5.82462i) q^{48} +(-1.53543 + 4.72557i) q^{49} +(-1.40204 - 0.196940i) q^{50} +(0.906528 - 5.72359i) q^{51} +(-8.75810 + 4.85635i) q^{52} +(0.536276 - 1.05250i) q^{53} +(6.12786 + 4.29011i) q^{54} +(-4.62476 - 4.75387i) q^{55} +(4.89444 + 8.47317i) q^{56} +(10.7607 - 3.49635i) q^{57} +(-9.55108 + 3.28948i) q^{58} +(-9.37884 - 1.48546i) q^{59} +(0.238141 + 6.79125i) q^{60} +(-5.35497 - 10.5097i) q^{61} +(3.06319 - 3.17248i) q^{62} +(0.316491 + 0.229944i) q^{63} +(7.82590 + 1.65989i) q^{64} -10.0130 q^{65} +(4.66006 - 6.46499i) q^{66} +(-9.52811 + 9.52811i) q^{67} +(-4.20033 - 5.37458i) q^{68} +(0.00563059 + 0.0355501i) q^{69} +(0.171460 + 9.78232i) q^{70} +(10.4013 + 3.37959i) q^{71} +(0.312830 - 0.0665650i) q^{72} +(-7.21807 - 9.93482i) q^{73} +(3.10002 + 9.00100i) q^{74} +(0.772238 - 1.51560i) q^{75} +(5.62676 - 12.0712i) q^{76} +(6.87148 - 9.18907i) q^{77} +(-2.09015 - 11.8488i) q^{78} +(0.569615 + 1.75310i) q^{79} +(6.03835 + 5.24599i) q^{80} +(-6.99636 + 5.08315i) q^{81} +(5.28047 + 0.741731i) q^{82} +(1.73500 + 3.40512i) q^{83} +(-11.5400 + 2.24489i) q^{84} +(-1.06692 - 6.73628i) q^{85} +(-1.39718 + 4.57114i) q^{86} -12.1366i q^{87} +(-1.82589 - 9.20142i) q^{88} +4.00611i q^{89} +(0.305822 + 0.0934749i) q^{90} +(-2.70989 - 17.1096i) q^{91} +(0.0351278 + 0.0236866i) q^{92} +(2.40538 + 4.72083i) q^{93} +(-0.823012 + 5.85911i) q^{94} +(10.7731 - 7.82714i) q^{95} +(-4.94732 + 8.24048i) q^{96} +(0.710851 + 2.18777i) q^{97} +(-6.92004 + 1.22071i) q^{98} +(-0.216244 - 0.306418i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8} - 16 q^{10} - 12 q^{11} - 6 q^{13} - 12 q^{15} + 14 q^{16} - 12 q^{17} - 44 q^{18} - 6 q^{19} + 2 q^{20} - 28 q^{21} + 50 q^{22} - 38 q^{24} - 68 q^{26} - 18 q^{27} - 46 q^{28} - 22 q^{29} + 26 q^{30} - 12 q^{31} - 16 q^{32} - 16 q^{33} + 12 q^{34} - 26 q^{35} - 22 q^{36} + 18 q^{37} - 34 q^{38} + 14 q^{40} - 10 q^{42} - 40 q^{43} + 2 q^{44} - 24 q^{45} + 38 q^{46} - 12 q^{47} - 26 q^{48} + 8 q^{49} - 62 q^{50} + 6 q^{51} + 74 q^{52} - 30 q^{53} - 52 q^{54} - 96 q^{56} - 26 q^{58} + 10 q^{59} + 118 q^{60} - 6 q^{61} - 42 q^{62} - 28 q^{63} - 106 q^{64} - 32 q^{65} + 6 q^{66} + 24 q^{67} + 116 q^{68} + 12 q^{69} + 52 q^{70} - 98 q^{72} + 96 q^{74} - 46 q^{75} + 112 q^{76} - 14 q^{77} + 44 q^{78} - 52 q^{79} - 28 q^{80} + 66 q^{82} + 54 q^{83} + 120 q^{84} + 14 q^{85} + 86 q^{86} + 142 q^{88} + 228 q^{90} - 122 q^{91} + 146 q^{92} + 6 q^{93} + 56 q^{94} + 52 q^{95} + 86 q^{96} - 12 q^{97} + 140 q^{98} + 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.664023 + 1.24863i 0.469536 + 0.882914i
\(3\) −1.67818 + 0.265797i −0.968895 + 0.153458i −0.620772 0.783991i \(-0.713181\pi\)
−0.348123 + 0.937449i \(0.613181\pi\)
\(4\) −1.11815 + 1.65824i −0.559073 + 0.829119i
\(5\) −1.78176 + 0.907854i −0.796829 + 0.406004i −0.804490 0.593966i \(-0.797561\pi\)
0.00766136 + 0.999971i \(0.497561\pi\)
\(6\) −1.44623 1.91892i −0.590421 0.783397i
\(7\) −2.03350 2.79887i −0.768589 1.05787i −0.996451 0.0841786i \(-0.973173\pi\)
0.227862 0.973694i \(-0.426827\pi\)
\(8\) −2.81300 0.295040i −0.994545 0.104312i
\(9\) −0.107544 + 0.0349431i −0.0358479 + 0.0116477i
\(10\) −2.31670 1.62192i −0.732606 0.512897i
\(11\) 0.981376 + 3.16811i 0.295896 + 0.955220i
\(12\) 1.43569 3.08001i 0.414448 0.889123i
\(13\) 4.46145 + 2.27322i 1.23738 + 0.630479i 0.945390 0.325941i \(-0.105681\pi\)
0.291994 + 0.956420i \(0.405681\pi\)
\(14\) 2.14446 4.39759i 0.573130 1.17531i
\(15\) 2.74881 1.99713i 0.709739 0.515655i
\(16\) −1.49950 3.70830i −0.374875 0.927075i
\(17\) −1.05393 + 3.24368i −0.255617 + 0.786707i 0.738091 + 0.674701i \(0.235728\pi\)
−0.993708 + 0.112006i \(0.964272\pi\)
\(18\) −0.115042 0.111079i −0.0271158 0.0261816i
\(19\) −6.57711 + 1.04171i −1.50889 + 0.238985i −0.855408 0.517954i \(-0.826694\pi\)
−0.653485 + 0.756939i \(0.726694\pi\)
\(20\) 0.486834 3.96970i 0.108859 0.887651i
\(21\) 4.15649 + 4.15649i 0.907021 + 0.907021i
\(22\) −3.30413 + 3.32907i −0.704443 + 0.709760i
\(23\) 0.0211838i 0.00441713i −0.999998 0.00220856i \(-0.999297\pi\)
0.999998 0.00220856i \(-0.000703008\pi\)
\(24\) 4.79912 0.252557i 0.979617 0.0515530i
\(25\) −0.588445 + 0.809925i −0.117689 + 0.161985i
\(26\) 0.124098 + 7.08017i 0.0243376 + 1.38854i
\(27\) 4.71290 2.40134i 0.906998 0.462139i
\(28\) 6.91493 0.242477i 1.30680 0.0458239i
\(29\) −1.11741 + 7.05502i −0.207497 + 1.31008i 0.635473 + 0.772124i \(0.280805\pi\)
−0.842970 + 0.537961i \(0.819195\pi\)
\(30\) 4.31894 + 2.10610i 0.788527 + 0.384520i
\(31\) −0.963612 2.96569i −0.173070 0.532654i 0.826470 0.562980i \(-0.190345\pi\)
−0.999540 + 0.0303264i \(0.990345\pi\)
\(32\) 3.63459 4.33472i 0.642510 0.766277i
\(33\) −2.48899 5.05579i −0.433278 0.880101i
\(34\) −4.74998 + 0.837905i −0.814615 + 0.143700i
\(35\) 6.16417 + 3.14080i 1.04193 + 0.530892i
\(36\) 0.0623056 0.217404i 0.0103843 0.0362341i
\(37\) 6.64870 + 1.05305i 1.09304 + 0.173120i 0.676823 0.736146i \(-0.263356\pi\)
0.416216 + 0.909266i \(0.363356\pi\)
\(38\) −5.66807 7.52065i −0.919482 1.22001i
\(39\) −8.09132 2.62903i −1.29565 0.420981i
\(40\) 5.27995 2.02810i 0.834833 0.320670i
\(41\) 2.21625 3.05041i 0.346120 0.476394i −0.600096 0.799928i \(-0.704871\pi\)
0.946216 + 0.323534i \(0.104871\pi\)
\(42\) −2.42991 + 7.94992i −0.374943 + 1.22670i
\(43\) 2.38995 + 2.38995i 0.364464 + 0.364464i 0.865453 0.500990i \(-0.167031\pi\)
−0.500990 + 0.865453i \(0.667031\pi\)
\(44\) −6.35079 1.91505i −0.957418 0.288705i
\(45\) 0.159894 0.159894i 0.0238356 0.0238356i
\(46\) 0.0264507 0.0140665i 0.00389994 0.00207400i
\(47\) 3.38468 + 2.45911i 0.493706 + 0.358698i 0.806608 0.591087i \(-0.201301\pi\)
−0.312902 + 0.949785i \(0.601301\pi\)
\(48\) 3.50208 + 5.82462i 0.505482 + 0.840711i
\(49\) −1.53543 + 4.72557i −0.219347 + 0.675082i
\(50\) −1.40204 0.196940i −0.198278 0.0278515i
\(51\) 0.906528 5.72359i 0.126939 0.801463i
\(52\) −8.75810 + 4.85635i −1.21453 + 0.673455i
\(53\) 0.536276 1.05250i 0.0736632 0.144572i −0.851238 0.524780i \(-0.824148\pi\)
0.924901 + 0.380208i \(0.124148\pi\)
\(54\) 6.12786 + 4.29011i 0.833897 + 0.583811i
\(55\) −4.62476 4.75387i −0.623602 0.641012i
\(56\) 4.89444 + 8.47317i 0.654047 + 1.13227i
\(57\) 10.7607 3.49635i 1.42529 0.463103i
\(58\) −9.55108 + 3.28948i −1.25412 + 0.431929i
\(59\) −9.37884 1.48546i −1.22102 0.193391i −0.487540 0.873101i \(-0.662106\pi\)
−0.733481 + 0.679710i \(0.762106\pi\)
\(60\) 0.238141 + 6.79125i 0.0307438 + 0.876747i
\(61\) −5.35497 10.5097i −0.685634 1.34563i −0.926950 0.375186i \(-0.877579\pi\)
0.241316 0.970447i \(-0.422421\pi\)
\(62\) 3.06319 3.17248i 0.389025 0.402906i
\(63\) 0.316491 + 0.229944i 0.0398741 + 0.0289702i
\(64\) 7.82590 + 1.65989i 0.978238 + 0.207487i
\(65\) −10.0130 −1.24196
\(66\) 4.66006 6.46499i 0.573613 0.795786i
\(67\) −9.52811 + 9.52811i −1.16404 + 1.16404i −0.180463 + 0.983582i \(0.557759\pi\)
−0.983582 + 0.180463i \(0.942241\pi\)
\(68\) −4.20033 5.37458i −0.509365 0.651763i
\(69\) 0.00563059 + 0.0355501i 0.000677843 + 0.00427973i
\(70\) 0.171460 + 9.78232i 0.0204934 + 1.16921i
\(71\) 10.4013 + 3.37959i 1.23441 + 0.401083i 0.852309 0.523038i \(-0.175201\pi\)
0.382099 + 0.924122i \(0.375201\pi\)
\(72\) 0.312830 0.0665650i 0.0368673 0.00784476i
\(73\) −7.21807 9.93482i −0.844811 1.16278i −0.984982 0.172655i \(-0.944765\pi\)
0.140171 0.990127i \(-0.455235\pi\)
\(74\) 3.10002 + 9.00100i 0.360370 + 1.04634i
\(75\) 0.772238 1.51560i 0.0891704 0.175007i
\(76\) 5.62676 12.0712i 0.645434 1.38466i
\(77\) 6.87148 9.18907i 0.783078 1.04719i
\(78\) −2.09015 11.8488i −0.236662 1.34161i
\(79\) 0.569615 + 1.75310i 0.0640867 + 0.197239i 0.977973 0.208732i \(-0.0669336\pi\)
−0.913886 + 0.405971i \(0.866934\pi\)
\(80\) 6.03835 + 5.24599i 0.675108 + 0.586519i
\(81\) −6.99636 + 5.08315i −0.777374 + 0.564795i
\(82\) 5.28047 + 0.741731i 0.583130 + 0.0819105i
\(83\) 1.73500 + 3.40512i 0.190441 + 0.373761i 0.966408 0.257012i \(-0.0827380\pi\)
−0.775968 + 0.630773i \(0.782738\pi\)
\(84\) −11.5400 + 2.24489i −1.25912 + 0.244937i
\(85\) −1.06692 6.73628i −0.115724 0.730652i
\(86\) −1.39718 + 4.57114i −0.150661 + 0.492919i
\(87\) 12.1366i 1.30118i
\(88\) −1.82589 9.20142i −0.194640 0.980875i
\(89\) 4.00611i 0.424646i 0.977199 + 0.212323i \(0.0681030\pi\)
−0.977199 + 0.212323i \(0.931897\pi\)
\(90\) 0.305822 + 0.0934749i 0.0322365 + 0.00985312i
\(91\) −2.70989 17.1096i −0.284074 1.79357i
\(92\) 0.0351278 + 0.0236866i 0.00366232 + 0.00246950i
\(93\) 2.40538 + 4.72083i 0.249426 + 0.489527i
\(94\) −0.823012 + 5.85911i −0.0848872 + 0.604321i
\(95\) 10.7731 7.82714i 1.10530 0.803048i
\(96\) −4.94732 + 8.24048i −0.504934 + 0.841041i
\(97\) 0.710851 + 2.18777i 0.0721760 + 0.222135i 0.980637 0.195835i \(-0.0627417\pi\)
−0.908461 + 0.417970i \(0.862742\pi\)
\(98\) −6.92004 + 1.22071i −0.699030 + 0.123310i
\(99\) −0.216244 0.306418i −0.0217334 0.0307961i
\(100\) −0.685080 1.88140i −0.0685080 0.188140i
\(101\) 1.10633 2.17130i 0.110084 0.216052i −0.829392 0.558668i \(-0.811313\pi\)
0.939476 + 0.342615i \(0.111313\pi\)
\(102\) 7.74859 2.66868i 0.767225 0.264239i
\(103\) 3.21406 + 4.42377i 0.316691 + 0.435887i 0.937453 0.348111i \(-0.113177\pi\)
−0.620763 + 0.783999i \(0.713177\pi\)
\(104\) −11.8794 7.71088i −1.16487 0.756114i
\(105\) −11.1794 3.63240i −1.09100 0.354486i
\(106\) 1.67028 0.0292759i 0.162232 0.00284353i
\(107\) 2.38087 + 15.0322i 0.230167 + 1.45322i 0.784087 + 0.620650i \(0.213131\pi\)
−0.553920 + 0.832570i \(0.686869\pi\)
\(108\) −1.28771 + 10.5002i −0.123910 + 1.01038i
\(109\) −7.65538 + 7.65538i −0.733252 + 0.733252i −0.971263 0.238010i \(-0.923505\pi\)
0.238010 + 0.971263i \(0.423505\pi\)
\(110\) 2.86487 8.93128i 0.273155 0.851565i
\(111\) −11.4376 −1.08561
\(112\) −7.32981 + 11.7377i −0.692602 + 1.10911i
\(113\) 8.70164 + 6.32211i 0.818582 + 0.594734i 0.916306 0.400479i \(-0.131156\pi\)
−0.0977242 + 0.995214i \(0.531156\pi\)
\(114\) 11.5110 + 11.1144i 1.07810 + 1.04096i
\(115\) 0.0192318 + 0.0377445i 0.00179337 + 0.00351969i
\(116\) −10.4495 9.74147i −0.970210 0.904472i
\(117\) −0.559234 0.0885740i −0.0517012 0.00818867i
\(118\) −4.37298 12.6971i −0.402566 1.16886i
\(119\) 11.2218 3.64618i 1.02870 0.334245i
\(120\) −8.32162 + 4.80690i −0.759656 + 0.438808i
\(121\) −9.07380 + 6.21821i −0.824891 + 0.565292i
\(122\) 9.56691 13.6651i 0.866148 1.23718i
\(123\) −2.90847 + 5.70819i −0.262248 + 0.514690i
\(124\) 5.99528 + 1.71818i 0.538392 + 0.154297i
\(125\) 1.87730 11.8528i 0.167911 1.06015i
\(126\) −0.0769573 + 0.547867i −0.00685590 + 0.0488079i
\(127\) 0.829131 2.55180i 0.0735735 0.226436i −0.907507 0.420037i \(-0.862017\pi\)
0.981080 + 0.193602i \(0.0620169\pi\)
\(128\) 3.12399 + 10.8739i 0.276125 + 0.961122i
\(129\) −4.64599 3.37551i −0.409057 0.297197i
\(130\) −6.64887 12.5025i −0.583145 1.09654i
\(131\) −7.69055 + 7.69055i −0.671927 + 0.671927i −0.958160 0.286233i \(-0.907597\pi\)
0.286233 + 0.958160i \(0.407597\pi\)
\(132\) 11.1668 + 1.52577i 0.971942 + 0.132801i
\(133\) 16.2901 + 16.2901i 1.41253 + 1.41253i
\(134\) −18.2240 5.57018i −1.57431 0.481190i
\(135\) −6.21721 + 8.55725i −0.535092 + 0.736491i
\(136\) 3.92173 8.81350i 0.336285 0.755751i
\(137\) 8.88304 + 2.88628i 0.758930 + 0.246591i 0.662819 0.748780i \(-0.269360\pi\)
0.0961104 + 0.995371i \(0.469360\pi\)
\(138\) −0.0406501 + 0.0306366i −0.00346036 + 0.00260796i
\(139\) −2.58172 0.408905i −0.218979 0.0346828i 0.0459809 0.998942i \(-0.485359\pi\)
−0.264960 + 0.964259i \(0.585359\pi\)
\(140\) −12.1006 + 6.70978i −1.02269 + 0.567080i
\(141\) −6.33371 3.22718i −0.533394 0.271778i
\(142\) 2.68686 + 15.2315i 0.225476 + 1.27820i
\(143\) −2.82345 + 16.3652i −0.236109 + 1.36853i
\(144\) 0.290841 + 0.346407i 0.0242368 + 0.0288673i
\(145\) −4.41398 13.5848i −0.366561 1.12816i
\(146\) 7.61193 15.6096i 0.629968 1.29186i
\(147\) 1.32068 8.33845i 0.108928 0.687744i
\(148\) −9.18042 + 9.84765i −0.754626 + 0.809472i
\(149\) −5.39705 + 2.74993i −0.442143 + 0.225283i −0.660866 0.750504i \(-0.729811\pi\)
0.218723 + 0.975787i \(0.429811\pi\)
\(150\) 2.40521 0.0421573i 0.196385 0.00344213i
\(151\) 5.92618 8.15669i 0.482266 0.663782i −0.496672 0.867938i \(-0.665445\pi\)
0.978938 + 0.204156i \(0.0654449\pi\)
\(152\) 18.8087 0.989823i 1.52559 0.0802852i
\(153\) 0.385665i 0.0311791i
\(154\) 16.0366 + 2.47817i 1.29226 + 0.199697i
\(155\) 4.40934 + 4.40934i 0.354167 + 0.354167i
\(156\) 13.4068 10.4777i 1.07340 0.838886i
\(157\) −3.60954 + 0.571696i −0.288073 + 0.0456263i −0.298799 0.954316i \(-0.596586\pi\)
0.0107256 + 0.999942i \(0.496586\pi\)
\(158\) −1.81073 + 1.87533i −0.144054 + 0.149194i
\(159\) −0.620214 + 1.90882i −0.0491862 + 0.151379i
\(160\) −2.54068 + 11.0231i −0.200859 + 0.871454i
\(161\) −0.0592906 + 0.0430772i −0.00467276 + 0.00339496i
\(162\) −10.9927 5.36052i −0.863670 0.421162i
\(163\) 5.17919 + 2.63893i 0.405666 + 0.206697i 0.644903 0.764264i \(-0.276898\pi\)
−0.239238 + 0.970961i \(0.576898\pi\)
\(164\) 2.58021 + 7.08587i 0.201480 + 0.553313i
\(165\) 9.02472 + 6.74858i 0.702573 + 0.525376i
\(166\) −3.09965 + 4.42745i −0.240580 + 0.343637i
\(167\) 2.46222 0.800024i 0.190532 0.0619077i −0.212197 0.977227i \(-0.568062\pi\)
0.402729 + 0.915319i \(0.368062\pi\)
\(168\) −10.4659 12.9185i −0.807459 0.996687i
\(169\) 7.09581 + 9.76654i 0.545831 + 0.751272i
\(170\) 7.70265 5.80524i 0.590766 0.445241i
\(171\) 0.670926 0.341854i 0.0513070 0.0261422i
\(172\) −6.63541 + 1.29079i −0.505945 + 0.0984219i
\(173\) 23.2315 3.67951i 1.76626 0.279748i 0.813078 0.582155i \(-0.197790\pi\)
0.953179 + 0.302407i \(0.0977902\pi\)
\(174\) 15.1541 8.05897i 1.14883 0.610949i
\(175\) 3.46347 0.261814
\(176\) 10.2767 8.38982i 0.774637 0.632406i
\(177\) 16.1342 1.21272
\(178\) −5.00214 + 2.66015i −0.374926 + 0.199387i
\(179\) 3.11652 0.493609i 0.232940 0.0368940i −0.0388731 0.999244i \(-0.512377\pi\)
0.271813 + 0.962350i \(0.412377\pi\)
\(180\) 0.0863575 + 0.443927i 0.00643671 + 0.0330884i
\(181\) −8.91788 + 4.54388i −0.662860 + 0.337744i −0.752844 0.658199i \(-0.771319\pi\)
0.0899835 + 0.995943i \(0.471319\pi\)
\(182\) 19.5641 14.7448i 1.45019 1.09296i
\(183\) 11.7800 + 16.2138i 0.870805 + 1.19856i
\(184\) −0.00625007 + 0.0595899i −0.000460761 + 0.00439303i
\(185\) −12.8024 + 4.15976i −0.941252 + 0.305831i
\(186\) −4.29733 + 6.13817i −0.315095 + 0.450072i
\(187\) −11.3106 0.155710i −0.827114 0.0113867i
\(188\) −7.86235 + 2.86295i −0.573421 + 0.208802i
\(189\) −16.3047 8.30766i −1.18599 0.604294i
\(190\) 16.9268 + 8.25424i 1.22800 + 0.598825i
\(191\) 1.53649 1.11632i 0.111176 0.0807744i −0.530808 0.847492i \(-0.678111\pi\)
0.641984 + 0.766718i \(0.278111\pi\)
\(192\) −13.5744 0.705491i −0.979650 0.0509144i
\(193\) 2.94310 9.05794i 0.211849 0.652005i −0.787513 0.616298i \(-0.788632\pi\)
0.999362 0.0357070i \(-0.0113683\pi\)
\(194\) −2.25970 + 2.34032i −0.162237 + 0.168025i
\(195\) 16.8036 2.66143i 1.20333 0.190589i
\(196\) −6.11928 7.82999i −0.437092 0.559285i
\(197\) −10.9252 10.9252i −0.778385 0.778385i 0.201171 0.979556i \(-0.435525\pi\)
−0.979556 + 0.201171i \(0.935525\pi\)
\(198\) 0.239010 0.473477i 0.0169857 0.0336485i
\(199\) 13.2457i 0.938963i 0.882942 + 0.469481i \(0.155559\pi\)
−0.882942 + 0.469481i \(0.844441\pi\)
\(200\) 1.89425 2.10470i 0.133944 0.148825i
\(201\) 13.4573 18.5224i 0.949205 1.30647i
\(202\) 3.44578 0.0603959i 0.242444 0.00424944i
\(203\) 22.0183 11.2189i 1.54538 0.787412i
\(204\) 8.47744 + 7.90305i 0.593540 + 0.553324i
\(205\) −1.17951 + 7.44714i −0.0823806 + 0.520130i
\(206\) −3.38944 + 6.95065i −0.236153 + 0.484275i
\(207\) 0.000740227 0.00227818i 5.14493e−5 0.000158345i
\(208\) 1.73985 19.9531i 0.120637 1.38350i
\(209\) −9.75488 19.8147i −0.674759 1.37061i
\(210\) −2.88785 16.3709i −0.199281 1.12970i
\(211\) 16.3990 + 8.35570i 1.12895 + 0.575230i 0.915738 0.401775i \(-0.131607\pi\)
0.213215 + 0.977005i \(0.431607\pi\)
\(212\) 1.14566 + 2.06612i 0.0786844 + 0.141902i
\(213\) −18.3535 2.90691i −1.25756 0.199178i
\(214\) −17.1887 + 12.9546i −1.17500 + 0.885557i
\(215\) −6.42804 2.08860i −0.438389 0.142441i
\(216\) −13.9659 + 5.36448i −0.950257 + 0.365006i
\(217\) −6.34108 + 8.72774i −0.430460 + 0.592478i
\(218\) −14.6421 4.47537i −0.991686 0.303110i
\(219\) 14.7538 + 14.7538i 0.996971 + 0.996971i
\(220\) 13.0542 2.35342i 0.880114 0.158668i
\(221\) −12.0757 + 12.0757i −0.812298 + 0.812298i
\(222\) −7.59482 14.2813i −0.509731 0.958497i
\(223\) 15.3631 + 11.1619i 1.02879 + 0.747459i 0.968066 0.250696i \(-0.0806595\pi\)
0.0607227 + 0.998155i \(0.480659\pi\)
\(224\) −19.5232 1.35809i −1.30445 0.0907413i
\(225\) 0.0349823 0.107664i 0.00233215 0.00717762i
\(226\) −2.11588 + 15.0632i −0.140746 + 1.00199i
\(227\) −1.32756 + 8.38191i −0.0881135 + 0.556327i 0.903653 + 0.428266i \(0.140875\pi\)
−0.991766 + 0.128061i \(0.959125\pi\)
\(228\) −6.23421 + 21.7532i −0.412871 + 1.44064i
\(229\) 1.91877 3.76580i 0.126796 0.248851i −0.818878 0.573968i \(-0.805404\pi\)
0.945674 + 0.325117i \(0.105404\pi\)
\(230\) −0.0343585 + 0.0490766i −0.00226553 + 0.00323601i
\(231\) −9.08913 + 17.2473i −0.598021 + 1.13479i
\(232\) 5.22477 19.5161i 0.343023 1.28129i
\(233\) −19.5911 + 6.36555i −1.28346 + 0.417021i −0.869797 0.493410i \(-0.835750\pi\)
−0.413661 + 0.910431i \(0.635750\pi\)
\(234\) −0.260749 0.757091i −0.0170457 0.0494926i
\(235\) −8.26320 1.30876i −0.539032 0.0853743i
\(236\) 12.9502 13.8914i 0.842984 0.904252i
\(237\) −1.42188 2.79060i −0.0923612 0.181269i
\(238\) 12.0043 + 11.5907i 0.778120 + 0.751313i
\(239\) −21.9543 15.9507i −1.42010 1.03177i −0.991755 0.128152i \(-0.959095\pi\)
−0.428349 0.903613i \(-0.640905\pi\)
\(240\) −11.5278 7.19871i −0.744115 0.464675i
\(241\) 28.6264 1.84399 0.921994 0.387204i \(-0.126559\pi\)
0.921994 + 0.387204i \(0.126559\pi\)
\(242\) −13.7894 7.20077i −0.886419 0.462883i
\(243\) −0.830503 + 0.830503i −0.0532768 + 0.0532768i
\(244\) 23.4153 + 2.87159i 1.49901 + 0.183835i
\(245\) −1.55435 9.81379i −0.0993039 0.626980i
\(246\) −9.05870 + 0.158777i −0.577562 + 0.0101232i
\(247\) −31.7115 10.3037i −2.01776 0.655609i
\(248\) 1.83564 + 8.62679i 0.116563 + 0.547801i
\(249\) −3.81670 5.25324i −0.241874 0.332910i
\(250\) 16.0463 5.52650i 1.01486 0.349526i
\(251\) −6.77515 + 13.2970i −0.427643 + 0.839297i 0.572173 + 0.820133i \(0.306101\pi\)
−0.999816 + 0.0191645i \(0.993899\pi\)
\(252\) −0.735184 + 0.267706i −0.0463122 + 0.0168639i
\(253\) 0.0671125 0.0207893i 0.00421933 0.00130701i
\(254\) 3.73682 0.659180i 0.234469 0.0413607i
\(255\) 3.58097 + 11.0211i 0.224249 + 0.690167i
\(256\) −11.5030 + 11.1212i −0.718937 + 0.695075i
\(257\) −5.31740 + 3.86332i −0.331690 + 0.240987i −0.741147 0.671342i \(-0.765718\pi\)
0.409457 + 0.912329i \(0.365718\pi\)
\(258\) 1.12971 8.04254i 0.0703327 0.500707i
\(259\) −10.5727 20.7502i −0.656959 1.28935i
\(260\) 11.1960 16.6039i 0.694346 1.02973i
\(261\) −0.126354 0.797769i −0.00782112 0.0493806i
\(262\) −14.7093 4.49593i −0.908746 0.277760i
\(263\) 5.80237i 0.357790i −0.983868 0.178895i \(-0.942748\pi\)
0.983868 0.178895i \(-0.0572522\pi\)
\(264\) 5.50987 + 14.9563i 0.339109 + 0.920496i
\(265\) 2.36217i 0.145107i
\(266\) −9.52330 + 31.1574i −0.583911 + 1.91038i
\(267\) −1.06481 6.72295i −0.0651654 0.411438i
\(268\) −5.14605 26.4537i −0.314345 1.61592i
\(269\) 7.75292 + 15.2160i 0.472704 + 0.927733i 0.997089 + 0.0762519i \(0.0242953\pi\)
−0.524385 + 0.851481i \(0.675705\pi\)
\(270\) −14.8132 2.08077i −0.901502 0.126631i
\(271\) −10.9319 + 7.94251i −0.664067 + 0.482473i −0.868034 0.496505i \(-0.834617\pi\)
0.203967 + 0.978978i \(0.434617\pi\)
\(272\) 13.6089 0.955589i 0.825161 0.0579411i
\(273\) 9.09536 + 27.9926i 0.550476 + 1.69419i
\(274\) 2.29466 + 13.0082i 0.138626 + 0.785853i
\(275\) −3.14341 1.06942i −0.189555 0.0644882i
\(276\) −0.0652464 0.0304134i −0.00392737 0.00183067i
\(277\) 7.76409 15.2379i 0.466499 0.915556i −0.531167 0.847267i \(-0.678246\pi\)
0.997666 0.0682884i \(-0.0217538\pi\)
\(278\) −1.20375 3.49513i −0.0721964 0.209624i
\(279\) 0.207261 + 0.285270i 0.0124084 + 0.0170787i
\(280\) −16.4131 10.6537i −0.980872 0.636683i
\(281\) 8.94593 + 2.90671i 0.533670 + 0.173400i 0.563440 0.826157i \(-0.309478\pi\)
−0.0297704 + 0.999557i \(0.509478\pi\)
\(282\) −0.176176 10.0514i −0.0104911 0.598550i
\(283\) −3.63559 22.9542i −0.216113 1.36448i −0.822251 0.569125i \(-0.807282\pi\)
0.606138 0.795360i \(-0.292718\pi\)
\(284\) −17.2343 + 13.4690i −1.02267 + 0.799236i
\(285\) −15.9988 + 15.9988i −0.947686 + 0.947686i
\(286\) −22.3089 + 7.34146i −1.31916 + 0.434110i
\(287\) −13.0444 −0.769988
\(288\) −0.239408 + 0.593175i −0.0141073 + 0.0349532i
\(289\) 4.34263 + 3.15511i 0.255449 + 0.185594i
\(290\) 14.0314 14.5321i 0.823953 0.853352i
\(291\) −1.77444 3.48253i −0.104019 0.204149i
\(292\) 24.5451 0.860695i 1.43640 0.0503683i
\(293\) −24.7802 3.92480i −1.44767 0.229289i −0.617403 0.786647i \(-0.711815\pi\)
−0.830272 + 0.557358i \(0.811815\pi\)
\(294\) 11.2886 3.88789i 0.658364 0.226746i
\(295\) 18.0595 5.86787i 1.05146 0.341641i
\(296\) −18.3921 4.92386i −1.06902 0.286193i
\(297\) 12.2328 + 12.5744i 0.709821 + 0.729638i
\(298\) −7.01741 4.91289i −0.406508 0.284596i
\(299\) 0.0481555 0.0945105i 0.00278490 0.00546568i
\(300\) 1.64975 + 2.97522i 0.0952486 + 0.171774i
\(301\) 1.82920 11.5491i 0.105433 0.665679i
\(302\) 14.1198 + 1.98337i 0.812503 + 0.114130i
\(303\) −1.27950 + 3.93788i −0.0735051 + 0.226225i
\(304\) 13.7254 + 22.8279i 0.787204 + 1.30927i
\(305\) 19.0826 + 13.8643i 1.09267 + 0.793868i
\(306\) 0.481552 0.256090i 0.0275285 0.0146397i
\(307\) 18.1740 18.1740i 1.03724 1.03724i 0.0379653 0.999279i \(-0.487912\pi\)
0.999279 0.0379653i \(-0.0120877\pi\)
\(308\) 7.55434 + 21.6693i 0.430448 + 1.23472i
\(309\) −6.56958 6.56958i −0.373730 0.373730i
\(310\) −2.57772 + 8.43354i −0.146405 + 0.478993i
\(311\) −2.94239 + 4.04985i −0.166847 + 0.229646i −0.884251 0.467012i \(-0.845330\pi\)
0.717404 + 0.696658i \(0.245330\pi\)
\(312\) 21.9852 + 9.78271i 1.24467 + 0.553837i
\(313\) 24.5562 + 7.97880i 1.38800 + 0.450989i 0.905291 0.424792i \(-0.139653\pi\)
0.482709 + 0.875781i \(0.339653\pi\)
\(314\) −3.11066 4.12736i −0.175545 0.232920i
\(315\) −0.772667 0.122378i −0.0435348 0.00689524i
\(316\) −3.54396 1.01566i −0.199363 0.0571353i
\(317\) 14.0659 + 7.16693i 0.790019 + 0.402535i 0.801948 0.597394i \(-0.203797\pi\)
−0.0119290 + 0.999929i \(0.503797\pi\)
\(318\) −2.79525 + 0.493086i −0.156750 + 0.0276509i
\(319\) −23.4477 + 3.38357i −1.31282 + 0.189443i
\(320\) −15.4508 + 4.14724i −0.863728 + 0.231838i
\(321\) −7.99104 24.5939i −0.446016 1.37270i
\(322\) −0.0931577 0.0454277i −0.00519148 0.00253159i
\(323\) 3.55287 22.4319i 0.197687 1.24815i
\(324\) −0.606124 17.2853i −0.0336736 0.960296i
\(325\) −4.46646 + 2.27577i −0.247755 + 0.126237i
\(326\) 0.144062 + 8.21920i 0.00797886 + 0.455219i
\(327\) 10.8123 14.8818i 0.597921 0.822968i
\(328\) −7.13430 + 7.92690i −0.393926 + 0.437690i
\(329\) 14.4738i 0.797969i
\(330\) −2.43385 + 15.7497i −0.133979 + 0.866995i
\(331\) −16.5558 16.5558i −0.909991 0.909991i 0.0862795 0.996271i \(-0.472502\pi\)
−0.996271 + 0.0862795i \(0.972502\pi\)
\(332\) −7.58648 0.930387i −0.416362 0.0510616i
\(333\) −0.751822 + 0.119077i −0.0411996 + 0.00652537i
\(334\) 2.63390 + 2.54316i 0.144121 + 0.139156i
\(335\) 8.32671 25.6270i 0.454937 1.40015i
\(336\) 9.18086 21.6462i 0.500857 1.18090i
\(337\) 17.9030 13.0073i 0.975240 0.708553i 0.0186001 0.999827i \(-0.494079\pi\)
0.956640 + 0.291274i \(0.0940791\pi\)
\(338\) −7.48300 + 15.3452i −0.407021 + 0.834671i
\(339\) −16.2833 8.29675i −0.884387 0.450618i
\(340\) 12.3633 + 5.76293i 0.670495 + 0.312539i
\(341\) 8.44996 5.96328i 0.457591 0.322930i
\(342\) 0.872360 + 0.610739i 0.0471718 + 0.0330250i
\(343\) −6.68332 + 2.17154i −0.360865 + 0.117252i
\(344\) −6.01779 7.42805i −0.324457 0.400493i
\(345\) −0.0423067 0.0582302i −0.00227772 0.00313501i
\(346\) 20.0206 + 26.5642i 1.07631 + 1.42810i
\(347\) −7.72394 + 3.93554i −0.414643 + 0.211271i −0.648851 0.760915i \(-0.724750\pi\)
0.234208 + 0.972186i \(0.424750\pi\)
\(348\) 20.1253 + 13.5705i 1.07883 + 0.727453i
\(349\) −4.10251 + 0.649774i −0.219602 + 0.0347816i −0.265266 0.964175i \(-0.585460\pi\)
0.0456636 + 0.998957i \(0.485460\pi\)
\(350\) 2.29983 + 4.32459i 0.122931 + 0.231159i
\(351\) 26.4852 1.41367
\(352\) 17.2997 + 7.26077i 0.922080 + 0.387000i
\(353\) −11.5005 −0.612112 −0.306056 0.952013i \(-0.599010\pi\)
−0.306056 + 0.952013i \(0.599010\pi\)
\(354\) 10.7135 + 20.1456i 0.569415 + 1.07073i
\(355\) −21.6008 + 3.42124i −1.14645 + 0.181580i
\(356\) −6.64308 4.47941i −0.352082 0.237408i
\(357\) −17.8630 + 9.10165i −0.945410 + 0.481710i
\(358\) 2.68578 + 3.56361i 0.141948 + 0.188343i
\(359\) −1.58185 2.17723i −0.0834867 0.114910i 0.765231 0.643756i \(-0.222625\pi\)
−0.848718 + 0.528846i \(0.822625\pi\)
\(360\) −0.496957 + 0.402607i −0.0261919 + 0.0212192i
\(361\) 24.1032 7.83160i 1.26859 0.412189i
\(362\) −11.5953 8.11787i −0.609436 0.426666i
\(363\) 13.5747 12.8470i 0.712485 0.674294i
\(364\) 31.4018 + 14.6374i 1.64590 + 0.767207i
\(365\) 21.8802 + 11.1485i 1.14526 + 0.583541i
\(366\) −12.4228 + 25.4753i −0.649352 + 1.33161i
\(367\) 9.16341 6.65761i 0.478326 0.347524i −0.322351 0.946620i \(-0.604473\pi\)
0.800677 + 0.599096i \(0.204473\pi\)
\(368\) −0.0785559 + 0.0317651i −0.00409501 + 0.00165587i
\(369\) −0.131753 + 0.405495i −0.00685880 + 0.0211092i
\(370\) −13.6951 13.2233i −0.711974 0.687446i
\(371\) −4.03633 + 0.639291i −0.209556 + 0.0331903i
\(372\) −10.5178 1.28988i −0.545323 0.0668771i
\(373\) −25.1363 25.1363i −1.30151 1.30151i −0.927375 0.374133i \(-0.877941\pi\)
−0.374133 0.927375i \(-0.622059\pi\)
\(374\) −7.31609 14.2262i −0.378306 0.735617i
\(375\) 20.3901i 1.05294i
\(376\) −8.79555 7.91609i −0.453596 0.408241i
\(377\) −21.0229 + 28.9355i −1.08273 + 1.49026i
\(378\) −0.453524 25.8750i −0.0233268 1.33087i
\(379\) 19.7792 10.0780i 1.01599 0.517673i 0.135019 0.990843i \(-0.456890\pi\)
0.880971 + 0.473170i \(0.156890\pi\)
\(380\) 0.933322 + 26.6163i 0.0478784 + 1.36539i
\(381\) −0.713166 + 4.50275i −0.0365366 + 0.230683i
\(382\) 2.41414 + 1.17724i 0.123518 + 0.0602327i
\(383\) −6.89323 21.2152i −0.352228 1.08405i −0.957600 0.288102i \(-0.906976\pi\)
0.605372 0.795943i \(-0.293024\pi\)
\(384\) −8.13285 17.4179i −0.415028 0.888853i
\(385\) −3.90103 + 22.6111i −0.198815 + 1.15237i
\(386\) 13.2643 2.33984i 0.675135 0.119095i
\(387\) −0.340536 0.173512i −0.0173104 0.00882009i
\(388\) −4.42268 1.26749i −0.224528 0.0643471i
\(389\) 21.9442 + 3.47562i 1.11262 + 0.176221i 0.685568 0.728008i \(-0.259554\pi\)
0.427047 + 0.904229i \(0.359554\pi\)
\(390\) 14.4811 + 19.2142i 0.733279 + 0.972948i
\(391\) 0.0687134 + 0.0223263i 0.00347498 + 0.00112909i
\(392\) 5.71340 12.8400i 0.288570 0.648518i
\(393\) 10.8620 14.9502i 0.547914 0.754139i
\(394\) 6.38690 20.8960i 0.321767 1.05273i
\(395\) −2.60647 2.60647i −0.131146 0.131146i
\(396\) 0.749905 0.0159646i 0.0376842 0.000802250i
\(397\) 24.6441 24.6441i 1.23685 1.23685i 0.275568 0.961281i \(-0.411134\pi\)
0.961281 0.275568i \(-0.0888660\pi\)
\(398\) −16.5390 + 8.79546i −0.829023 + 0.440876i
\(399\) −31.6676 23.0079i −1.58536 1.15183i
\(400\) 3.88582 + 0.967648i 0.194291 + 0.0483824i
\(401\) −4.95953 + 15.2639i −0.247667 + 0.762242i 0.747519 + 0.664240i \(0.231245\pi\)
−0.995186 + 0.0980012i \(0.968755\pi\)
\(402\) 32.0636 + 4.50387i 1.59918 + 0.224633i
\(403\) 2.44257 15.4218i 0.121673 0.768214i
\(404\) 2.36349 + 4.26239i 0.117588 + 0.212062i
\(405\) 7.85110 15.4086i 0.390124 0.765662i
\(406\) 28.6289 + 20.0431i 1.42083 + 0.994721i
\(407\) 3.18870 + 22.0972i 0.158058 + 1.09532i
\(408\) −4.23875 + 15.8330i −0.209849 + 0.783849i
\(409\) −9.10185 + 2.95737i −0.450058 + 0.146233i −0.525271 0.850935i \(-0.676036\pi\)
0.0752136 + 0.997167i \(0.476036\pi\)
\(410\) −10.0819 + 3.47230i −0.497911 + 0.171485i
\(411\) −15.6745 2.48259i −0.773165 0.122457i
\(412\) −10.9294 + 0.383250i −0.538455 + 0.0188814i
\(413\) 14.9142 + 29.2708i 0.733881 + 1.44032i
\(414\) −0.00235308 + 0.00243703i −0.000115647 + 0.000119774i
\(415\) −6.18271 4.49200i −0.303497 0.220504i
\(416\) 26.0693 11.0769i 1.27815 0.543090i
\(417\) 4.44127 0.217490
\(418\) 18.2637 25.3376i 0.893307 1.23930i
\(419\) 11.7064 11.7064i 0.571895 0.571895i −0.360762 0.932658i \(-0.617483\pi\)
0.932658 + 0.360762i \(0.117483\pi\)
\(420\) 18.5235 14.4765i 0.903857 0.706381i
\(421\) 5.82721 + 36.7916i 0.284001 + 1.79311i 0.556387 + 0.830923i \(0.312187\pi\)
−0.272386 + 0.962188i \(0.587813\pi\)
\(422\) 0.456147 + 26.0246i 0.0222049 + 1.26686i
\(423\) −0.449929 0.146191i −0.0218763 0.00710805i
\(424\) −1.81907 + 2.80246i −0.0883420 + 0.136099i
\(425\) −2.00695 2.76233i −0.0973515 0.133993i
\(426\) −8.55751 24.8470i −0.414613 1.20384i
\(427\) −18.5260 + 36.3593i −0.896536 + 1.75955i
\(428\) −27.5892 12.8602i −1.33357 0.621620i
\(429\) 0.388418 28.2142i 0.0187530 1.36220i
\(430\) −1.66049 9.41312i −0.0800759 0.453941i
\(431\) 6.70010 + 20.6208i 0.322732 + 0.993268i 0.972454 + 0.233095i \(0.0748855\pi\)
−0.649722 + 0.760172i \(0.725115\pi\)
\(432\) −15.9719 13.8760i −0.768449 0.667611i
\(433\) −29.7091 + 21.5849i −1.42773 + 1.03731i −0.437295 + 0.899318i \(0.644063\pi\)
−0.990434 + 0.137987i \(0.955937\pi\)
\(434\) −15.1083 2.12222i −0.725223 0.101870i
\(435\) 11.0182 + 21.6245i 0.528284 + 1.03682i
\(436\) −4.13460 21.2543i −0.198012 1.01789i
\(437\) 0.0220674 + 0.139328i 0.00105563 + 0.00666497i
\(438\) −8.62516 + 28.2189i −0.412126 + 1.34835i
\(439\) 13.1447i 0.627365i 0.949528 + 0.313682i \(0.101563\pi\)
−0.949528 + 0.313682i \(0.898437\pi\)
\(440\) 11.6068 + 14.7371i 0.553335 + 0.702564i
\(441\) 0.561858i 0.0267551i
\(442\) −23.0966 7.05950i −1.09859 0.335786i
\(443\) 4.86009 + 30.6854i 0.230910 + 1.45791i 0.781905 + 0.623398i \(0.214248\pi\)
−0.550995 + 0.834508i \(0.685752\pi\)
\(444\) 12.7889 18.9662i 0.606933 0.900097i
\(445\) −3.63696 7.13793i −0.172408 0.338370i
\(446\) −3.73566 + 26.5946i −0.176889 + 1.25929i
\(447\) 8.32627 6.04939i 0.393819 0.286126i
\(448\) −11.2681 25.2790i −0.532369 1.19432i
\(449\) −9.38824 28.8940i −0.443059 1.36359i −0.884599 0.466353i \(-0.845568\pi\)
0.441540 0.897241i \(-0.354432\pi\)
\(450\) 0.157662 0.0278118i 0.00743225 0.00131106i
\(451\) 11.8390 + 4.02772i 0.557476 + 0.189658i
\(452\) −20.2133 + 7.36034i −0.950752 + 0.346201i
\(453\) −7.77715 + 15.2635i −0.365403 + 0.717143i
\(454\) −11.3474 + 3.90815i −0.532561 + 0.183419i
\(455\) 20.3614 + 28.0251i 0.954557 + 1.31384i
\(456\) −31.3013 + 6.66040i −1.46582 + 0.311902i
\(457\) 21.0540 + 6.84087i 0.984866 + 0.320002i 0.756802 0.653644i \(-0.226760\pi\)
0.228064 + 0.973646i \(0.426760\pi\)
\(458\) 5.97619 0.104748i 0.279249 0.00489454i
\(459\) 2.82209 + 17.8180i 0.131724 + 0.831672i
\(460\) −0.0840933 0.0103130i −0.00392087 0.000480846i
\(461\) −19.3942 + 19.3942i −0.903280 + 0.903280i −0.995718 0.0924382i \(-0.970534\pi\)
0.0924382 + 0.995718i \(0.470534\pi\)
\(462\) −27.5709 + 0.103663i −1.28271 + 0.00482282i
\(463\) 13.9442 0.648041 0.324020 0.946050i \(-0.394965\pi\)
0.324020 + 0.946050i \(0.394965\pi\)
\(464\) 27.8377 6.43533i 1.29233 0.298753i
\(465\) −8.57164 6.22766i −0.397500 0.288801i
\(466\) −20.9572 20.2352i −0.970822 0.937376i
\(467\) −7.18692 14.1051i −0.332571 0.652707i 0.662802 0.748795i \(-0.269367\pi\)
−0.995373 + 0.0960877i \(0.969367\pi\)
\(468\) 0.772182 0.828305i 0.0356941 0.0382884i
\(469\) 46.0433 + 7.29254i 2.12608 + 0.336738i
\(470\) −3.85280 11.1867i −0.177717 0.516005i
\(471\) 5.90549 1.91881i 0.272111 0.0884142i
\(472\) 25.9444 + 6.94574i 1.19419 + 0.319703i
\(473\) −5.22617 + 9.91705i −0.240300 + 0.455986i
\(474\) 2.54026 3.62843i 0.116678 0.166659i
\(475\) 3.02656 5.93996i 0.138868 0.272544i
\(476\) −6.50136 + 22.6853i −0.297989 + 1.03978i
\(477\) −0.0208955 + 0.131929i −0.000956739 + 0.00604061i
\(478\) 5.33836 38.0044i 0.244171 1.73828i
\(479\) −4.90358 + 15.0917i −0.224050 + 0.689556i 0.774336 + 0.632774i \(0.218084\pi\)
−0.998387 + 0.0567815i \(0.981916\pi\)
\(480\) 1.33380 19.1740i 0.0608794 0.875171i
\(481\) 27.2690 + 19.8121i 1.24336 + 0.903354i
\(482\) 19.0086 + 35.7437i 0.865818 + 1.62808i
\(483\) 0.0880503 0.0880503i 0.00400643 0.00400643i
\(484\) −0.165431 21.9994i −0.00751961 0.999972i
\(485\) −3.25275 3.25275i −0.147700 0.147700i
\(486\) −1.58846 0.485516i −0.0720541 0.0220234i
\(487\) 8.51956 11.7262i 0.386058 0.531363i −0.571119 0.820868i \(-0.693490\pi\)
0.957177 + 0.289504i \(0.0934904\pi\)
\(488\) 11.9627 + 31.1438i 0.541527 + 1.40981i
\(489\) −9.39301 3.05197i −0.424767 0.138015i
\(490\) 11.2217 8.45740i 0.506943 0.382066i
\(491\) −17.4850 2.76936i −0.789088 0.124979i −0.251133 0.967953i \(-0.580803\pi\)
−0.537955 + 0.842973i \(0.680803\pi\)
\(492\) −6.21344 11.2055i −0.280124 0.505184i
\(493\) −21.7065 11.0600i −0.977613 0.498119i
\(494\) −8.19171 46.4378i −0.368562 2.08934i
\(495\) 0.663478 + 0.349645i 0.0298211 + 0.0157154i
\(496\) −9.55274 + 8.02042i −0.428931 + 0.360127i
\(497\) −11.6920 35.9842i −0.524457 1.61411i
\(498\) 4.02496 8.25392i 0.180363 0.369867i
\(499\) 2.02317 12.7738i 0.0905695 0.571833i −0.900115 0.435653i \(-0.856517\pi\)
0.990684 0.136180i \(-0.0434825\pi\)
\(500\) 17.5557 + 16.3662i 0.785114 + 0.731918i
\(501\) −3.91939 + 1.99703i −0.175106 + 0.0892208i
\(502\) −21.1018 + 0.369863i −0.941821 + 0.0165078i
\(503\) 2.76895 3.81113i 0.123461 0.169930i −0.742812 0.669500i \(-0.766509\pi\)
0.866274 + 0.499570i \(0.166509\pi\)
\(504\) −0.822444 0.740209i −0.0366346 0.0329715i
\(505\) 4.87313i 0.216851i
\(506\) 0.0705224 + 0.0699940i 0.00313510 + 0.00311161i
\(507\) −14.5039 14.5039i −0.644142 0.644142i
\(508\) 3.30440 + 4.22818i 0.146609 + 0.187595i
\(509\) −11.7514 + 1.86124i −0.520873 + 0.0824982i −0.411335 0.911484i \(-0.634937\pi\)
−0.109538 + 0.993983i \(0.534937\pi\)
\(510\) −11.3834 + 11.7895i −0.504065 + 0.522050i
\(511\) −13.1283 + 40.4048i −0.580763 + 1.78740i
\(512\) −21.5245 6.97823i −0.951258 0.308397i
\(513\) −28.4958 + 20.7034i −1.25812 + 0.914077i
\(514\) −8.35472 4.07412i −0.368511 0.179702i
\(515\) −9.74283 4.96422i −0.429320 0.218750i
\(516\) 10.7923 3.92985i 0.475104 0.173002i
\(517\) −4.46909 + 13.1363i −0.196550 + 0.577735i
\(518\) 18.8887 26.9800i 0.829923 1.18543i
\(519\) −38.0085 + 12.3497i −1.66839 + 0.542092i
\(520\) 28.1666 + 2.95424i 1.23519 + 0.129552i
\(521\) −18.1790 25.0212i −0.796436 1.09620i −0.993277 0.115765i \(-0.963068\pi\)
0.196841 0.980435i \(-0.436932\pi\)
\(522\) 0.912214 0.687506i 0.0399265 0.0300913i
\(523\) 11.3848 5.80084i 0.497822 0.253653i −0.187005 0.982359i \(-0.559878\pi\)
0.684827 + 0.728706i \(0.259878\pi\)
\(524\) −4.15360 21.3519i −0.181451 0.932763i
\(525\) −5.81231 + 0.920580i −0.253670 + 0.0401774i
\(526\) 7.24501 3.85291i 0.315897 0.167995i
\(527\) 10.6353 0.463282
\(528\) −15.0162 + 16.8111i −0.653494 + 0.731610i
\(529\) 22.9996 0.999980
\(530\) −2.94947 + 1.56854i −0.128117 + 0.0681328i
\(531\) 1.06054 0.167973i 0.0460236 0.00728942i
\(532\) −45.2277 + 8.79817i −1.96087 + 0.381449i
\(533\) 16.8220 8.57122i 0.728640 0.371261i
\(534\) 7.68741 5.79375i 0.332667 0.250720i
\(535\) −17.8892 24.6224i −0.773418 1.06452i
\(536\) 29.6137 23.9914i 1.27912 1.03627i
\(537\) −5.09887 + 1.65672i −0.220033 + 0.0714929i
\(538\) −13.8510 + 19.7843i −0.597157 + 0.852960i
\(539\) −16.4779 0.226848i −0.709756 0.00977102i
\(540\) −7.23821 19.8779i −0.311483 0.855407i
\(541\) −3.37472 1.71950i −0.145090 0.0739272i 0.379938 0.925012i \(-0.375945\pi\)
−0.525028 + 0.851085i \(0.675945\pi\)
\(542\) −17.1763 8.37590i −0.737785 0.359776i
\(543\) 13.7580 9.99578i 0.590413 0.428960i
\(544\) 10.2298 + 16.3579i 0.438599 + 0.701340i
\(545\) 6.69011 20.5900i 0.286573 0.881980i
\(546\) −28.9129 + 29.9445i −1.23736 + 1.28151i
\(547\) −26.8191 + 4.24772i −1.14670 + 0.181619i −0.700729 0.713428i \(-0.747142\pi\)
−0.445971 + 0.895047i \(0.647142\pi\)
\(548\) −14.7187 + 11.5029i −0.628750 + 0.491380i
\(549\) 0.943135 + 0.943135i 0.0402520 + 0.0402520i
\(550\) −0.751999 4.63507i −0.0320653 0.197640i
\(551\) 47.5657i 2.02637i
\(552\) −0.00535012 0.101664i −0.000227716 0.00432709i
\(553\) 3.74837 5.15919i 0.159397 0.219391i
\(554\) 24.1820 0.423850i 1.02739 0.0180077i
\(555\) 20.3791 10.3836i 0.865043 0.440761i
\(556\) 3.56480 3.82389i 0.151181 0.162169i
\(557\) 5.98245 37.7717i 0.253485 1.60044i −0.452203 0.891915i \(-0.649362\pi\)
0.705687 0.708523i \(-0.250638\pi\)
\(558\) −0.218570 + 0.448217i −0.00925281 + 0.0189746i
\(559\) 5.22975 + 16.0955i 0.221195 + 0.680768i
\(560\) 2.40386 27.5682i 0.101582 1.16497i
\(561\) 19.0226 2.74502i 0.803135 0.115895i
\(562\) 2.31091 + 13.1003i 0.0974798 + 0.552601i
\(563\) 22.6807 + 11.5564i 0.955876 + 0.487043i 0.861089 0.508455i \(-0.169783\pi\)
0.0947869 + 0.995498i \(0.469783\pi\)
\(564\) 12.4334 6.89432i 0.523542 0.290303i
\(565\) −21.2438 3.36469i −0.893734 0.141554i
\(566\) 26.2471 19.7816i 1.10325 0.831483i
\(567\) 28.4541 + 9.24531i 1.19496 + 0.388267i
\(568\) −28.2617 12.5756i −1.18584 0.527659i
\(569\) −9.01111 + 12.4027i −0.377765 + 0.519949i −0.954991 0.296635i \(-0.904135\pi\)
0.577225 + 0.816585i \(0.304135\pi\)
\(570\) −30.6001 9.35297i −1.28170 0.391753i
\(571\) 13.0317 + 13.0317i 0.545362 + 0.545362i 0.925096 0.379734i \(-0.123985\pi\)
−0.379734 + 0.925096i \(0.623985\pi\)
\(572\) −23.9804 22.9807i −1.00267 0.960871i
\(573\) −2.28178 + 2.28178i −0.0953228 + 0.0953228i
\(574\) −8.66180 16.2876i −0.361537 0.679833i
\(575\) 0.0171573 + 0.0124655i 0.000715508 + 0.000519847i
\(576\) −0.899628 + 0.0949500i −0.0374845 + 0.00395625i
\(577\) −0.735218 + 2.26277i −0.0306075 + 0.0942003i −0.965193 0.261538i \(-0.915770\pi\)
0.934586 + 0.355738i \(0.115770\pi\)
\(578\) −1.05595 + 7.51740i −0.0439216 + 0.312682i
\(579\) −2.53147 + 15.9831i −0.105204 + 0.664235i
\(580\) 27.4623 + 7.87039i 1.14031 + 0.326800i
\(581\) 6.00238 11.7803i 0.249021 0.488730i
\(582\) 3.17012 4.52809i 0.131406 0.187695i
\(583\) 3.86073 + 0.666081i 0.159895 + 0.0275862i
\(584\) 17.3732 + 30.0762i 0.718910 + 1.24456i
\(585\) 1.07684 0.349885i 0.0445217 0.0144660i
\(586\) −11.5540 33.5474i −0.477292 1.38583i
\(587\) 14.0214 + 2.22077i 0.578726 + 0.0916612i 0.438933 0.898520i \(-0.355356\pi\)
0.139793 + 0.990181i \(0.455356\pi\)
\(588\) 12.3504 + 11.5136i 0.509323 + 0.474813i
\(589\) 9.42718 + 18.5019i 0.388440 + 0.762357i
\(590\) 19.3187 + 18.6531i 0.795338 + 0.767938i
\(591\) 21.2382 + 15.4305i 0.873623 + 0.634724i
\(592\) −6.06470 26.2344i −0.249258 1.07823i
\(593\) 2.15591 0.0885325 0.0442662 0.999020i \(-0.485905\pi\)
0.0442662 + 0.999020i \(0.485905\pi\)
\(594\) −7.57780 + 23.6239i −0.310921 + 0.969302i
\(595\) −16.6844 + 16.6844i −0.683992 + 0.683992i
\(596\) 1.47464 12.0244i 0.0604038 0.492539i
\(597\) −3.52067 22.2286i −0.144091 0.909757i
\(598\) 0.149985 0.00262886i 0.00613334 0.000107502i
\(599\) −25.9292 8.42490i −1.05944 0.344232i −0.273072 0.961994i \(-0.588040\pi\)
−0.786366 + 0.617761i \(0.788040\pi\)
\(600\) −2.61947 + 4.03555i −0.106939 + 0.164750i
\(601\) 18.5069 + 25.4725i 0.754912 + 1.03905i 0.997620 + 0.0689474i \(0.0219641\pi\)
−0.242709 + 0.970099i \(0.578036\pi\)
\(602\) 15.6352 5.38488i 0.637241 0.219471i
\(603\) 0.691747 1.35763i 0.0281701 0.0552870i
\(604\) 6.89939 + 18.9474i 0.280732 + 0.770958i
\(605\) 10.5221 19.3171i 0.427786 0.785350i
\(606\) −5.76656 + 1.01723i −0.234251 + 0.0413222i
\(607\) −0.179635 0.552861i −0.00729117 0.0224399i 0.947345 0.320215i \(-0.103755\pi\)
−0.954636 + 0.297776i \(0.903755\pi\)
\(608\) −19.3896 + 32.2961i −0.786350 + 1.30978i
\(609\) −33.9686 + 24.6797i −1.37648 + 1.00007i
\(610\) −4.64008 + 33.0333i −0.187872 + 1.33748i
\(611\) 9.51046 + 18.6653i 0.384752 + 0.755119i
\(612\) 0.639523 + 0.431229i 0.0258512 + 0.0174314i
\(613\) 2.14473 + 13.5413i 0.0866250 + 0.546928i 0.992389 + 0.123145i \(0.0392981\pi\)
−0.905764 + 0.423783i \(0.860702\pi\)
\(614\) 34.7605 + 10.6246i 1.40282 + 0.428774i
\(615\) 12.8111i 0.516594i
\(616\) −22.0406 + 23.8215i −0.888041 + 0.959794i
\(617\) 5.80740i 0.233797i 0.993144 + 0.116899i \(0.0372953\pi\)
−0.993144 + 0.116899i \(0.962705\pi\)
\(618\) 3.84061 12.5653i 0.154492 0.505451i
\(619\) 0.980282 + 6.18926i 0.0394009 + 0.248767i 0.999525 0.0308054i \(-0.00980723\pi\)
−0.960125 + 0.279573i \(0.909807\pi\)
\(620\) −12.2420 + 2.38145i −0.491651 + 0.0956412i
\(621\) −0.0508696 0.0998371i −0.00204133 0.00400633i
\(622\) −7.01057 0.984753i −0.281098 0.0394850i
\(623\) 11.2126 8.14640i 0.449222 0.326379i
\(624\) 2.38371 + 33.9473i 0.0954247 + 1.35898i
\(625\) 5.86889 + 18.0626i 0.234756 + 0.722504i
\(626\) 6.34335 + 35.9597i 0.253531 + 1.43724i
\(627\) 21.6371 + 30.6597i 0.864102 + 1.22443i
\(628\) 3.08799 6.62472i 0.123224 0.264355i
\(629\) −10.4230 + 20.4564i −0.415594 + 0.815649i
\(630\) −0.360264 1.04604i −0.0143532 0.0416750i
\(631\) 15.2402 + 20.9763i 0.606701 + 0.835052i 0.996301 0.0859317i \(-0.0273867\pi\)
−0.389600 + 0.920984i \(0.627387\pi\)
\(632\) −1.08509 5.09951i −0.0431627 0.202848i
\(633\) −29.7413 9.66354i −1.18211 0.384091i
\(634\) 0.391250 + 22.3221i 0.0155385 + 0.886523i
\(635\) 0.839348 + 5.29944i 0.0333085 + 0.210302i
\(636\) −2.47179 3.16280i −0.0980129 0.125413i
\(637\) −17.5925 + 17.5925i −0.697042 + 0.697042i
\(638\) −19.7946 27.0306i −0.783676 1.07015i
\(639\) −1.23669 −0.0489226
\(640\) −15.4381 16.5385i −0.610244 0.653742i
\(641\) 18.4857 + 13.4306i 0.730141 + 0.530478i 0.889608 0.456725i \(-0.150978\pi\)
−0.159467 + 0.987203i \(0.550978\pi\)
\(642\) 25.4024 26.3088i 1.00255 1.03832i
\(643\) 16.3962 + 32.1794i 0.646604 + 1.26903i 0.948828 + 0.315795i \(0.102271\pi\)
−0.302223 + 0.953237i \(0.597729\pi\)
\(644\) −0.00513659 0.146484i −0.000202410 0.00577230i
\(645\) 11.3425 + 1.79648i 0.446612 + 0.0707363i
\(646\) 30.3683 10.4591i 1.19483 0.411508i
\(647\) −14.5117 + 4.71515i −0.570515 + 0.185372i −0.580047 0.814583i \(-0.696966\pi\)
0.00953183 + 0.999955i \(0.496966\pi\)
\(648\) 21.1805 12.2347i 0.832048 0.480624i
\(649\) −4.49807 31.1710i −0.176565 1.22357i
\(650\) −5.80743 4.06578i −0.227786 0.159473i
\(651\) 8.32163 16.3321i 0.326150 0.640106i
\(652\) −10.1671 + 5.63762i −0.398173 + 0.220786i
\(653\) 2.27299 14.3511i 0.0889492 0.561603i −0.902457 0.430781i \(-0.858238\pi\)
0.991406 0.130822i \(-0.0417617\pi\)
\(654\) 25.7615 + 3.61864i 1.00735 + 0.141500i
\(655\) 6.72084 20.6846i 0.262605 0.808216i
\(656\) −14.6351 3.64444i −0.571405 0.142291i
\(657\) 1.12341 + 0.816205i 0.0438284 + 0.0318432i
\(658\) 18.0725 9.61098i 0.704538 0.374675i
\(659\) −15.9319 + 15.9319i −0.620620 + 0.620620i −0.945690 0.325070i \(-0.894612\pi\)
0.325070 + 0.945690i \(0.394612\pi\)
\(660\) −21.2817 + 7.41922i −0.828389 + 0.288793i
\(661\) 6.05269 + 6.05269i 0.235422 + 0.235422i 0.814952 0.579529i \(-0.196763\pi\)
−0.579529 + 0.814952i \(0.696763\pi\)
\(662\) 9.67863 31.6656i 0.376171 1.23072i
\(663\) 17.0554 23.4748i 0.662378 0.911685i
\(664\) −3.87589 10.0905i −0.150414 0.391587i
\(665\) −43.8143 14.2361i −1.69904 0.552053i
\(666\) −0.647910 0.859676i −0.0251060 0.0333118i
\(667\) 0.149452 + 0.0236709i 0.00578681 + 0.000916541i
\(668\) −1.42649 + 4.97749i −0.0551926 + 0.192585i
\(669\) −28.7488 14.6482i −1.11149 0.566333i
\(670\) 37.5277 6.61995i 1.44982 0.255751i
\(671\) 28.0407 27.2791i 1.08250 1.05310i
\(672\) 33.1244 2.91009i 1.27780 0.112259i
\(673\) −11.2651 34.6704i −0.434237 1.33644i −0.893866 0.448333i \(-0.852018\pi\)
0.459629 0.888111i \(-0.347982\pi\)
\(674\) 28.1293 + 13.7171i 1.08350 + 0.528362i
\(675\) −0.828375 + 5.23016i −0.0318842 + 0.201309i
\(676\) −24.1294 + 0.846116i −0.928053 + 0.0325429i
\(677\) 18.4577 9.40469i 0.709389 0.361452i −0.0617737 0.998090i \(-0.519676\pi\)
0.771162 + 0.636639i \(0.219676\pi\)
\(678\) −0.452929 25.8410i −0.0173946 0.992418i
\(679\) 4.67778 6.43841i 0.179517 0.247083i
\(680\) 1.01378 + 19.2639i 0.0388765 + 0.738738i
\(681\) 14.4192i 0.552544i
\(682\) 13.0569 + 6.59110i 0.499974 + 0.252386i
\(683\) 10.0356 + 10.0356i 0.384003 + 0.384003i 0.872542 0.488539i \(-0.162470\pi\)
−0.488539 + 0.872542i \(0.662470\pi\)
\(684\) −0.183318 + 1.49480i −0.00700935 + 0.0571550i
\(685\) −18.4478 + 2.92184i −0.704854 + 0.111638i
\(686\) −7.14933 6.90303i −0.272963 0.263559i
\(687\) −2.21910 + 6.82967i −0.0846638 + 0.260568i
\(688\) 5.27892 12.4464i 0.201257 0.474514i
\(689\) 4.78514 3.47661i 0.182299 0.132448i
\(690\) 0.0446152 0.0914915i 0.00169847 0.00348302i
\(691\) −9.56587 4.87405i −0.363903 0.185418i 0.262472 0.964940i \(-0.415462\pi\)
−0.626375 + 0.779522i \(0.715462\pi\)
\(692\) −19.8747 + 42.6375i −0.755522 + 1.62084i
\(693\) −0.417890 + 1.22834i −0.0158743 + 0.0466607i
\(694\) −10.0429 7.03104i −0.381224 0.266895i
\(695\) 4.97124 1.61525i 0.188570 0.0612701i
\(696\) −3.58077 + 34.1401i −0.135729 + 1.29408i
\(697\) 7.55875 + 10.4037i 0.286308 + 0.394069i
\(698\) −3.53549 4.69105i −0.133820 0.177559i
\(699\) 31.1854 15.8898i 1.17954 0.601006i
\(700\) −3.87267 + 5.74326i −0.146373 + 0.217075i
\(701\) −18.6010 + 2.94611i −0.702551 + 0.111273i −0.497482 0.867474i \(-0.665742\pi\)
−0.205069 + 0.978747i \(0.565742\pi\)
\(702\) 17.5868 + 33.0701i 0.663770 + 1.24815i
\(703\) −44.8262 −1.69065
\(704\) 2.42143 + 26.4223i 0.0912613 + 0.995827i
\(705\) 14.2150 0.535367
\(706\) −7.63663 14.3599i −0.287408 0.540442i
\(707\) −8.32690 + 1.31885i −0.313165 + 0.0496005i
\(708\) −18.0404 + 26.7543i −0.677998 + 1.00549i
\(709\) −12.6413 + 6.44107i −0.474754 + 0.241899i −0.674960 0.737854i \(-0.735839\pi\)
0.200205 + 0.979754i \(0.435839\pi\)
\(710\) −18.6153 24.6996i −0.698620 0.926961i
\(711\) −0.122517 0.168630i −0.00459475 0.00632413i
\(712\) 1.18196 11.2692i 0.0442959 0.422330i
\(713\) −0.0628246 + 0.0204129i −0.00235280 + 0.000764471i
\(714\) −23.2260 16.2605i −0.869212 0.608535i
\(715\) −9.82652 31.7223i −0.367491 1.18635i
\(716\) −2.66621 + 5.71986i −0.0996408 + 0.213761i
\(717\) 41.0828 + 20.9327i 1.53426 + 0.781747i
\(718\) 1.66816 3.42087i 0.0622553 0.127666i
\(719\) −3.86535 + 2.80834i −0.144153 + 0.104733i −0.657525 0.753433i \(-0.728396\pi\)
0.513371 + 0.858167i \(0.328396\pi\)
\(720\) −0.832697 0.353174i −0.0310328 0.0131620i
\(721\) 5.84577 17.9914i 0.217708 0.670036i
\(722\) 25.7838 + 24.8956i 0.959575 + 0.926517i
\(723\) −48.0401 + 7.60881i −1.78663 + 0.282975i
\(724\) 2.43665 19.8687i 0.0905572 0.738414i
\(725\) −5.05651 5.05651i −0.187794 0.187794i
\(726\) 25.0551 + 8.41897i 0.929881 + 0.312457i
\(727\) 4.68302i 0.173684i −0.996222 0.0868418i \(-0.972323\pi\)
0.996222 0.0868418i \(-0.0276775\pi\)
\(728\) 2.57491 + 48.9288i 0.0954325 + 1.81342i
\(729\) 16.4224 22.6036i 0.608239 0.837169i
\(730\) 0.608611 + 34.7232i 0.0225257 + 1.28516i
\(731\) −10.2711 + 5.23337i −0.379889 + 0.193563i
\(732\) −40.0582 + 1.40467i −1.48059 + 0.0519182i
\(733\) −2.03871 + 12.8719i −0.0753013 + 0.475434i 0.921004 + 0.389553i \(0.127370\pi\)
−0.996305 + 0.0858809i \(0.972630\pi\)
\(734\) 14.3976 + 7.02089i 0.531425 + 0.259146i
\(735\) 5.21695 + 16.0561i 0.192430 + 0.592239i
\(736\) −0.0918258 0.0769943i −0.00338474 0.00283805i
\(737\) −39.5367 20.8354i −1.45635 0.767483i
\(738\) −0.593799 + 0.104747i −0.0218581 + 0.00385580i
\(739\) 18.9014 + 9.63076i 0.695300 + 0.354273i 0.765657 0.643249i \(-0.222414\pi\)
−0.0703570 + 0.997522i \(0.522414\pi\)
\(740\) 7.41710 25.8807i 0.272658 0.951392i
\(741\) 55.9562 + 8.86259i 2.05560 + 0.325575i
\(742\) −3.47845 4.61537i −0.127698 0.169435i
\(743\) −16.5390 5.37384i −0.606757 0.197147i −0.0105051 0.999945i \(-0.503344\pi\)
−0.596252 + 0.802798i \(0.703344\pi\)
\(744\) −5.37350 13.9894i −0.197002 0.512875i
\(745\) 7.11972 9.79946i 0.260846 0.359024i
\(746\) 14.6948 48.0770i 0.538015 1.76022i
\(747\) −0.305573 0.305573i −0.0111803 0.0111803i
\(748\) 12.9051 18.5816i 0.471858 0.679410i
\(749\) 37.2317 37.2317i 1.36042 1.36042i
\(750\) −25.4596 + 13.5395i −0.929655 + 0.494392i
\(751\) −2.56583 1.86419i −0.0936285 0.0680251i 0.539986 0.841674i \(-0.318429\pi\)
−0.633615 + 0.773649i \(0.718429\pi\)
\(752\) 4.04380 16.2388i 0.147462 0.592169i
\(753\) 7.83559 24.1155i 0.285545 0.878817i
\(754\) −50.0894 7.03591i −1.82415 0.256233i
\(755\) −3.15397 + 19.9134i −0.114785 + 0.724723i
\(756\) 32.0071 17.7479i 1.16409 0.645485i
\(757\) −0.428607 + 0.841189i −0.0155780 + 0.0305735i −0.898664 0.438637i \(-0.855461\pi\)
0.883086 + 0.469210i \(0.155461\pi\)
\(758\) 25.7176 + 18.0048i 0.934104 + 0.653966i
\(759\) −0.107101 + 0.0527263i −0.00388752 + 0.00191385i
\(760\) −32.6141 + 18.8392i −1.18304 + 0.683370i
\(761\) 11.9314 3.87675i 0.432514 0.140532i −0.0846654 0.996409i \(-0.526982\pi\)
0.517179 + 0.855877i \(0.326982\pi\)
\(762\) −6.09582 + 2.09945i −0.220828 + 0.0760552i
\(763\) 36.9936 + 5.85920i 1.33926 + 0.212117i
\(764\) 0.133112 + 3.79608i 0.00481584 + 0.137337i
\(765\) 0.350127 + 0.687163i 0.0126589 + 0.0248444i
\(766\) 21.9126 22.6945i 0.791735 0.819984i