Properties

Label 176.2.w.a.5.14
Level $176$
Weight $2$
Character 176.5
Analytic conductor $1.405$
Analytic rank $0$
Dimension $176$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,2,Mod(5,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 5, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 176.w (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40536707557\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 5.14
Character \(\chi\) \(=\) 176.5
Dual form 176.2.w.a.141.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.165330 - 1.40452i) q^{2} +(-0.757844 + 0.120031i) q^{3} +(-1.94533 - 0.464417i) q^{4} +(-0.814347 + 0.414930i) q^{5} +(0.0432907 + 1.08425i) q^{6} +(-2.91240 - 4.00857i) q^{7} +(-0.973904 + 2.65547i) q^{8} +(-2.29325 + 0.745122i) q^{9} +O(q^{10})\) \(q+(0.165330 - 1.40452i) q^{2} +(-0.757844 + 0.120031i) q^{3} +(-1.94533 - 0.464417i) q^{4} +(-0.814347 + 0.414930i) q^{5} +(0.0432907 + 1.08425i) q^{6} +(-2.91240 - 4.00857i) q^{7} +(-0.973904 + 2.65547i) q^{8} +(-2.29325 + 0.745122i) q^{9} +(0.448140 + 1.21236i) q^{10} +(2.13673 - 2.53661i) q^{11} +(1.53000 + 0.118456i) q^{12} +(-1.57344 - 0.801709i) q^{13} +(-6.11161 + 3.42777i) q^{14} +(0.567343 - 0.412199i) q^{15} +(3.56863 + 1.80689i) q^{16} +(0.0481112 - 0.148071i) q^{17} +(0.667393 + 3.34410i) q^{18} +(3.60468 - 0.570925i) q^{19} +(1.77688 - 0.428980i) q^{20} +(2.68829 + 2.68829i) q^{21} +(-3.20944 - 3.42045i) q^{22} -1.45640i q^{23} +(0.419329 - 2.12933i) q^{24} +(-2.44793 + 3.36929i) q^{25} +(-1.38615 + 2.07738i) q^{26} +(3.69947 - 1.88497i) q^{27} +(3.80393 + 9.15057i) q^{28} +(0.909822 - 5.74439i) q^{29} +(-0.485141 - 0.864991i) q^{30} +(0.382777 + 1.17807i) q^{31} +(3.12781 - 4.71347i) q^{32} +(-1.31484 + 2.17882i) q^{33} +(-0.200014 - 0.0920535i) q^{34} +(4.03498 + 2.05592i) q^{35} +(4.80718 - 0.384484i) q^{36} +(5.10085 + 0.807895i) q^{37} +(-0.205912 - 5.15722i) q^{38} +(1.28865 + 0.418709i) q^{39} +(-0.308739 - 2.56657i) q^{40} +(2.71899 - 3.74236i) q^{41} +(4.22021 - 3.33130i) q^{42} +(-7.95504 - 7.95504i) q^{43} +(-5.33470 + 3.94220i) q^{44} +(1.55833 - 1.55833i) q^{45} +(-2.04554 - 0.240787i) q^{46} +(-10.1818 - 7.39754i) q^{47} +(-2.92135 - 0.940997i) q^{48} +(-5.42346 + 16.6917i) q^{49} +(4.32751 + 3.99521i) q^{50} +(-0.0186877 + 0.117989i) q^{51} +(2.68854 + 2.29032i) q^{52} +(2.16375 - 4.24660i) q^{53} +(-2.03584 - 5.50761i) q^{54} +(-0.687527 + 2.95227i) q^{55} +(13.4810 - 3.82982i) q^{56} +(-2.66326 + 0.865344i) q^{57} +(-7.91767 - 2.22758i) q^{58} +(9.33962 + 1.47925i) q^{59} +(-1.29510 + 0.538380i) q^{60} +(1.59437 + 3.12912i) q^{61} +(1.71790 - 0.342847i) q^{62} +(9.66573 + 7.02256i) q^{63} +(-6.10302 - 5.17234i) q^{64} +1.61398 q^{65} +(2.84281 + 2.20694i) q^{66} +(-6.90892 + 6.90892i) q^{67} +(-0.162359 + 0.265704i) q^{68} +(0.174813 + 1.10372i) q^{69} +(3.55468 - 5.32729i) q^{70} +(-7.16496 - 2.32804i) q^{71} +(0.254756 - 6.81533i) q^{72} +(6.92954 + 9.53769i) q^{73} +(1.97803 - 7.03066i) q^{74} +(1.45073 - 2.84722i) q^{75} +(-7.27745 - 0.563437i) q^{76} +(-16.3912 - 1.17764i) q^{77} +(0.801136 - 1.74071i) q^{78} +(1.12448 + 3.46081i) q^{79} +(-3.65584 + 0.00929747i) q^{80} +(3.27490 - 2.37935i) q^{81} +(-4.80668 - 4.43758i) q^{82} +(3.29343 + 6.46373i) q^{83} +(-3.98113 - 6.47811i) q^{84} +(0.0222600 + 0.140544i) q^{85} +(-12.4882 + 9.85777i) q^{86} +4.46255i q^{87} +(4.65490 + 8.14444i) q^{88} -5.49347i q^{89} +(-1.93106 - 2.44633i) q^{90} +(1.36878 + 8.64215i) q^{91} +(-0.676378 + 2.83318i) q^{92} +(-0.431489 - 0.846845i) q^{93} +(-12.0733 + 13.0775i) q^{94} +(-2.69856 + 1.96062i) q^{95} +(-1.80463 + 3.94751i) q^{96} +(-0.330253 - 1.01641i) q^{97} +(22.5471 + 10.3770i) q^{98} +(-3.00998 + 7.40920i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8} - 16 q^{10} - 12 q^{11} - 6 q^{13} - 12 q^{15} + 14 q^{16} - 12 q^{17} - 44 q^{18} - 6 q^{19} + 2 q^{20} - 28 q^{21} + 50 q^{22} - 38 q^{24} - 68 q^{26} - 18 q^{27} - 46 q^{28} - 22 q^{29} + 26 q^{30} - 12 q^{31} - 16 q^{32} - 16 q^{33} + 12 q^{34} - 26 q^{35} - 22 q^{36} + 18 q^{37} - 34 q^{38} + 14 q^{40} - 10 q^{42} - 40 q^{43} + 2 q^{44} - 24 q^{45} + 38 q^{46} - 12 q^{47} - 26 q^{48} + 8 q^{49} - 62 q^{50} + 6 q^{51} + 74 q^{52} - 30 q^{53} - 52 q^{54} - 96 q^{56} - 26 q^{58} + 10 q^{59} + 118 q^{60} - 6 q^{61} - 42 q^{62} - 28 q^{63} - 106 q^{64} - 32 q^{65} + 6 q^{66} + 24 q^{67} + 116 q^{68} + 12 q^{69} + 52 q^{70} - 98 q^{72} + 96 q^{74} - 46 q^{75} + 112 q^{76} - 14 q^{77} + 44 q^{78} - 52 q^{79} - 28 q^{80} + 66 q^{82} + 54 q^{83} + 120 q^{84} + 14 q^{85} + 86 q^{86} + 142 q^{88} + 228 q^{90} - 122 q^{91} + 146 q^{92} + 6 q^{93} + 56 q^{94} + 52 q^{95} + 86 q^{96} - 12 q^{97} + 140 q^{98} + 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.165330 1.40452i 0.116906 0.993143i
\(3\) −0.757844 + 0.120031i −0.437541 + 0.0692997i −0.371319 0.928505i \(-0.621095\pi\)
−0.0662219 + 0.997805i \(0.521095\pi\)
\(4\) −1.94533 0.464417i −0.972666 0.232209i
\(5\) −0.814347 + 0.414930i −0.364187 + 0.185562i −0.626502 0.779420i \(-0.715514\pi\)
0.262315 + 0.964982i \(0.415514\pi\)
\(6\) 0.0432907 + 1.08425i 0.0176733 + 0.442643i
\(7\) −2.91240 4.00857i −1.10078 1.51510i −0.834343 0.551246i \(-0.814153\pi\)
−0.266440 0.963852i \(-0.585847\pi\)
\(8\) −0.973904 + 2.65547i −0.344327 + 0.938850i
\(9\) −2.29325 + 0.745122i −0.764417 + 0.248374i
\(10\) 0.448140 + 1.21236i 0.141714 + 0.383383i
\(11\) 2.13673 2.53661i 0.644249 0.764815i
\(12\) 1.53000 + 0.118456i 0.441674 + 0.0341954i
\(13\) −1.57344 0.801709i −0.436394 0.222354i 0.221970 0.975054i \(-0.428751\pi\)
−0.658364 + 0.752700i \(0.728751\pi\)
\(14\) −6.11161 + 3.42777i −1.63340 + 0.916111i
\(15\) 0.567343 0.412199i 0.146487 0.106429i
\(16\) 3.56863 + 1.80689i 0.892158 + 0.451723i
\(17\) 0.0481112 0.148071i 0.0116687 0.0359125i −0.945053 0.326918i \(-0.893990\pi\)
0.956721 + 0.291006i \(0.0939899\pi\)
\(18\) 0.667393 + 3.34410i 0.157306 + 0.788211i
\(19\) 3.60468 0.570925i 0.826970 0.130979i 0.271419 0.962461i \(-0.412507\pi\)
0.555551 + 0.831482i \(0.312507\pi\)
\(20\) 1.77688 0.428980i 0.397321 0.0959229i
\(21\) 2.68829 + 2.68829i 0.586634 + 0.586634i
\(22\) −3.20944 3.42045i −0.684255 0.729243i
\(23\) 1.45640i 0.303680i −0.988405 0.151840i \(-0.951480\pi\)
0.988405 0.151840i \(-0.0485199\pi\)
\(24\) 0.419329 2.12933i 0.0855952 0.434647i
\(25\) −2.44793 + 3.36929i −0.489587 + 0.673858i
\(26\) −1.38615 + 2.07738i −0.271846 + 0.407407i
\(27\) 3.69947 1.88497i 0.711963 0.362763i
\(28\) 3.80393 + 9.15057i 0.718875 + 1.72930i
\(29\) 0.909822 5.74439i 0.168950 1.06671i −0.746827 0.665018i \(-0.768424\pi\)
0.915777 0.401688i \(-0.131576\pi\)
\(30\) −0.485141 0.864991i −0.0885743 0.157925i
\(31\) 0.382777 + 1.17807i 0.0687488 + 0.211587i 0.979528 0.201306i \(-0.0645185\pi\)
−0.910780 + 0.412893i \(0.864518\pi\)
\(32\) 3.12781 4.71347i 0.552924 0.833232i
\(33\) −1.31484 + 2.17882i −0.228884 + 0.379285i
\(34\) −0.200014 0.0920535i −0.0343021 0.0157870i
\(35\) 4.03498 + 2.05592i 0.682036 + 0.347515i
\(36\) 4.80718 0.384484i 0.801197 0.0640807i
\(37\) 5.10085 + 0.807895i 0.838574 + 0.132817i 0.560926 0.827866i \(-0.310445\pi\)
0.277648 + 0.960683i \(0.410445\pi\)
\(38\) −0.205912 5.15722i −0.0334033 0.836612i
\(39\) 1.28865 + 0.418709i 0.206350 + 0.0670470i
\(40\) −0.308739 2.56657i −0.0488159 0.405811i
\(41\) 2.71899 3.74236i 0.424634 0.584459i −0.542077 0.840329i \(-0.682362\pi\)
0.966711 + 0.255870i \(0.0823619\pi\)
\(42\) 4.22021 3.33130i 0.651192 0.514030i
\(43\) −7.95504 7.95504i −1.21313 1.21313i −0.969991 0.243141i \(-0.921822\pi\)
−0.243141 0.969991i \(-0.578178\pi\)
\(44\) −5.33470 + 3.94220i −0.804236 + 0.594310i
\(45\) 1.55833 1.55833i 0.232302 0.232302i
\(46\) −2.04554 0.240787i −0.301598 0.0355021i
\(47\) −10.1818 7.39754i −1.48517 1.07904i −0.975843 0.218472i \(-0.929893\pi\)
−0.509332 0.860570i \(-0.670107\pi\)
\(48\) −2.92135 0.940997i −0.421660 0.135821i
\(49\) −5.42346 + 16.6917i −0.774781 + 2.38453i
\(50\) 4.32751 + 3.99521i 0.612002 + 0.565008i
\(51\) −0.0186877 + 0.117989i −0.00261680 + 0.0165218i
\(52\) 2.68854 + 2.29032i 0.372833 + 0.317611i
\(53\) 2.16375 4.24660i 0.297214 0.583315i −0.693313 0.720637i \(-0.743849\pi\)
0.990526 + 0.137322i \(0.0438495\pi\)
\(54\) −2.03584 5.50761i −0.277043 0.749491i
\(55\) −0.687527 + 2.95227i −0.0927061 + 0.398084i
\(56\) 13.4810 3.82982i 1.80148 0.511781i
\(57\) −2.66326 + 0.865344i −0.352757 + 0.114618i
\(58\) −7.91767 2.22758i −1.03964 0.292495i
\(59\) 9.33962 + 1.47925i 1.21591 + 0.192582i 0.731245 0.682115i \(-0.238940\pi\)
0.484670 + 0.874697i \(0.338940\pi\)
\(60\) −1.29510 + 0.538380i −0.167197 + 0.0695045i
\(61\) 1.59437 + 3.12912i 0.204138 + 0.400643i 0.970265 0.242047i \(-0.0778187\pi\)
−0.766127 + 0.642689i \(0.777819\pi\)
\(62\) 1.71790 0.342847i 0.218173 0.0435416i
\(63\) 9.66573 + 7.02256i 1.21777 + 0.884760i
\(64\) −6.10302 5.17234i −0.762878 0.646543i
\(65\) 1.61398 0.200190
\(66\) 2.84281 + 2.20694i 0.349926 + 0.271655i
\(67\) −6.90892 + 6.90892i −0.844059 + 0.844059i −0.989384 0.145325i \(-0.953577\pi\)
0.145325 + 0.989384i \(0.453577\pi\)
\(68\) −0.162359 + 0.265704i −0.0196889 + 0.0322213i
\(69\) 0.174813 + 1.10372i 0.0210450 + 0.132873i
\(70\) 3.55468 5.32729i 0.424866 0.636733i
\(71\) −7.16496 2.32804i −0.850325 0.276287i −0.148743 0.988876i \(-0.547523\pi\)
−0.701582 + 0.712589i \(0.747523\pi\)
\(72\) 0.254756 6.81533i 0.0300233 0.803194i
\(73\) 6.92954 + 9.53769i 0.811041 + 1.11630i 0.991162 + 0.132658i \(0.0423511\pi\)
−0.180121 + 0.983644i \(0.557649\pi\)
\(74\) 1.97803 7.03066i 0.229941 0.817297i
\(75\) 1.45073 2.84722i 0.167516 0.328769i
\(76\) −7.27745 0.563437i −0.834780 0.0646307i
\(77\) −16.3912 1.17764i −1.86795 0.134205i
\(78\) 0.801136 1.74071i 0.0907108 0.197096i
\(79\) 1.12448 + 3.46081i 0.126514 + 0.389371i 0.994174 0.107788i \(-0.0343766\pi\)
−0.867660 + 0.497159i \(0.834377\pi\)
\(80\) −3.65584 + 0.00929747i −0.408735 + 0.00103949i
\(81\) 3.27490 2.37935i 0.363878 0.264373i
\(82\) −4.80668 4.43758i −0.530809 0.490049i
\(83\) 3.29343 + 6.46373i 0.361501 + 0.709487i 0.998094 0.0617139i \(-0.0196566\pi\)
−0.636592 + 0.771200i \(0.719657\pi\)
\(84\) −3.98113 6.47811i −0.434377 0.706820i
\(85\) 0.0222600 + 0.140544i 0.00241443 + 0.0152441i
\(86\) −12.4882 + 9.85777i −1.34664 + 1.06299i
\(87\) 4.46255i 0.478436i
\(88\) 4.65490 + 8.14444i 0.496214 + 0.868200i
\(89\) 5.49347i 0.582307i −0.956676 0.291153i \(-0.905961\pi\)
0.956676 0.291153i \(-0.0940390\pi\)
\(90\) −1.93106 2.44633i −0.203551 0.257866i
\(91\) 1.36878 + 8.64215i 0.143487 + 0.905943i
\(92\) −0.676378 + 2.83318i −0.0705172 + 0.295380i
\(93\) −0.431489 0.846845i −0.0447433 0.0878138i
\(94\) −12.0733 + 13.0775i −1.24527 + 1.34884i
\(95\) −2.69856 + 1.96062i −0.276867 + 0.201156i
\(96\) −1.80463 + 3.94751i −0.184184 + 0.402891i
\(97\) −0.330253 1.01641i −0.0335321 0.103201i 0.932890 0.360162i \(-0.117279\pi\)
−0.966422 + 0.256961i \(0.917279\pi\)
\(98\) 22.5471 + 10.3770i 2.27760 + 1.04823i
\(99\) −3.00998 + 7.40920i −0.302515 + 0.744652i
\(100\) 6.32680 5.41753i 0.632680 0.541753i
\(101\) 0.611330 1.19980i 0.0608296 0.119385i −0.858590 0.512663i \(-0.828659\pi\)
0.919420 + 0.393278i \(0.128659\pi\)
\(102\) 0.162629 + 0.0457544i 0.0161026 + 0.00453036i
\(103\) −8.40017 11.5618i −0.827693 1.13922i −0.988348 0.152211i \(-0.951361\pi\)
0.160655 0.987011i \(-0.448639\pi\)
\(104\) 3.66129 3.39744i 0.359019 0.333146i
\(105\) −3.30466 1.07375i −0.322502 0.104787i
\(106\) −5.60668 3.74111i −0.544569 0.363369i
\(107\) 0.830802 + 5.24548i 0.0803167 + 0.507100i 0.994748 + 0.102358i \(0.0326386\pi\)
−0.914431 + 0.404742i \(0.867361\pi\)
\(108\) −8.07211 + 1.94880i −0.776739 + 0.187524i
\(109\) −4.16182 + 4.16182i −0.398630 + 0.398630i −0.877750 0.479119i \(-0.840956\pi\)
0.479119 + 0.877750i \(0.340956\pi\)
\(110\) 4.03285 + 1.45374i 0.384517 + 0.138609i
\(111\) −3.96262 −0.376115
\(112\) −3.15022 19.5675i −0.297668 1.84896i
\(113\) −10.5638 7.67502i −0.993754 0.722005i −0.0330142 0.999455i \(-0.510511\pi\)
−0.960740 + 0.277450i \(0.910511\pi\)
\(114\) 0.775074 + 3.88365i 0.0725923 + 0.363737i
\(115\) 0.604305 + 1.18601i 0.0563517 + 0.110596i
\(116\) −4.43770 + 10.7522i −0.412030 + 0.998317i
\(117\) 4.20567 + 0.666112i 0.388814 + 0.0615821i
\(118\) 3.62175 12.8731i 0.333409 1.18506i
\(119\) −0.733672 + 0.238384i −0.0672556 + 0.0218527i
\(120\) 0.542044 + 1.90800i 0.0494816 + 0.174176i
\(121\) −1.86874 10.8401i −0.169885 0.985464i
\(122\) 4.65850 1.72198i 0.421760 0.155900i
\(123\) −1.61137 + 3.16249i −0.145292 + 0.285152i
\(124\) −0.197514 2.46950i −0.0177373 0.221767i
\(125\) 1.31032 8.27304i 0.117199 0.739963i
\(126\) 11.4613 12.4146i 1.02106 1.10598i
\(127\) 4.65744 14.3341i 0.413281 1.27195i −0.500499 0.865737i \(-0.666850\pi\)
0.913780 0.406210i \(-0.133150\pi\)
\(128\) −8.27365 + 7.71665i −0.731294 + 0.682062i
\(129\) 6.98352 + 5.07383i 0.614865 + 0.446726i
\(130\) 0.266839 2.26686i 0.0234034 0.198817i
\(131\) 6.46953 6.46953i 0.565245 0.565245i −0.365547 0.930793i \(-0.619118\pi\)
0.930793 + 0.365547i \(0.119118\pi\)
\(132\) 3.56968 3.62790i 0.310701 0.315768i
\(133\) −12.7869 12.7869i −1.10876 1.10876i
\(134\) 8.56144 + 10.8459i 0.739596 + 0.936947i
\(135\) −2.23052 + 3.07004i −0.191972 + 0.264227i
\(136\) 0.346342 + 0.271965i 0.0296986 + 0.0233208i
\(137\) 17.1759 + 5.58078i 1.46743 + 0.476798i 0.930331 0.366720i \(-0.119519\pi\)
0.537101 + 0.843518i \(0.319519\pi\)
\(138\) 1.57910 0.0630486i 0.134422 0.00536705i
\(139\) 12.9333 + 2.04844i 1.09699 + 0.173746i 0.678590 0.734517i \(-0.262591\pi\)
0.418399 + 0.908263i \(0.362591\pi\)
\(140\) −6.89457 5.87337i −0.582697 0.496390i
\(141\) 8.60418 + 4.38405i 0.724603 + 0.369203i
\(142\) −4.45435 + 9.67841i −0.373801 + 0.812194i
\(143\) −5.39564 + 2.27816i −0.451206 + 0.190510i
\(144\) −9.53012 1.48459i −0.794177 0.123716i
\(145\) 1.64261 + 5.05544i 0.136411 + 0.419831i
\(146\) 14.5415 8.15578i 1.20346 0.674977i
\(147\) 2.10662 13.3007i 0.173751 1.09702i
\(148\) −9.54764 3.94055i −0.784812 0.323911i
\(149\) 2.79176 1.42247i 0.228710 0.116534i −0.335881 0.941905i \(-0.609034\pi\)
0.564591 + 0.825371i \(0.309034\pi\)
\(150\) −3.75912 2.50831i −0.306931 0.204803i
\(151\) −5.74261 + 7.90402i −0.467327 + 0.643220i −0.976008 0.217735i \(-0.930133\pi\)
0.508681 + 0.860955i \(0.330133\pi\)
\(152\) −1.99454 + 10.1281i −0.161778 + 0.821500i
\(153\) 0.375412i 0.0303503i
\(154\) −4.36397 + 22.8270i −0.351659 + 1.83945i
\(155\) −0.800528 0.800528i −0.0643000 0.0643000i
\(156\) −2.31240 1.41300i −0.185140 0.113131i
\(157\) 14.9827 2.37303i 1.19575 0.189389i 0.473358 0.880870i \(-0.343042\pi\)
0.722394 + 0.691481i \(0.243042\pi\)
\(158\) 5.04667 1.00718i 0.401492 0.0801270i
\(159\) −1.13006 + 3.47797i −0.0896198 + 0.275821i
\(160\) −0.591361 + 5.13622i −0.0467512 + 0.406054i
\(161\) −5.83808 + 4.24162i −0.460105 + 0.334286i
\(162\) −2.80040 4.99303i −0.220020 0.392289i
\(163\) −7.37953 3.76006i −0.578010 0.294511i 0.140440 0.990089i \(-0.455148\pi\)
−0.718450 + 0.695579i \(0.755148\pi\)
\(164\) −7.02735 + 6.01739i −0.548744 + 0.469879i
\(165\) 0.166675 2.31989i 0.0129756 0.180603i
\(166\) 9.62292 3.55703i 0.746883 0.276079i
\(167\) 12.3790 4.02216i 0.957912 0.311244i 0.211986 0.977273i \(-0.432007\pi\)
0.745926 + 0.666028i \(0.232007\pi\)
\(168\) −9.75682 + 4.52054i −0.752755 + 0.348767i
\(169\) −5.80823 7.99434i −0.446787 0.614949i
\(170\) 0.201076 0.00802836i 0.0154219 0.000615747i
\(171\) −7.84102 + 3.99520i −0.599618 + 0.305521i
\(172\) 11.7807 + 19.1696i 0.898272 + 1.46167i
\(173\) 18.1943 2.88169i 1.38328 0.219091i 0.579966 0.814641i \(-0.303066\pi\)
0.803318 + 0.595550i \(0.203066\pi\)
\(174\) 6.26773 + 0.737794i 0.475155 + 0.0559320i
\(175\) 20.6354 1.55989
\(176\) 12.2086 5.19137i 0.920257 0.391314i
\(177\) −7.25553 −0.545359
\(178\) −7.71567 0.908235i −0.578314 0.0680751i
\(179\) 1.67009 0.264516i 0.124828 0.0197709i −0.0937077 0.995600i \(-0.529872\pi\)
0.218536 + 0.975829i \(0.429872\pi\)
\(180\) −3.75518 + 2.30775i −0.279894 + 0.172009i
\(181\) 7.85032 3.99994i 0.583510 0.297313i −0.137207 0.990542i \(-0.543813\pi\)
0.720717 + 0.693229i \(0.243813\pi\)
\(182\) 12.3643 0.493670i 0.916506 0.0365932i
\(183\) −1.58387 2.18001i −0.117083 0.161151i
\(184\) 3.86742 + 1.41839i 0.285110 + 0.104565i
\(185\) −4.48908 + 1.45859i −0.330044 + 0.107238i
\(186\) −1.26075 + 0.466025i −0.0924424 + 0.0341706i
\(187\) −0.272797 0.438427i −0.0199489 0.0320610i
\(188\) 16.3715 + 19.1193i 1.19402 + 1.39442i
\(189\) −18.3304 9.33979i −1.33334 0.679370i
\(190\) 2.30757 + 4.11433i 0.167409 + 0.298485i
\(191\) −7.48004 + 5.43457i −0.541237 + 0.393232i −0.824544 0.565798i \(-0.808568\pi\)
0.283307 + 0.959029i \(0.408568\pi\)
\(192\) 5.24598 + 3.18728i 0.378596 + 0.230022i
\(193\) 4.10421 12.6314i 0.295427 0.909231i −0.687650 0.726042i \(-0.741358\pi\)
0.983078 0.183189i \(-0.0586422\pi\)
\(194\) −1.48217 + 0.295802i −0.106414 + 0.0212373i
\(195\) −1.22314 + 0.193727i −0.0875912 + 0.0138731i
\(196\) 18.3024 29.9522i 1.30731 2.13944i
\(197\) −5.11279 5.11279i −0.364271 0.364271i 0.501112 0.865383i \(-0.332925\pi\)
−0.865383 + 0.501112i \(0.832925\pi\)
\(198\) 9.90870 + 5.45253i 0.704181 + 0.387495i
\(199\) 20.2779i 1.43746i 0.695288 + 0.718731i \(0.255277\pi\)
−0.695288 + 0.718731i \(0.744723\pi\)
\(200\) −6.56299 9.78177i −0.464074 0.691676i
\(201\) 4.40660 6.06517i 0.310818 0.427804i
\(202\) −1.58407 1.05699i −0.111455 0.0743693i
\(203\) −25.6765 + 13.0829i −1.80214 + 0.918236i
\(204\) 0.0911502 0.220850i 0.00638179 0.0154626i
\(205\) −0.661377 + 4.17577i −0.0461926 + 0.291648i
\(206\) −17.6276 + 9.88665i −1.22817 + 0.688836i
\(207\) 1.08520 + 3.33989i 0.0754263 + 0.232138i
\(208\) −4.16643 5.70404i −0.288890 0.395504i
\(209\) 6.25403 10.3636i 0.432600 0.716863i
\(210\) −2.05446 + 4.46392i −0.141771 + 0.308040i
\(211\) −1.25795 0.640955i −0.0866005 0.0441252i 0.410154 0.912016i \(-0.365475\pi\)
−0.496754 + 0.867891i \(0.665475\pi\)
\(212\) −6.18140 + 7.25616i −0.424541 + 0.498355i
\(213\) 5.70936 + 0.904273i 0.391199 + 0.0619598i
\(214\) 7.50472 0.299640i 0.513012 0.0204830i
\(215\) 9.77894 + 3.17737i 0.666919 + 0.216695i
\(216\) 1.40256 + 11.6596i 0.0954322 + 0.793336i
\(217\) 3.60756 4.96539i 0.244897 0.337072i
\(218\) 5.15727 + 6.53342i 0.349295 + 0.442499i
\(219\) −6.39632 6.39632i −0.432223 0.432223i
\(220\) 2.70855 5.42385i 0.182611 0.365676i
\(221\) −0.194410 + 0.194410i −0.0130774 + 0.0130774i
\(222\) −0.655140 + 5.56556i −0.0439701 + 0.373536i
\(223\) 4.76381 + 3.46111i 0.319008 + 0.231773i 0.735752 0.677251i \(-0.236829\pi\)
−0.416744 + 0.909024i \(0.636829\pi\)
\(224\) −28.0037 + 1.18944i −1.87108 + 0.0794728i
\(225\) 3.10319 9.55063i 0.206879 0.636709i
\(226\) −12.5262 + 13.5681i −0.833230 + 0.902533i
\(227\) 2.15594 13.6120i 0.143095 0.903463i −0.806785 0.590846i \(-0.798794\pi\)
0.949879 0.312618i \(-0.101206\pi\)
\(228\) 5.58280 0.446519i 0.369730 0.0295715i
\(229\) −9.16854 + 17.9943i −0.605874 + 1.18910i 0.360694 + 0.932684i \(0.382540\pi\)
−0.966568 + 0.256411i \(0.917460\pi\)
\(230\) 1.76569 0.652672i 0.116426 0.0430359i
\(231\) 12.5633 1.07497i 0.826605 0.0707282i
\(232\) 14.3680 + 8.01048i 0.943303 + 0.525914i
\(233\) −11.2541 + 3.65669i −0.737283 + 0.239558i −0.653500 0.756926i \(-0.726700\pi\)
−0.0837829 + 0.996484i \(0.526700\pi\)
\(234\) 1.63089 5.79680i 0.106614 0.378949i
\(235\) 11.3610 + 1.79941i 0.741111 + 0.117380i
\(236\) −17.4817 7.21512i −1.13796 0.469664i
\(237\) −1.26759 2.48778i −0.0823386 0.161599i
\(238\) 0.213517 + 1.06987i 0.0138402 + 0.0693491i
\(239\) 3.22331 + 2.34187i 0.208499 + 0.151483i 0.687134 0.726531i \(-0.258868\pi\)
−0.478635 + 0.878014i \(0.658868\pi\)
\(240\) 2.76944 0.445859i 0.178766 0.0287801i
\(241\) −15.6761 −1.00979 −0.504893 0.863182i \(-0.668468\pi\)
−0.504893 + 0.863182i \(0.668468\pi\)
\(242\) −15.5341 + 0.832482i −0.998567 + 0.0535140i
\(243\) −11.0040 + 11.0040i −0.705908 + 0.705908i
\(244\) −1.64835 6.82763i −0.105525 0.437094i
\(245\) −2.50932 15.8432i −0.160314 1.01218i
\(246\) 4.17536 + 2.78605i 0.266211 + 0.177632i
\(247\) −6.12947 1.99158i −0.390009 0.126722i
\(248\) −3.50111 0.130871i −0.222320 0.00831032i
\(249\) −3.27175 4.50318i −0.207339 0.285378i
\(250\) −11.4030 3.20815i −0.721188 0.202901i
\(251\) 4.88335 9.58412i 0.308235 0.604944i −0.683978 0.729503i \(-0.739751\pi\)
0.992212 + 0.124559i \(0.0397514\pi\)
\(252\) −15.5417 18.1501i −0.979032 1.14335i
\(253\) −3.69431 3.11194i −0.232259 0.195646i
\(254\) −19.3625 8.91131i −1.21491 0.559145i
\(255\) −0.0337392 0.103838i −0.00211283 0.00650261i
\(256\) 9.47028 + 12.8963i 0.591893 + 0.806017i
\(257\) 23.0164 16.7224i 1.43572 1.04312i 0.446810 0.894629i \(-0.352560\pi\)
0.988914 0.148486i \(-0.0474401\pi\)
\(258\) 8.28086 8.96962i 0.515544 0.558424i
\(259\) −11.6172 22.8000i −0.721857 1.41672i
\(260\) −3.13973 0.749561i −0.194718 0.0464858i
\(261\) 2.19382 + 13.8512i 0.135794 + 0.857370i
\(262\) −8.01695 10.1562i −0.495289 0.627450i
\(263\) 0.755949i 0.0466138i 0.999728 + 0.0233069i \(0.00741949\pi\)
−0.999728 + 0.0233069i \(0.992581\pi\)
\(264\) −4.50527 5.61348i −0.277280 0.345486i
\(265\) 4.35601i 0.267587i
\(266\) −20.0734 + 15.8453i −1.23078 + 0.971537i
\(267\) 0.659385 + 4.16319i 0.0403537 + 0.254783i
\(268\) 16.6488 10.2315i 1.01699 0.624990i
\(269\) 9.79743 + 19.2285i 0.597360 + 1.17238i 0.969702 + 0.244289i \(0.0785545\pi\)
−0.372343 + 0.928095i \(0.621445\pi\)
\(270\) 3.94316 + 3.64037i 0.239973 + 0.221546i
\(271\) 8.80259 6.39545i 0.534719 0.388496i −0.287401 0.957810i \(-0.592791\pi\)
0.822120 + 0.569314i \(0.192791\pi\)
\(272\) 0.439239 0.441479i 0.0266328 0.0267686i
\(273\) −2.07465 6.38510i −0.125563 0.386444i
\(274\) 10.6780 23.2011i 0.645080 1.40163i
\(275\) 3.31598 + 13.4087i 0.199961 + 0.808576i
\(276\) 0.172520 2.22830i 0.0103845 0.134128i
\(277\) −12.2583 + 24.0582i −0.736527 + 1.44552i 0.152807 + 0.988256i \(0.451169\pi\)
−0.889333 + 0.457259i \(0.848831\pi\)
\(278\) 5.01533 17.8264i 0.300799 1.06916i
\(279\) −1.75561 2.41638i −0.105105 0.144665i
\(280\) −9.38912 + 8.71248i −0.561107 + 0.520671i
\(281\) −4.33009 1.40693i −0.258312 0.0839306i 0.176998 0.984211i \(-0.443361\pi\)
−0.435310 + 0.900281i \(0.643361\pi\)
\(282\) 7.58000 11.3599i 0.451382 0.676472i
\(283\) −2.52872 15.9657i −0.150317 0.949062i −0.941385 0.337334i \(-0.890475\pi\)
0.791068 0.611728i \(-0.209525\pi\)
\(284\) 12.8570 + 7.85634i 0.762926 + 0.466188i
\(285\) 1.80976 1.80976i 0.107201 0.107201i
\(286\) 2.30766 + 7.95492i 0.136455 + 0.470384i
\(287\) −22.9203 −1.35294
\(288\) −3.66074 + 13.1398i −0.215711 + 0.774268i
\(289\) 13.7337 + 9.97810i 0.807863 + 0.586947i
\(290\) 7.37201 1.47126i 0.432900 0.0863952i
\(291\) 0.372281 + 0.730642i 0.0218235 + 0.0428310i
\(292\) −9.05078 21.7722i −0.529657 1.27412i
\(293\) −32.9782 5.22324i −1.92661 0.305145i −0.928759 0.370685i \(-0.879123\pi\)
−0.997850 + 0.0655397i \(0.979123\pi\)
\(294\) −18.3327 5.15779i −1.06919 0.300808i
\(295\) −8.21947 + 2.67067i −0.478556 + 0.155492i
\(296\) −7.11308 + 12.7583i −0.413439 + 0.741563i
\(297\) 3.12334 13.4118i 0.181235 0.778231i
\(298\) −1.53633 4.15626i −0.0889970 0.240765i
\(299\) −1.16761 + 2.29156i −0.0675245 + 0.132524i
\(300\) −4.14446 + 4.86505i −0.239280 + 0.280884i
\(301\) −8.72010 + 55.0566i −0.502618 + 3.17341i
\(302\) 10.1519 + 9.37236i 0.584176 + 0.539318i
\(303\) −0.319280 + 0.982642i −0.0183421 + 0.0564513i
\(304\) 13.8954 + 4.47584i 0.796955 + 0.256707i
\(305\) −2.59673 1.88664i −0.148688 0.108029i
\(306\) 0.527273 + 0.0620670i 0.0301422 + 0.00354813i
\(307\) 1.70926 1.70926i 0.0975526 0.0975526i −0.656646 0.754199i \(-0.728025\pi\)
0.754199 + 0.656646i \(0.228025\pi\)
\(308\) 31.3394 + 9.90326i 1.78573 + 0.564290i
\(309\) 7.75379 + 7.75379i 0.441098 + 0.441098i
\(310\) −1.25671 + 0.992004i −0.0713761 + 0.0563420i
\(311\) 3.22059 4.43276i 0.182623 0.251359i −0.707884 0.706329i \(-0.750350\pi\)
0.890507 + 0.454970i \(0.150350\pi\)
\(312\) −2.36689 + 3.01419i −0.133999 + 0.170645i
\(313\) −1.51485 0.492205i −0.0856244 0.0278211i 0.265892 0.964003i \(-0.414334\pi\)
−0.351516 + 0.936182i \(0.614334\pi\)
\(314\) −0.855866 21.4358i −0.0482993 1.20969i
\(315\) −10.7851 1.70820i −0.607673 0.0962460i
\(316\) −0.580236 7.25465i −0.0326408 0.408106i
\(317\) 14.5532 + 7.41522i 0.817389 + 0.416480i 0.812109 0.583506i \(-0.198319\pi\)
0.00527958 + 0.999986i \(0.498319\pi\)
\(318\) 4.69804 + 2.16220i 0.263453 + 0.121250i
\(319\) −12.6272 14.5821i −0.706988 0.816440i
\(320\) 7.11614 + 1.67975i 0.397804 + 0.0939008i
\(321\) −1.25924 3.87553i −0.0702837 0.216311i
\(322\) 4.99221 + 8.90095i 0.278205 + 0.496030i
\(323\) 0.0888879 0.561216i 0.00494586 0.0312269i
\(324\) −7.47578 + 3.10771i −0.415321 + 0.172651i
\(325\) 6.55287 3.33885i 0.363488 0.185206i
\(326\) −6.50112 + 9.74302i −0.360064 + 0.539616i
\(327\) 2.65446 3.65356i 0.146792 0.202042i
\(328\) 7.28969 + 10.8649i 0.402506 + 0.599913i
\(329\) 62.3592i 3.43798i
\(330\) −3.23076 0.617644i −0.177847 0.0340002i
\(331\) 0.827223 + 0.827223i 0.0454683 + 0.0454683i 0.729475 0.684007i \(-0.239764\pi\)
−0.684007 + 0.729475i \(0.739764\pi\)
\(332\) −3.40496 14.1036i −0.186871 0.774037i
\(333\) −12.2995 + 1.94805i −0.674009 + 0.106752i
\(334\) −3.60258 18.0514i −0.197125 0.987730i
\(335\) 2.75954 8.49298i 0.150770 0.464021i
\(336\) 4.73608 + 14.4510i 0.258374 + 0.788366i
\(337\) 12.0386 8.74656i 0.655785 0.476456i −0.209452 0.977819i \(-0.567168\pi\)
0.865237 + 0.501363i \(0.167168\pi\)
\(338\) −12.1885 + 6.83604i −0.662964 + 0.371832i
\(339\) 8.92691 + 4.54849i 0.484843 + 0.247040i
\(340\) 0.0219680 0.283742i 0.00119138 0.0153881i
\(341\) 3.80618 + 1.54626i 0.206116 + 0.0837346i
\(342\) 4.31497 + 11.6734i 0.233327 + 0.631223i
\(343\) 49.7187 16.1546i 2.68456 0.872265i
\(344\) 28.8718 13.3769i 1.55666 0.721235i
\(345\) −0.600326 0.826279i −0.0323205 0.0444853i
\(346\) −1.03932 26.0306i −0.0558742 1.39941i
\(347\) 10.6962 5.44996i 0.574200 0.292569i −0.142677 0.989769i \(-0.545571\pi\)
0.716877 + 0.697200i \(0.245571\pi\)
\(348\) 2.07249 8.68115i 0.111097 0.465359i
\(349\) 11.4077 1.80681i 0.610642 0.0967162i 0.156549 0.987670i \(-0.449963\pi\)
0.454093 + 0.890954i \(0.349963\pi\)
\(350\) 3.41165 28.9827i 0.182360 1.54919i
\(351\) −7.33210 −0.391359
\(352\) −5.27292 18.0055i −0.281047 0.959694i
\(353\) −1.34575 −0.0716273 −0.0358136 0.999358i \(-0.511402\pi\)
−0.0358136 + 0.999358i \(0.511402\pi\)
\(354\) −1.19956 + 10.1905i −0.0637557 + 0.541619i
\(355\) 6.80074 1.07713i 0.360946 0.0571682i
\(356\) −2.55126 + 10.6866i −0.135217 + 0.566390i
\(357\) 0.527395 0.268721i 0.0279127 0.0142222i
\(358\) −0.0954013 2.38940i −0.00504211 0.126284i
\(359\) 10.1340 + 13.9483i 0.534852 + 0.736161i 0.987860 0.155345i \(-0.0496490\pi\)
−0.453008 + 0.891507i \(0.649649\pi\)
\(360\) 2.62043 + 5.65575i 0.138109 + 0.298084i
\(361\) −5.40232 + 1.75532i −0.284333 + 0.0923852i
\(362\) −4.32009 11.6872i −0.227059 0.614267i
\(363\) 2.71736 + 7.99080i 0.142624 + 0.419408i
\(364\) 1.35083 17.4475i 0.0708027 0.914499i
\(365\) −9.60052 4.89171i −0.502514 0.256044i
\(366\) −3.32372 + 1.86415i −0.173734 + 0.0974407i
\(367\) −4.06524 + 2.95357i −0.212204 + 0.154175i −0.688810 0.724942i \(-0.741867\pi\)
0.476606 + 0.879117i \(0.341867\pi\)
\(368\) 2.63156 5.19736i 0.137179 0.270931i
\(369\) −3.44680 + 10.6081i −0.179433 + 0.552238i
\(370\) 1.30643 + 6.54613i 0.0679183 + 0.340317i
\(371\) −23.3245 + 3.69424i −1.21095 + 0.191795i
\(372\) 0.446100 + 1.84779i 0.0231292 + 0.0958032i
\(373\) 6.72963 + 6.72963i 0.348447 + 0.348447i 0.859531 0.511084i \(-0.170756\pi\)
−0.511084 + 0.859531i \(0.670756\pi\)
\(374\) −0.660880 + 0.310663i −0.0341733 + 0.0160640i
\(375\) 6.42695i 0.331886i
\(376\) 29.5601 19.8331i 1.52444 1.02281i
\(377\) −6.03688 + 8.30905i −0.310915 + 0.427938i
\(378\) −16.1485 + 24.2012i −0.830587 + 1.24477i
\(379\) −26.4715 + 13.4879i −1.35975 + 0.692827i −0.973312 0.229488i \(-0.926295\pi\)
−0.386439 + 0.922315i \(0.626295\pi\)
\(380\) 6.16015 2.56080i 0.316009 0.131366i
\(381\) −1.80908 + 11.4221i −0.0926818 + 0.585170i
\(382\) 6.39627 + 11.4043i 0.327261 + 0.583497i
\(383\) 8.06024 + 24.8069i 0.411859 + 1.26757i 0.915030 + 0.403385i \(0.132166\pi\)
−0.503171 + 0.864187i \(0.667834\pi\)
\(384\) 5.34390 6.84111i 0.272705 0.349109i
\(385\) 13.8367 5.84219i 0.705186 0.297745i
\(386\) −17.0625 7.85278i −0.868460 0.399696i
\(387\) 24.1704 + 12.3154i 1.22865 + 0.626028i
\(388\) 0.170411 + 2.13064i 0.00865131 + 0.108167i
\(389\) −11.8194 1.87201i −0.599269 0.0949148i −0.150572 0.988599i \(-0.548112\pi\)
−0.448696 + 0.893684i \(0.648112\pi\)
\(390\) 0.0698703 + 1.74996i 0.00353802 + 0.0886124i
\(391\) −0.215651 0.0700691i −0.0109059 0.00354355i
\(392\) −39.0424 30.6580i −1.97194 1.54846i
\(393\) −4.12635 + 5.67943i −0.208147 + 0.286490i
\(394\) −8.02629 + 6.33570i −0.404359 + 0.319188i
\(395\) −2.35171 2.35171i −0.118328 0.118328i
\(396\) 9.29638 13.0155i 0.467160 0.654052i
\(397\) 2.94726 2.94726i 0.147919 0.147919i −0.629269 0.777188i \(-0.716646\pi\)
0.777188 + 0.629269i \(0.216646\pi\)
\(398\) 28.4807 + 3.35255i 1.42761 + 0.168048i
\(399\) 11.2252 + 8.15562i 0.561965 + 0.408292i
\(400\) −14.8237 + 7.60061i −0.741186 + 0.380031i
\(401\) −1.73743 + 5.34727i −0.0867632 + 0.267030i −0.985020 0.172442i \(-0.944834\pi\)
0.898256 + 0.439472i \(0.144834\pi\)
\(402\) −7.79008 7.19190i −0.388534 0.358699i
\(403\) 0.342189 2.16049i 0.0170456 0.107622i
\(404\) −1.74645 + 2.05010i −0.0868891 + 0.101996i
\(405\) −1.67964 + 3.29647i −0.0834618 + 0.163803i
\(406\) 14.1300 + 38.2261i 0.701259 + 1.89713i
\(407\) 12.9485 11.2126i 0.641832 0.555787i
\(408\) −0.295117 0.164535i −0.0146105 0.00814570i
\(409\) 20.8499 6.77453i 1.03096 0.334979i 0.255790 0.966732i \(-0.417664\pi\)
0.775169 + 0.631753i \(0.217664\pi\)
\(410\) 5.75559 + 1.61929i 0.284248 + 0.0799713i
\(411\) −13.6865 2.16773i −0.675104 0.106926i
\(412\) 10.9716 + 26.3928i 0.540532 + 1.30028i
\(413\) −21.2710 41.7467i −1.04668 2.05422i
\(414\) 4.87034 0.971991i 0.239364 0.0477708i
\(415\) −5.36399 3.89717i −0.263308 0.191305i
\(416\) −8.70026 + 4.90878i −0.426565 + 0.240673i
\(417\) −10.0473 −0.492019
\(418\) −13.5218 10.4973i −0.661374 0.513439i
\(419\) 8.20919 8.20919i 0.401045 0.401045i −0.477556 0.878601i \(-0.658477\pi\)
0.878601 + 0.477556i \(0.158477\pi\)
\(420\) 5.92999 + 3.62354i 0.289354 + 0.176810i
\(421\) 2.52877 + 15.9660i 0.123245 + 0.778136i 0.969452 + 0.245282i \(0.0788806\pi\)
−0.846207 + 0.532854i \(0.821119\pi\)
\(422\) −1.10821 + 1.66084i −0.0539467 + 0.0808482i
\(423\) 28.8616 + 9.37770i 1.40330 + 0.455959i
\(424\) 9.16942 + 9.88154i 0.445306 + 0.479890i
\(425\) 0.381121 + 0.524568i 0.0184871 + 0.0254453i
\(426\) 2.21400 7.86938i 0.107268 0.381273i
\(427\) 7.89987 15.5044i 0.382302 0.750309i
\(428\) 0.819906 10.5900i 0.0396316 0.511889i
\(429\) 3.81561 2.37414i 0.184219 0.114624i
\(430\) 6.07942 13.2094i 0.293176 0.637012i
\(431\) −6.57490 20.2355i −0.316702 0.974708i −0.975048 0.221993i \(-0.928744\pi\)
0.658346 0.752715i \(-0.271256\pi\)
\(432\) 16.6080 0.0422372i 0.799052 0.00203214i
\(433\) −20.4607 + 14.8656i −0.983278 + 0.714393i −0.958439 0.285298i \(-0.907907\pi\)
−0.0248393 + 0.999691i \(0.507907\pi\)
\(434\) −6.37753 5.88781i −0.306131 0.282624i
\(435\) −1.85165 3.63407i −0.0887798 0.174240i
\(436\) 10.0289 6.16330i 0.480300 0.295169i
\(437\) −0.831495 5.24985i −0.0397758 0.251135i
\(438\) −10.0412 + 7.92623i −0.479789 + 0.378730i
\(439\) 29.9377i 1.42885i −0.699712 0.714425i \(-0.746688\pi\)
0.699712 0.714425i \(-0.253312\pi\)
\(440\) −7.17008 4.70093i −0.341820 0.224108i
\(441\) 42.3194i 2.01521i
\(442\) 0.240910 + 0.305194i 0.0114589 + 0.0145166i
\(443\) −3.61479 22.8229i −0.171744 1.08435i −0.911448 0.411415i \(-0.865035\pi\)
0.739705 0.672932i \(-0.234965\pi\)
\(444\) 7.70861 + 1.84031i 0.365834 + 0.0873372i
\(445\) 2.27941 + 4.47359i 0.108054 + 0.212068i
\(446\) 5.64879 6.11863i 0.267478 0.289725i
\(447\) −1.94498 + 1.41311i −0.0919944 + 0.0668379i
\(448\) −2.95927 + 39.5283i −0.139812 + 1.86754i
\(449\) −6.65448 20.4804i −0.314044 0.966529i −0.976146 0.217115i \(-0.930335\pi\)
0.662102 0.749414i \(-0.269665\pi\)
\(450\) −12.9010 5.93749i −0.608158 0.279896i
\(451\) −3.68315 14.8934i −0.173433 0.701304i
\(452\) 16.9856 + 19.8364i 0.798935 + 0.933028i
\(453\) 3.40327 6.67930i 0.159900 0.313821i
\(454\) −18.7619 5.27853i −0.880540 0.247734i
\(455\) −4.70055 6.46975i −0.220365 0.303307i
\(456\) 0.295860 7.91495i 0.0138549 0.370652i
\(457\) 23.5378 + 7.64790i 1.10105 + 0.357754i 0.802508 0.596642i \(-0.203499\pi\)
0.298545 + 0.954396i \(0.403499\pi\)
\(458\) 23.7574 + 15.8524i 1.11011 + 0.740732i
\(459\) −0.101124 0.638472i −0.00472007 0.0298013i
\(460\) −0.624767 2.58784i −0.0291299 0.120659i
\(461\) 20.8118 20.8118i 0.969301 0.969301i −0.0302411 0.999543i \(-0.509628\pi\)
0.999543 + 0.0302411i \(0.00962752\pi\)
\(462\) 0.567272 17.8231i 0.0263919 0.829205i
\(463\) 0.440353 0.0204650 0.0102325 0.999948i \(-0.496743\pi\)
0.0102325 + 0.999948i \(0.496743\pi\)
\(464\) 13.6263 18.8557i 0.632586 0.875352i
\(465\) 0.702763 + 0.510588i 0.0325899 + 0.0236779i
\(466\) 3.27524 + 16.4112i 0.151722 + 0.760234i
\(467\) −16.1940 31.7825i −0.749369 1.47072i −0.877814 0.479002i \(-0.840999\pi\)
0.128445 0.991717i \(-0.459001\pi\)
\(468\) −7.87206 3.24899i −0.363886 0.150185i
\(469\) 47.8164 + 7.57338i 2.20796 + 0.349706i
\(470\) 4.40562 15.6592i 0.203216 0.722307i
\(471\) −11.0697 + 3.59678i −0.510067 + 0.165731i
\(472\) −13.0240 + 23.3604i −0.599478 + 1.07525i
\(473\) −37.1766 + 3.18100i −1.70938 + 0.146263i
\(474\) −3.70370 + 1.36904i −0.170116 + 0.0628822i
\(475\) −6.90040 + 13.5428i −0.316612 + 0.621386i
\(476\) 1.53795 0.123007i 0.0704916 0.00563801i
\(477\) −1.79778 + 11.3508i −0.0823149 + 0.519716i
\(478\) 3.82211 4.14001i 0.174819 0.189360i
\(479\) −4.41542 + 13.5893i −0.201746 + 0.620909i 0.798086 + 0.602544i \(0.205846\pi\)
−0.999831 + 0.0183654i \(0.994154\pi\)
\(480\) −0.168345 3.96343i −0.00768384 0.180905i
\(481\) −7.37819 5.36057i −0.336417 0.244421i
\(482\) −2.59173 + 22.0173i −0.118050 + 1.00286i
\(483\) 3.91523 3.91523i 0.178149 0.178149i
\(484\) −1.39901 + 21.9555i −0.0635915 + 0.997976i
\(485\) 0.690681 + 0.690681i 0.0313622 + 0.0313622i
\(486\) 13.6360 + 17.2746i 0.618543 + 0.783592i
\(487\) −17.1475 + 23.6015i −0.777026 + 1.06948i 0.218578 + 0.975819i \(0.429858\pi\)
−0.995604 + 0.0936648i \(0.970142\pi\)
\(488\) −9.86204 + 1.18633i −0.446433 + 0.0537025i
\(489\) 6.04386 + 1.96377i 0.273313 + 0.0888046i
\(490\) −22.6669 + 0.905019i −1.02399 + 0.0408846i
\(491\) −7.59480 1.20290i −0.342748 0.0542860i −0.0173125 0.999850i \(-0.505511\pi\)
−0.325436 + 0.945564i \(0.605511\pi\)
\(492\) 4.60336 5.40374i 0.207535 0.243619i
\(493\) −0.806805 0.411087i −0.0363367 0.0185144i
\(494\) −3.81060 + 8.27967i −0.171447 + 0.372520i
\(495\) −0.623132 7.28259i −0.0280077 0.327328i
\(496\) −0.762648 + 4.89572i −0.0342439 + 0.219824i
\(497\) 11.5351 + 35.5014i 0.517421 + 1.59246i
\(498\) −6.86571 + 3.85072i −0.307660 + 0.172555i
\(499\) −0.122328 + 0.772350i −0.00547617 + 0.0345752i −0.990275 0.139123i \(-0.955572\pi\)
0.984799 + 0.173698i \(0.0555717\pi\)
\(500\) −6.39116 + 15.4853i −0.285821 + 0.692523i
\(501\) −8.89853 + 4.53403i −0.397557 + 0.202565i
\(502\) −12.6537 8.44329i −0.564762 0.376843i
\(503\) −22.7995 + 31.3808i −1.01658 + 1.39920i −0.102003 + 0.994784i \(0.532525\pi\)
−0.914575 + 0.404416i \(0.867475\pi\)
\(504\) −28.0617 + 18.8277i −1.24997 + 0.838654i
\(505\) 1.23072i 0.0547661i
\(506\) −4.98155 + 4.67423i −0.221457 + 0.207795i
\(507\) 5.36129 + 5.36129i 0.238103 + 0.238103i
\(508\) −15.7173 + 25.7216i −0.697341 + 1.14121i
\(509\) 19.8488 3.14375i 0.879784 0.139344i 0.299829 0.953993i \(-0.403070\pi\)
0.579955 + 0.814649i \(0.303070\pi\)
\(510\) −0.151421 + 0.0302196i −0.00670503 + 0.00133815i
\(511\) 18.0509 55.5551i 0.798527 2.45761i
\(512\) 19.6787 11.1690i 0.869686 0.493606i
\(513\) 12.2592 8.90685i 0.541258 0.393247i
\(514\) −19.6816 35.0917i −0.868118 1.54783i
\(515\) 11.6380 + 5.92986i 0.512832 + 0.261301i
\(516\) −11.2289 13.1135i −0.494325 0.577292i
\(517\) −40.5205 + 10.0208i −1.78209 + 0.440712i
\(518\) −33.9437 + 12.5470i −1.49140 + 0.551284i
\(519\) −13.4425 + 4.36774i −0.590061 + 0.191722i
\(520\) −1.57186 + 4.28587i −0.0689307 + 0.187948i
\(521\) −6.89789 9.49414i −0.302202 0.415946i 0.630727 0.776004i \(-0.282757\pi\)
−0.932930 + 0.360059i \(0.882757\pi\)
\(522\) 19.8170 0.791231i 0.867367 0.0346313i
\(523\) −2.11358 + 1.07692i −0.0924204 + 0.0470905i −0.499590 0.866262i \(-0.666516\pi\)
0.407169 + 0.913353i \(0.366516\pi\)
\(524\) −15.5899 + 9.58082i −0.681050 + 0.418540i
\(525\) −15.6384 + 2.47688i −0.682516 + 0.108100i
\(526\) 1.06174 + 0.124981i 0.0462942 + 0.00544943i
\(527\) 0.192853 0.00840082
\(528\) −8.62908 + 5.39965i −0.375533 + 0.234990i
\(529\) 20.8789 0.907778
\(530\) 6.11808 + 0.720179i 0.265753 + 0.0312826i
\(531\) −22.5203 + 3.56687i −0.977298 + 0.154789i
\(532\) 18.9362 + 30.8131i 0.820990 + 1.33592i
\(533\) −7.27845 + 3.70855i −0.315265 + 0.160635i
\(534\) 5.95629 0.237816i 0.257754 0.0102913i
\(535\) −2.85307 3.92691i −0.123349 0.169775i
\(536\) −11.6178 25.0750i −0.501812 1.08308i
\(537\) −1.23392 + 0.400924i −0.0532474 + 0.0173011i
\(538\) 28.6266 10.5816i 1.23418 0.456205i
\(539\) 30.7518 + 49.4229i 1.32457 + 2.12880i
\(540\) 5.76488 4.93636i 0.248081 0.212427i
\(541\) −36.2126 18.4513i −1.55690 0.793281i −0.557581 0.830122i \(-0.688271\pi\)
−0.999321 + 0.0368409i \(0.988271\pi\)
\(542\) −7.52719 13.4207i −0.323320 0.576470i
\(543\) −5.46920 + 3.97361i −0.234706 + 0.170524i
\(544\) −0.547445 0.689909i −0.0234715 0.0295796i
\(545\) 1.66230 5.11603i 0.0712051 0.219147i
\(546\) −9.31098 + 1.85822i −0.398473 + 0.0795246i
\(547\) −21.1072 + 3.34305i −0.902478 + 0.142939i −0.590393 0.807116i \(-0.701027\pi\)
−0.312085 + 0.950054i \(0.601027\pi\)
\(548\) −30.8209 18.8332i −1.31661 0.804516i
\(549\) −5.98786 5.98786i −0.255555 0.255555i
\(550\) 19.3810 2.44049i 0.826408 0.104063i
\(551\) 21.2261i 0.904263i
\(552\) −3.10115 0.610711i −0.131994 0.0259936i
\(553\) 10.5979 14.5868i 0.450670 0.620295i
\(554\) 31.7634 + 21.1945i 1.34950 + 0.900466i
\(555\) 3.22695 1.64421i 0.136976 0.0697929i
\(556\) −24.2083 9.99134i −1.02666 0.423727i
\(557\) 1.06730 6.73866i 0.0452229 0.285526i −0.954705 0.297555i \(-0.903829\pi\)
0.999928 + 0.0120285i \(0.00382889\pi\)
\(558\) −3.68411 + 2.06628i −0.155961 + 0.0874725i
\(559\) 6.13917 + 18.8944i 0.259659 + 0.799148i
\(560\) 10.6845 + 14.6276i 0.451503 + 0.618129i
\(561\) 0.259362 + 0.299515i 0.0109503 + 0.0126456i
\(562\) −2.69195 + 5.84908i −0.113553 + 0.246728i
\(563\) 28.3727 + 14.4566i 1.19577 + 0.609274i 0.934490 0.355990i \(-0.115856\pi\)
0.261278 + 0.965264i \(0.415856\pi\)
\(564\) −14.7020 12.5244i −0.619064 0.527371i
\(565\) 11.7872 + 1.86690i 0.495889 + 0.0785411i
\(566\) −22.8422 + 0.912017i −0.960128 + 0.0383349i
\(567\) −19.0756 6.19804i −0.801100 0.260293i
\(568\) 13.1600 16.7590i 0.552182 0.703194i
\(569\) 0.509127 0.700753i 0.0213437 0.0293771i −0.798212 0.602377i \(-0.794220\pi\)
0.819555 + 0.573000i \(0.194220\pi\)
\(570\) −2.24262 2.84104i −0.0939332 0.118998i
\(571\) −10.3074 10.3074i −0.431351 0.431351i 0.457737 0.889088i \(-0.348660\pi\)
−0.889088 + 0.457737i \(0.848660\pi\)
\(572\) 11.5543 1.92595i 0.483111 0.0805282i
\(573\) 5.01639 5.01639i 0.209563 0.209563i
\(574\) −3.78941 + 32.1919i −0.158167 + 1.34366i
\(575\) 4.90704 + 3.56517i 0.204638 + 0.148678i
\(576\) 17.8498 + 7.31397i 0.743741 + 0.304749i
\(577\) −5.32393 + 16.3854i −0.221638 + 0.682132i 0.776977 + 0.629529i \(0.216752\pi\)
−0.998615 + 0.0526035i \(0.983248\pi\)
\(578\) 16.2850 17.6395i 0.677367 0.733706i
\(579\) −1.59419 + 10.0653i −0.0662521 + 0.418299i
\(580\) −0.847590 10.5974i −0.0351943 0.440031i
\(581\) 16.3185 32.0269i 0.677007 1.32870i
\(582\) 1.08775 0.402077i 0.0450886 0.0166666i
\(583\) −6.14859 14.5624i −0.254649 0.603114i
\(584\) −32.0757 + 9.11238i −1.32730 + 0.377073i
\(585\) −3.70126 + 1.20261i −0.153028 + 0.0497219i
\(586\) −12.7884 + 45.4549i −0.528285 + 1.87772i
\(587\) 35.7957 + 5.66949i 1.47745 + 0.234005i 0.842561 0.538601i \(-0.181047\pi\)
0.634887 + 0.772605i \(0.281047\pi\)
\(588\) −10.2751 + 24.8959i −0.423740 + 1.02669i
\(589\) 2.05238 + 4.02801i 0.0845667 + 0.165971i
\(590\) 2.39207 + 11.9859i 0.0984800 + 0.493453i
\(591\) 4.48839 + 3.26100i 0.184628 + 0.134140i
\(592\) 16.7433 + 12.0998i 0.688145 + 0.497297i
\(593\) −25.0312 −1.02791 −0.513953 0.857818i \(-0.671820\pi\)
−0.513953 + 0.857818i \(0.671820\pi\)
\(594\) −18.3207 6.60416i −0.751707 0.270972i
\(595\) 0.498550 0.498550i 0.0204386 0.0204386i
\(596\) −6.09153 + 1.47064i −0.249519 + 0.0602398i
\(597\) −2.43397 15.3675i −0.0996158 0.628949i
\(598\) 3.02549 + 2.01879i 0.123722 + 0.0825544i
\(599\) −11.1196 3.61297i −0.454334 0.147622i 0.0729053 0.997339i \(-0.476773\pi\)
−0.527239 + 0.849717i \(0.676773\pi\)
\(600\) 6.14784 + 6.62530i 0.250984 + 0.270477i
\(601\) −18.0901 24.8988i −0.737909 1.01564i −0.998736 0.0502588i \(-0.983995\pi\)
0.260828 0.965385i \(-0.416005\pi\)
\(602\) 75.8862 + 21.3500i 3.09289 + 0.870162i
\(603\) 10.6959 20.9919i 0.435570 0.854855i
\(604\) 14.8420 12.7090i 0.603914 0.517121i
\(605\) 6.01969 + 8.05220i 0.244735 + 0.327369i
\(606\) 1.32735 + 0.610894i 0.0539199 + 0.0248159i
\(607\) 7.25282 + 22.3219i 0.294383 + 0.906017i 0.983428 + 0.181299i \(0.0580301\pi\)
−0.689045 + 0.724718i \(0.741970\pi\)
\(608\) 8.58372 18.7763i 0.348116 0.761479i
\(609\) 17.8885 12.9967i 0.724877 0.526654i
\(610\) −3.07913 + 3.33524i −0.124670 + 0.135040i
\(611\) 10.0899 + 19.8025i 0.408192 + 0.801122i
\(612\) 0.174348 0.730302i 0.00704760 0.0295207i
\(613\) −6.81406 43.0223i −0.275217 1.73765i −0.607362 0.794425i \(-0.707772\pi\)
0.332145 0.943228i \(-0.392228\pi\)
\(614\) −2.11809 2.68328i −0.0854792 0.108288i
\(615\) 3.24397i 0.130809i
\(616\) 19.0906 42.3794i 0.769183 1.70751i
\(617\) 23.0041i 0.926110i 0.886330 + 0.463055i \(0.153247\pi\)
−0.886330 + 0.463055i \(0.846753\pi\)
\(618\) 12.1723 9.60839i 0.489640 0.386506i
\(619\) −3.20617 20.2430i −0.128867 0.813633i −0.964449 0.264268i \(-0.914870\pi\)
0.835582 0.549365i \(-0.185130\pi\)
\(620\) 1.18551 + 1.92907i 0.0476114 + 0.0774734i
\(621\) −2.74528 5.38791i −0.110164 0.216209i
\(622\) −5.69342 5.25623i −0.228285 0.210756i
\(623\) −22.0210 + 15.9992i −0.882251 + 0.640993i
\(624\) 3.84217 + 3.82267i 0.153810 + 0.153029i
\(625\) −4.06909 12.5234i −0.162764 0.500935i
\(626\) −0.941760 + 2.04626i −0.0376403 + 0.0817849i
\(627\) −3.49563 + 8.60464i −0.139602 + 0.343636i
\(628\) −30.2485 2.34191i −1.20705 0.0934523i
\(629\) 0.365034 0.716419i 0.0145548 0.0285655i
\(630\) −4.18229 + 14.8655i −0.166627 + 0.592255i
\(631\) −12.4004 17.0677i −0.493651 0.679452i 0.487405 0.873176i \(-0.337944\pi\)
−0.981056 + 0.193724i \(0.937944\pi\)
\(632\) −10.2852 0.384460i −0.409123 0.0152930i
\(633\) 1.03026 + 0.334752i 0.0409492 + 0.0133052i
\(634\) 12.8209 19.2142i 0.509182 0.763095i
\(635\) 2.15489 + 13.6055i 0.0855143 + 0.539916i
\(636\) 3.81358 6.24099i 0.151218 0.247471i
\(637\) 21.9154 21.9154i 0.868319 0.868319i
\(638\) −22.5684 + 15.3243i −0.893493 + 0.606693i
\(639\) 18.1657 0.718625
\(640\) 3.53575 9.71702i 0.139763 0.384099i
\(641\) 27.9740 + 20.3243i 1.10491 + 0.802763i 0.981854 0.189637i \(-0.0607311\pi\)
0.123054 + 0.992400i \(0.460731\pi\)
\(642\) −5.65144 + 1.12788i −0.223044 + 0.0445137i
\(643\) 13.9332 + 27.3455i 0.549473 + 1.07840i 0.984071 + 0.177777i \(0.0568907\pi\)
−0.434597 + 0.900625i \(0.643109\pi\)
\(644\) 13.3269 5.54004i 0.525153 0.218308i
\(645\) −7.79229 1.23418i −0.306821 0.0485957i
\(646\) −0.773542 0.217630i −0.0304346 0.00856256i
\(647\) −18.6735 + 6.06739i −0.734132 + 0.238534i −0.652139 0.758099i \(-0.726128\pi\)
−0.0819923 + 0.996633i \(0.526128\pi\)
\(648\) 3.12886 + 11.0137i 0.122913 + 0.432657i
\(649\) 23.7086 20.5302i 0.930642 0.805880i
\(650\) −3.60609 9.75562i −0.141442 0.382647i
\(651\) −2.13797 + 4.19600i −0.0837937 + 0.164454i
\(652\) 12.6094 + 10.7417i 0.493822 + 0.420679i
\(653\) −6.43017 + 40.5985i −0.251632 + 1.58874i 0.461128 + 0.887334i \(0.347445\pi\)
−0.712760 + 0.701408i \(0.752555\pi\)
\(654\) −4.69262 4.33228i −0.183496 0.169406i
\(655\) −2.58404 + 7.95284i −0.100967 + 0.310743i
\(656\) 16.4651 8.44220i 0.642854 0.329613i
\(657\) −22.9979 16.7090i −0.897234 0.651878i
\(658\) 87.5846 + 10.3099i 3.41440 + 0.401920i
\(659\) 14.3538 14.3538i 0.559145 0.559145i −0.369919 0.929064i \(-0.620615\pi\)
0.929064 + 0.369919i \(0.120615\pi\)
\(660\) −1.40163 + 4.43554i −0.0545585 + 0.172653i
\(661\) −7.21357 7.21357i −0.280575 0.280575i 0.552763 0.833338i \(-0.313573\pi\)
−0.833338 + 0.552763i \(0.813573\pi\)
\(662\) 1.29861 1.02508i 0.0504720 0.0398410i
\(663\) 0.123997 0.170668i 0.00481565 0.00662818i
\(664\) −20.3717 + 2.45056i −0.790576 + 0.0951002i
\(665\) 15.7186 + 5.10728i 0.609540 + 0.198052i
\(666\) 0.702591 + 17.5969i 0.0272248 + 0.681867i
\(667\) −8.36613 1.32506i −0.323938 0.0513067i
\(668\) −25.9491 + 2.07545i −1.00400 + 0.0803014i
\(669\) −4.02566 2.05118i −0.155641 0.0793031i
\(670\) −11.4723 5.27996i −0.443213 0.203983i
\(671\) 11.3441 + 2.64182i 0.437933 + 0.101986i
\(672\) 21.0797 4.26271i 0.813166 0.164438i
\(673\) −8.01187 24.6580i −0.308835 0.950497i −0.978218 0.207579i \(-0.933442\pi\)
0.669383 0.742917i \(-0.266558\pi\)
\(674\) −10.2943 18.3545i −0.396523 0.706989i
\(675\) −2.70503 + 17.0789i −0.104117 + 0.657366i
\(676\) 7.58622 + 18.2491i 0.291778 + 0.701888i
\(677\) 1.10763 0.564364i 0.0425695 0.0216903i −0.432576 0.901597i \(-0.642395\pi\)
0.475146 + 0.879907i \(0.342395\pi\)
\(678\) 7.86431 11.7860i 0.302027 0.452638i
\(679\) −3.11254 + 4.28404i −0.119448 + 0.164406i
\(680\) −0.394889 0.0777656i −0.0151433 0.00298217i
\(681\) 10.5746i 0.405219i
\(682\) 2.80102 5.09020i 0.107257 0.194914i
\(683\) 17.8034 + 17.8034i 0.681229 + 0.681229i 0.960277 0.279048i \(-0.0900188\pi\)
−0.279048 + 0.960277i \(0.590019\pi\)
\(684\) 17.1088 4.13048i 0.654172 0.157933i
\(685\) −16.3027 + 2.58210i −0.622896 + 0.0986570i
\(686\) −14.4694 72.5015i −0.552443 2.76812i
\(687\) 4.78846 14.7374i 0.182691 0.562265i
\(688\) −14.0147 42.7625i −0.534306 1.63031i
\(689\) −6.80907 + 4.94708i −0.259405 + 0.188469i
\(690\) −1.25977 + 0.706560i −0.0479588 + 0.0268983i
\(691\) −3.53599 1.80168i −0.134516 0.0685391i 0.385437 0.922734i \(-0.374051\pi\)
−0.519953 + 0.854195i \(0.674051\pi\)
\(692\) −36.7322 2.84389i −1.39635 0.108109i
\(693\) 38.4666 9.51280i 1.46122 0.361361i
\(694\) −5.88616 15.9240i −0.223436 0.604465i
\(695\) −11.3822 + 3.69829i −0.431750 + 0.140284i
\(696\) −11.8502 4.34610i −0.449180 0.164738i
\(697\) −0.423322 0.582652i −0.0160345 0.0220695i
\(698\) −0.651649 16.3211i −0.0246653 0.617761i
\(699\) 8.08997 4.12204i 0.305991 0.155910i
\(700\) −40.1427 9.58344i −1.51725 0.362220i
\(701\) 28.2553 4.47521i 1.06719 0.169026i 0.401954 0.915660i \(-0.368331\pi\)
0.665235 + 0.746634i \(0.268331\pi\)
\(702\) −1.21222 + 10.2981i −0.0457522 + 0.388675i
\(703\) 18.8482 0.710872
\(704\) −26.1607 + 4.42905i −0.985969 + 0.166926i
\(705\) −8.82586 −0.332401
\(706\) −0.222494 + 1.89013i −0.00837366 + 0.0711361i
\(707\) −6.58993 + 1.04374i −0.247840 + 0.0392540i
\(708\) 14.1144 + 3.36959i 0.530452 + 0.126637i
\(709\) 22.5242 11.4766i 0.845913 0.431014i 0.0233764 0.999727i \(-0.492558\pi\)
0.822536 + 0.568713i \(0.192558\pi\)
\(710\) −0.388482 9.72983i −0.0145795 0.365154i
\(711\) −5.15745 7.09862i −0.193419 0.266219i
\(712\) 14.5877 + 5.35011i 0.546698 + 0.200504i
\(713\) 1.71574 0.557476i 0.0642548 0.0208777i
\(714\) −0.290229 0.785163i −0.0108616 0.0293840i
\(715\) 3.44865 4.09403i 0.128972 0.153108i
\(716\) −3.37172 0.261047i −0.126007 0.00975577i
\(717\) −2.72386 1.38788i −0.101725 0.0518313i
\(718\) 21.2660 11.9273i 0.793641 0.445123i
\(719\) −21.1648 + 15.3771i −0.789315 + 0.573471i −0.907760 0.419490i \(-0.862209\pi\)
0.118445 + 0.992961i \(0.462209\pi\)
\(720\) 8.37682 2.74537i 0.312186 0.102314i
\(721\) −21.8818 + 67.3453i −0.814922 + 2.50807i
\(722\) 1.57221 + 7.87785i 0.0585116 + 0.293183i
\(723\) 11.8800 1.88161i 0.441823 0.0699778i
\(724\) −17.1291 + 4.13538i −0.636599 + 0.153690i
\(725\) 17.1273 + 17.1273i 0.636093 + 0.636093i
\(726\) 11.6725 2.49545i 0.433206 0.0926150i
\(727\) 35.7446i 1.32569i 0.748755 + 0.662847i \(0.230652\pi\)
−0.748755 + 0.662847i \(0.769348\pi\)
\(728\) −24.2820 4.78186i −0.899951 0.177228i
\(729\) −0.119556 + 0.164555i −0.00442799 + 0.00609461i
\(730\) −8.45774 + 12.6753i −0.313035 + 0.469135i
\(731\) −1.56064 + 0.795184i −0.0577222 + 0.0294109i
\(732\) 2.06872 + 4.97642i 0.0764621 + 0.183934i
\(733\) −2.07549 + 13.1041i −0.0766599 + 0.484012i 0.919251 + 0.393672i \(0.128795\pi\)
−0.995911 + 0.0903399i \(0.971205\pi\)
\(734\) 3.47623 + 6.19801i 0.128310 + 0.228773i
\(735\) 3.80334 + 11.7055i 0.140288 + 0.431763i
\(736\) −6.86470 4.55535i −0.253036 0.167912i
\(737\) 2.76269 + 32.2877i 0.101765 + 1.18933i
\(738\) 14.3295 + 6.59493i 0.527475 + 0.242763i
\(739\) −41.1979 20.9914i −1.51549 0.772180i −0.518910 0.854829i \(-0.673662\pi\)
−0.996579 + 0.0826486i \(0.973662\pi\)
\(740\) 9.41014 0.752636i 0.345924 0.0276674i
\(741\) 4.88423 + 0.773586i 0.179427 + 0.0284184i
\(742\) 1.33238 + 33.3704i 0.0489131 + 1.22507i
\(743\) 3.11495 + 1.01211i 0.114277 + 0.0371307i 0.365597 0.930773i \(-0.380865\pi\)
−0.251321 + 0.967904i \(0.580865\pi\)
\(744\) 2.66900 0.321060i 0.0978503 0.0117706i
\(745\) −1.68324 + 2.31678i −0.0616690 + 0.0848801i
\(746\) 10.5645 8.33927i 0.386794 0.305322i
\(747\) −12.3689 12.3689i −0.452556 0.452556i
\(748\) 0.327067 + 0.979578i 0.0119588 + 0.0358169i
\(749\) 18.6072 18.6072i 0.679894 0.679894i
\(750\) 9.02676 + 1.06257i 0.329611 + 0.0387995i
\(751\) −2.61257 1.89815i −0.0953341 0.0692643i 0.539097 0.842244i \(-0.318766\pi\)
−0.634431 + 0.772979i \(0.718766\pi\)
\(752\) −22.9687 44.7966i −0.837582 1.63356i
\(753\) −2.55043 + 7.84942i −0.0929429 + 0.286049i
\(754\) 10.6721 + 9.85263i 0.388656 + 0.358811i
\(755\) 1.39685 8.81939i 0.0508367 0.320971i
\(756\) 31.3211 + 26.6819i 1.13914 + 0.970413i
\(757\) −0.499826 + 0.980963i −0.0181665 + 0.0356537i −0.899911 0.436073i \(-0.856369\pi\)
0.881745 + 0.471726i \(0.156369\pi\)
\(758\) 14.5675 + 39.4096i 0.529114 + 1.43142i
\(759\) 3.17324 + 1.91493i 0.115181 + 0.0695076i
\(760\) −2.57823 9.07541i −0.0935221 0.329200i
\(761\) 26.4664 8.59944i 0.959405 0.311729i 0.212873 0.977080i \(-0.431718\pi\)
0.746531 + 0.665350i \(0.231718\pi\)
\(762\) 15.7434 + 4.42929i 0.570322 + 0.160456i
\(763\) 28.8038 + 4.56208i 1.04277 + 0.165158i
\(764\) 17.0751 7.09818i 0.617755 0.256803i
\(765\) −0.155770 0.305716i −0.00563188 0.0110532i
\(766\) 36.1742 7.21942i 1.30703 0.260848i
\(767\)