Properties

Label 176.2.w.a.5.13
Level $176$
Weight $2$
Character 176.5
Analytic conductor $1.405$
Analytic rank $0$
Dimension $176$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,2,Mod(5,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 5, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 176.w (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40536707557\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 5.13
Character \(\chi\) \(=\) 176.5
Dual form 176.2.w.a.141.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0542058 - 1.41317i) q^{2} +(-3.21042 + 0.508480i) q^{3} +(-1.99412 - 0.153205i) q^{4} +(0.266677 - 0.135879i) q^{5} +(0.544548 + 4.56444i) q^{6} +(1.68453 + 2.31856i) q^{7} +(-0.324598 + 2.80974i) q^{8} +(7.19505 - 2.33782i) q^{9} +O(q^{10})\) \(q+(0.0542058 - 1.41317i) q^{2} +(-3.21042 + 0.508480i) q^{3} +(-1.99412 - 0.153205i) q^{4} +(0.266677 - 0.135879i) q^{5} +(0.544548 + 4.56444i) q^{6} +(1.68453 + 2.31856i) q^{7} +(-0.324598 + 2.80974i) q^{8} +(7.19505 - 2.33782i) q^{9} +(-0.177565 - 0.384227i) q^{10} +(-0.965746 + 3.17291i) q^{11} +(6.47987 - 0.522122i) q^{12} +(-1.27295 - 0.648603i) q^{13} +(3.36784 - 2.25486i) q^{14} +(-0.787054 + 0.571828i) q^{15} +(3.95306 + 0.611017i) q^{16} +(-1.58848 + 4.88884i) q^{17} +(-2.91373 - 10.2946i) q^{18} +(0.699681 - 0.110819i) q^{19} +(-0.552605 + 0.230103i) q^{20} +(-6.58699 - 6.58699i) q^{21} +(4.43152 + 1.53676i) q^{22} +4.88643i q^{23} +(-0.386602 - 9.18549i) q^{24} +(-2.88627 + 3.97261i) q^{25} +(-0.985590 + 1.76375i) q^{26} +(-13.2219 + 6.73690i) q^{27} +(-3.00395 - 4.88157i) q^{28} +(-0.480270 + 3.03230i) q^{29} +(0.765430 + 1.14324i) q^{30} +(-2.51034 - 7.72603i) q^{31} +(1.07775 - 5.55324i) q^{32} +(1.48709 - 10.6774i) q^{33} +(6.82267 + 2.50980i) q^{34} +(0.764269 + 0.389415i) q^{35} +(-14.7060 + 3.55958i) q^{36} +(8.02335 + 1.27077i) q^{37} +(-0.118679 - 0.994779i) q^{38} +(4.41652 + 1.43501i) q^{39} +(0.295221 + 0.793400i) q^{40} +(1.10990 - 1.52764i) q^{41} +(-9.66561 + 8.95151i) q^{42} +(-0.345954 - 0.345954i) q^{43} +(2.41192 - 6.17921i) q^{44} +(1.60110 - 1.60110i) q^{45} +(6.90538 + 0.264873i) q^{46} +(-2.22418 - 1.61596i) q^{47} +(-13.0017 + 0.0484298i) q^{48} +(-0.374946 + 1.15397i) q^{49} +(5.45754 + 4.29414i) q^{50} +(2.61380 - 16.5029i) q^{51} +(2.43906 + 1.48842i) q^{52} +(-5.62841 + 11.0464i) q^{53} +(8.80371 + 19.0501i) q^{54} +(0.173589 + 0.977367i) q^{55} +(-7.06134 + 3.98049i) q^{56} +(-2.18992 + 0.711548i) q^{57} +(4.25914 + 0.843074i) q^{58} +(3.35970 + 0.532124i) q^{59} +(1.65709 - 1.01972i) q^{60} +(0.568820 + 1.11637i) q^{61} +(-11.0543 + 3.12875i) q^{62} +(17.5406 + 12.7440i) q^{63} +(-7.78927 - 1.82407i) q^{64} -0.427600 q^{65} +(-15.0084 - 2.68029i) q^{66} +(3.22014 - 3.22014i) q^{67} +(3.91662 - 9.50558i) q^{68} +(-2.48465 - 15.6875i) q^{69} +(0.591739 - 1.05894i) q^{70} +(-0.457640 - 0.148696i) q^{71} +(4.23315 + 20.9751i) q^{72} +(2.24695 + 3.09266i) q^{73} +(2.23074 - 11.2695i) q^{74} +(7.24614 - 14.2214i) q^{75} +(-1.41223 + 0.113792i) q^{76} +(-8.98339 + 3.10572i) q^{77} +(2.26732 - 6.16352i) q^{78} +(2.25586 + 6.94282i) q^{79} +(1.13722 - 0.374193i) q^{80} +(20.6608 - 15.0110i) q^{81} +(-2.09866 - 1.65129i) q^{82} +(-5.21747 - 10.2399i) q^{83} +(12.1261 + 14.1444i) q^{84} +(0.240678 + 1.51958i) q^{85} +(-0.507646 + 0.470141i) q^{86} -9.97917i q^{87} +(-8.60156 - 3.74341i) q^{88} -11.5495i q^{89} +(-2.17584 - 2.34942i) q^{90} +(-0.640508 - 4.04401i) q^{91} +(0.748624 - 9.74415i) q^{92} +(11.9878 + 23.5273i) q^{93} +(-2.40420 + 3.05556i) q^{94} +(0.171531 - 0.124625i) q^{95} +(-0.636325 + 18.3762i) q^{96} +(-1.14058 - 3.51035i) q^{97} +(1.61043 + 0.592416i) q^{98} +(0.469074 + 25.0870i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8} - 16 q^{10} - 12 q^{11} - 6 q^{13} - 12 q^{15} + 14 q^{16} - 12 q^{17} - 44 q^{18} - 6 q^{19} + 2 q^{20} - 28 q^{21} + 50 q^{22} - 38 q^{24} - 68 q^{26} - 18 q^{27} - 46 q^{28} - 22 q^{29} + 26 q^{30} - 12 q^{31} - 16 q^{32} - 16 q^{33} + 12 q^{34} - 26 q^{35} - 22 q^{36} + 18 q^{37} - 34 q^{38} + 14 q^{40} - 10 q^{42} - 40 q^{43} + 2 q^{44} - 24 q^{45} + 38 q^{46} - 12 q^{47} - 26 q^{48} + 8 q^{49} - 62 q^{50} + 6 q^{51} + 74 q^{52} - 30 q^{53} - 52 q^{54} - 96 q^{56} - 26 q^{58} + 10 q^{59} + 118 q^{60} - 6 q^{61} - 42 q^{62} - 28 q^{63} - 106 q^{64} - 32 q^{65} + 6 q^{66} + 24 q^{67} + 116 q^{68} + 12 q^{69} + 52 q^{70} - 98 q^{72} + 96 q^{74} - 46 q^{75} + 112 q^{76} - 14 q^{77} + 44 q^{78} - 52 q^{79} - 28 q^{80} + 66 q^{82} + 54 q^{83} + 120 q^{84} + 14 q^{85} + 86 q^{86} + 142 q^{88} + 228 q^{90} - 122 q^{91} + 146 q^{92} + 6 q^{93} + 56 q^{94} + 52 q^{95} + 86 q^{96} - 12 q^{97} + 140 q^{98} + 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0542058 1.41317i 0.0383293 0.999265i
\(3\) −3.21042 + 0.508480i −1.85354 + 0.293571i −0.980858 0.194726i \(-0.937618\pi\)
−0.872677 + 0.488297i \(0.837618\pi\)
\(4\) −1.99412 0.153205i −0.997062 0.0766023i
\(5\) 0.266677 0.135879i 0.119262 0.0607669i −0.393342 0.919392i \(-0.628681\pi\)
0.512604 + 0.858625i \(0.328681\pi\)
\(6\) 0.544548 + 4.56444i 0.222311 + 1.86343i
\(7\) 1.68453 + 2.31856i 0.636693 + 0.876332i 0.998434 0.0559463i \(-0.0178176\pi\)
−0.361741 + 0.932279i \(0.617818\pi\)
\(8\) −0.324598 + 2.80974i −0.114763 + 0.993393i
\(9\) 7.19505 2.33782i 2.39835 0.779272i
\(10\) −0.177565 0.384227i −0.0561510 0.121503i
\(11\) −0.965746 + 3.17291i −0.291183 + 0.956667i
\(12\) 6.47987 0.522122i 1.87058 0.150724i
\(13\) −1.27295 0.648603i −0.353054 0.179890i 0.268464 0.963290i \(-0.413484\pi\)
−0.621518 + 0.783400i \(0.713484\pi\)
\(14\) 3.36784 2.25486i 0.900092 0.602636i
\(15\) −0.787054 + 0.571828i −0.203216 + 0.147645i
\(16\) 3.95306 + 0.611017i 0.988264 + 0.152754i
\(17\) −1.58848 + 4.88884i −0.385263 + 1.18572i 0.551027 + 0.834488i \(0.314236\pi\)
−0.936289 + 0.351229i \(0.885764\pi\)
\(18\) −2.91373 10.2946i −0.686772 2.42646i
\(19\) 0.699681 0.110819i 0.160518 0.0254235i −0.0756582 0.997134i \(-0.524106\pi\)
0.236176 + 0.971710i \(0.424106\pi\)
\(20\) −0.552605 + 0.230103i −0.123566 + 0.0514526i
\(21\) −6.58699 6.58699i −1.43740 1.43740i
\(22\) 4.43152 + 1.53676i 0.944803 + 0.327638i
\(23\) 4.88643i 1.01889i 0.860503 + 0.509446i \(0.170150\pi\)
−0.860503 + 0.509446i \(0.829850\pi\)
\(24\) −0.386602 9.18549i −0.0789149 1.87498i
\(25\) −2.88627 + 3.97261i −0.577255 + 0.794523i
\(26\) −0.985590 + 1.76375i −0.193290 + 0.345900i
\(27\) −13.2219 + 6.73690i −2.54456 + 1.29652i
\(28\) −3.00395 4.88157i −0.567693 0.922530i
\(29\) −0.480270 + 3.03230i −0.0891839 + 0.563085i 0.902119 + 0.431487i \(0.142011\pi\)
−0.991303 + 0.131598i \(0.957989\pi\)
\(30\) 0.765430 + 1.14324i 0.139748 + 0.208726i
\(31\) −2.51034 7.72603i −0.450870 1.38764i −0.875916 0.482464i \(-0.839742\pi\)
0.425045 0.905172i \(-0.360258\pi\)
\(32\) 1.07775 5.55324i 0.190522 0.981683i
\(33\) 1.48709 10.6774i 0.258869 1.85870i
\(34\) 6.82267 + 2.50980i 1.17008 + 0.430427i
\(35\) 0.764269 + 0.389415i 0.129185 + 0.0658231i
\(36\) −14.7060 + 3.55958i −2.45100 + 0.593263i
\(37\) 8.02335 + 1.27077i 1.31903 + 0.208914i 0.775965 0.630776i \(-0.217263\pi\)
0.543066 + 0.839690i \(0.317263\pi\)
\(38\) −0.118679 0.994779i −0.0192523 0.161374i
\(39\) 4.41652 + 1.43501i 0.707209 + 0.229786i
\(40\) 0.295221 + 0.793400i 0.0466786 + 0.125448i
\(41\) 1.10990 1.52764i 0.173337 0.238578i −0.713506 0.700650i \(-0.752894\pi\)
0.886843 + 0.462072i \(0.152894\pi\)
\(42\) −9.66561 + 8.95151i −1.49144 + 1.38125i
\(43\) −0.345954 0.345954i −0.0527575 0.0527575i 0.680236 0.732993i \(-0.261877\pi\)
−0.732993 + 0.680236i \(0.761877\pi\)
\(44\) 2.41192 6.17921i 0.363611 0.931551i
\(45\) 1.60110 1.60110i 0.238678 0.238678i
\(46\) 6.90538 + 0.264873i 1.01814 + 0.0390534i
\(47\) −2.22418 1.61596i −0.324430 0.235712i 0.413634 0.910443i \(-0.364259\pi\)
−0.738063 + 0.674731i \(0.764259\pi\)
\(48\) −13.0017 + 0.0484298i −1.87663 + 0.00699023i
\(49\) −0.374946 + 1.15397i −0.0535638 + 0.164852i
\(50\) 5.45754 + 4.29414i 0.771813 + 0.607284i
\(51\) 2.61380 16.5029i 0.366006 2.31087i
\(52\) 2.43906 + 1.48842i 0.338237 + 0.206406i
\(53\) −5.62841 + 11.0464i −0.773121 + 1.51734i 0.0806815 + 0.996740i \(0.474290\pi\)
−0.853803 + 0.520596i \(0.825710\pi\)
\(54\) 8.80371 + 19.0501i 1.19803 + 2.59238i
\(55\) 0.173589 + 0.977367i 0.0234067 + 0.131788i
\(56\) −7.06134 + 3.98049i −0.943611 + 0.531916i
\(57\) −2.18992 + 0.711548i −0.290062 + 0.0942468i
\(58\) 4.25914 + 0.843074i 0.559253 + 0.110701i
\(59\) 3.35970 + 0.532124i 0.437396 + 0.0692766i 0.371249 0.928533i \(-0.378930\pi\)
0.0661464 + 0.997810i \(0.478930\pi\)
\(60\) 1.65709 1.01972i 0.213929 0.131645i
\(61\) 0.568820 + 1.11637i 0.0728300 + 0.142937i 0.924551 0.381059i \(-0.124441\pi\)
−0.851721 + 0.523996i \(0.824441\pi\)
\(62\) −11.0543 + 3.12875i −1.40390 + 0.397352i
\(63\) 17.5406 + 12.7440i 2.20991 + 1.60560i
\(64\) −7.78927 1.82407i −0.973659 0.228009i
\(65\) −0.427600 −0.0530372
\(66\) −15.0084 2.68029i −1.84741 0.329921i
\(67\) 3.22014 3.22014i 0.393403 0.393403i −0.482496 0.875898i \(-0.660270\pi\)
0.875898 + 0.482496i \(0.160270\pi\)
\(68\) 3.91662 9.50558i 0.474959 1.15272i
\(69\) −2.48465 15.6875i −0.299117 1.88855i
\(70\) 0.591739 1.05894i 0.0707263 0.126567i
\(71\) −0.457640 0.148696i −0.0543119 0.0176470i 0.281735 0.959492i \(-0.409090\pi\)
−0.336047 + 0.941845i \(0.609090\pi\)
\(72\) 4.23315 + 20.9751i 0.498882 + 2.47194i
\(73\) 2.24695 + 3.09266i 0.262986 + 0.361969i 0.920006 0.391904i \(-0.128184\pi\)
−0.657020 + 0.753873i \(0.728184\pi\)
\(74\) 2.23074 11.2695i 0.259318 1.31005i
\(75\) 7.24614 14.2214i 0.836713 1.64214i
\(76\) −1.41223 + 0.113792i −0.161994 + 0.0130528i
\(77\) −8.98339 + 3.10572i −1.02375 + 0.353930i
\(78\) 2.26732 6.16352i 0.256724 0.697881i
\(79\) 2.25586 + 6.94282i 0.253804 + 0.781128i 0.994063 + 0.108806i \(0.0347029\pi\)
−0.740259 + 0.672322i \(0.765297\pi\)
\(80\) 1.13722 0.374193i 0.127145 0.0418360i
\(81\) 20.6608 15.0110i 2.29565 1.66789i
\(82\) −2.09866 1.65129i −0.231759 0.182354i
\(83\) −5.21747 10.2399i −0.572692 1.12397i −0.977768 0.209688i \(-0.932755\pi\)
0.405076 0.914283i \(-0.367245\pi\)
\(84\) 12.1261 + 14.1444i 1.32307 + 1.54328i
\(85\) 0.240678 + 1.51958i 0.0261052 + 0.164822i
\(86\) −0.507646 + 0.470141i −0.0547409 + 0.0506966i
\(87\) 9.97917i 1.06988i
\(88\) −8.60156 3.74341i −0.916930 0.399049i
\(89\) 11.5495i 1.22424i −0.790764 0.612121i \(-0.790317\pi\)
0.790764 0.612121i \(-0.209683\pi\)
\(90\) −2.17584 2.34942i −0.229354 0.247651i
\(91\) −0.640508 4.04401i −0.0671435 0.423927i
\(92\) 0.748624 9.74415i 0.0780494 1.01590i
\(93\) 11.9878 + 23.5273i 1.24307 + 2.43967i
\(94\) −2.40420 + 3.05556i −0.247974 + 0.315157i
\(95\) 0.171531 0.124625i 0.0175987 0.0127862i
\(96\) −0.636325 + 18.3762i −0.0649447 + 1.87552i
\(97\) −1.14058 3.51035i −0.115808 0.356422i 0.876306 0.481754i \(-0.160000\pi\)
−0.992115 + 0.125332i \(0.960000\pi\)
\(98\) 1.61043 + 0.592416i 0.162678 + 0.0598431i
\(99\) 0.469074 + 25.0870i 0.0471437 + 2.52134i
\(100\) 6.36421 7.47969i 0.636421 0.747969i
\(101\) −7.93023 + 15.5640i −0.789087 + 1.54867i 0.0462476 + 0.998930i \(0.485274\pi\)
−0.835335 + 0.549741i \(0.814726\pi\)
\(102\) −23.1798 4.58832i −2.29514 0.454311i
\(103\) 6.11349 + 8.41450i 0.602381 + 0.829106i 0.995924 0.0902005i \(-0.0287508\pi\)
−0.393543 + 0.919306i \(0.628751\pi\)
\(104\) 2.23560 3.36614i 0.219219 0.330077i
\(105\) −2.65163 0.861568i −0.258773 0.0840804i
\(106\) 15.3054 + 8.55270i 1.48659 + 0.830712i
\(107\) −0.519932 3.28272i −0.0502637 0.317353i −0.999991 0.00427387i \(-0.998640\pi\)
0.949727 0.313079i \(-0.101360\pi\)
\(108\) 27.3983 11.4086i 2.63640 1.09779i
\(109\) 12.3879 12.3879i 1.18654 1.18654i 0.208526 0.978017i \(-0.433133\pi\)
0.978017 0.208526i \(-0.0668667\pi\)
\(110\) 1.39060 0.192332i 0.132588 0.0183381i
\(111\) −26.4045 −2.50620
\(112\) 5.24237 + 10.1947i 0.495357 + 0.963305i
\(113\) 1.79681 + 1.30546i 0.169030 + 0.122807i 0.669084 0.743187i \(-0.266687\pi\)
−0.500054 + 0.865994i \(0.666687\pi\)
\(114\) 0.886835 + 3.13331i 0.0830597 + 0.293461i
\(115\) 0.663963 + 1.30310i 0.0619149 + 0.121515i
\(116\) 1.42228 5.97321i 0.132055 0.554599i
\(117\) −10.6753 1.69080i −0.986931 0.156315i
\(118\) 0.934099 4.71900i 0.0859908 0.434419i
\(119\) −14.0109 + 4.55241i −1.28438 + 0.417319i
\(120\) −1.35121 2.39703i −0.123348 0.218818i
\(121\) −9.13467 6.12844i −0.830425 0.557131i
\(122\) 1.60846 0.743328i 0.145623 0.0672978i
\(123\) −2.78646 + 5.46874i −0.251247 + 0.493099i
\(124\) 3.82226 + 15.7913i 0.343250 + 1.41810i
\(125\) −0.464013 + 2.92966i −0.0415026 + 0.262037i
\(126\) 18.9603 24.0972i 1.68912 2.14675i
\(127\) −3.04032 + 9.35713i −0.269785 + 0.830311i 0.720768 + 0.693177i \(0.243789\pi\)
−0.990552 + 0.137135i \(0.956211\pi\)
\(128\) −2.99995 + 10.9087i −0.265161 + 0.964204i
\(129\) 1.28657 + 0.934746i 0.113276 + 0.0822998i
\(130\) −0.0231784 + 0.604273i −0.00203288 + 0.0529982i
\(131\) −1.22433 + 1.22433i −0.106970 + 0.106970i −0.758566 0.651596i \(-0.774100\pi\)
0.651596 + 0.758566i \(0.274100\pi\)
\(132\) −4.60126 + 21.0643i −0.400489 + 1.83341i
\(133\) 1.43557 + 1.43557i 0.124480 + 0.124480i
\(134\) −4.37607 4.72517i −0.378035 0.408192i
\(135\) −2.61058 + 3.59316i −0.224683 + 0.309250i
\(136\) −13.2207 6.05012i −1.13367 0.518793i
\(137\) −12.3705 4.01940i −1.05688 0.343401i −0.271514 0.962434i \(-0.587524\pi\)
−0.785365 + 0.619034i \(0.787524\pi\)
\(138\) −22.3038 + 2.66090i −1.89863 + 0.226511i
\(139\) 18.4963 + 2.92953i 1.56884 + 0.248480i 0.879479 0.475938i \(-0.157891\pi\)
0.689361 + 0.724418i \(0.257891\pi\)
\(140\) −1.46439 0.893630i −0.123763 0.0755256i
\(141\) 7.96222 + 4.05695i 0.670540 + 0.341657i
\(142\) −0.234941 + 0.638665i −0.0197158 + 0.0535956i
\(143\) 3.28731 3.41258i 0.274898 0.285374i
\(144\) 29.8709 4.84521i 2.48924 0.403768i
\(145\) 0.283949 + 0.873906i 0.0235807 + 0.0725739i
\(146\) 4.49227 3.00769i 0.371783 0.248918i
\(147\) 0.616965 3.89536i 0.0508864 0.321284i
\(148\) −15.8049 3.76329i −1.29915 0.309341i
\(149\) 9.95914 5.07444i 0.815885 0.415714i 0.00433008 0.999991i \(-0.498622\pi\)
0.811555 + 0.584277i \(0.198622\pi\)
\(150\) −19.7045 11.0109i −1.60886 0.899040i
\(151\) 3.67588 5.05941i 0.299139 0.411729i −0.632817 0.774302i \(-0.718101\pi\)
0.931956 + 0.362572i \(0.118101\pi\)
\(152\) 0.0842565 + 2.00189i 0.00683410 + 0.162375i
\(153\) 38.8890i 3.14399i
\(154\) 3.90197 + 12.8635i 0.314430 + 1.03657i
\(155\) −1.71926 1.71926i −0.138094 0.138094i
\(156\) −8.58723 3.53822i −0.687529 0.283285i
\(157\) 1.41750 0.224510i 0.113129 0.0179178i −0.0996133 0.995026i \(-0.531761\pi\)
0.212742 + 0.977108i \(0.431761\pi\)
\(158\) 9.93370 2.81158i 0.790282 0.223677i
\(159\) 12.4527 38.3254i 0.987562 3.03940i
\(160\) −0.467156 1.62737i −0.0369319 0.128655i
\(161\) −11.3295 + 8.23135i −0.892888 + 0.648721i
\(162\) −20.0932 30.0111i −1.57867 2.35789i
\(163\) −10.4266 5.31259i −0.816671 0.416114i −0.00482622 0.999988i \(-0.501536\pi\)
−0.811844 + 0.583874i \(0.801536\pi\)
\(164\) −2.44732 + 2.87627i −0.191103 + 0.224599i
\(165\) −1.05426 3.04949i −0.0820743 0.237402i
\(166\) −14.7535 + 6.81814i −1.14510 + 0.529190i
\(167\) 17.3991 5.65332i 1.34639 0.437467i 0.454910 0.890537i \(-0.349671\pi\)
0.891475 + 0.453070i \(0.149671\pi\)
\(168\) 20.6458 16.3696i 1.59286 1.26294i
\(169\) −6.44148 8.86594i −0.495498 0.681995i
\(170\) 2.16048 0.257750i 0.165701 0.0197685i
\(171\) 4.77517 2.43307i 0.365167 0.186062i
\(172\) 0.636873 + 0.742877i 0.0485611 + 0.0566438i
\(173\) −9.02295 + 1.42909i −0.686002 + 0.108652i −0.489699 0.871891i \(-0.662894\pi\)
−0.196303 + 0.980543i \(0.562894\pi\)
\(174\) −14.1023 0.540929i −1.06909 0.0410077i
\(175\) −14.0727 −1.06380
\(176\) −5.75635 + 11.9526i −0.433901 + 0.900960i
\(177\) −11.0566 −0.831066
\(178\) −16.3214 0.626048i −1.22334 0.0469243i
\(179\) 14.1296 2.23790i 1.05609 0.167269i 0.395846 0.918317i \(-0.370451\pi\)
0.660247 + 0.751048i \(0.270451\pi\)
\(180\) −3.43808 + 2.94749i −0.256260 + 0.219693i
\(181\) −0.806510 + 0.410937i −0.0599474 + 0.0305447i −0.483707 0.875230i \(-0.660710\pi\)
0.423760 + 0.905775i \(0.360710\pi\)
\(182\) −5.74961 + 0.685941i −0.426189 + 0.0508453i
\(183\) −2.39380 3.29479i −0.176955 0.243558i
\(184\) −13.7296 1.58613i −1.01216 0.116931i
\(185\) 2.31232 0.751318i 0.170005 0.0552380i
\(186\) 33.8980 15.6655i 2.48552 1.14865i
\(187\) −13.9778 9.76147i −1.02215 0.713829i
\(188\) 4.18771 + 3.56318i 0.305420 + 0.259871i
\(189\) −37.8926 19.3073i −2.75628 1.40440i
\(190\) −0.166819 0.249159i −0.0121023 0.0180759i
\(191\) 5.57746 4.05226i 0.403571 0.293212i −0.367423 0.930054i \(-0.619760\pi\)
0.770994 + 0.636842i \(0.219760\pi\)
\(192\) 25.9343 + 1.89534i 1.87165 + 0.136784i
\(193\) 1.82476 5.61603i 0.131349 0.404250i −0.863655 0.504083i \(-0.831831\pi\)
0.995004 + 0.0998324i \(0.0318307\pi\)
\(194\) −5.02256 + 1.42156i −0.360599 + 0.102062i
\(195\) 1.37277 0.217426i 0.0983063 0.0155702i
\(196\) 0.924482 2.24371i 0.0660344 0.160265i
\(197\) 16.4490 + 16.4490i 1.17194 + 1.17194i 0.981747 + 0.190193i \(0.0609115\pi\)
0.190193 + 0.981747i \(0.439088\pi\)
\(198\) 35.4777 + 0.696977i 2.52129 + 0.0495320i
\(199\) 6.04391i 0.428442i 0.976785 + 0.214221i \(0.0687212\pi\)
−0.976785 + 0.214221i \(0.931279\pi\)
\(200\) −10.2251 9.39918i −0.723026 0.664622i
\(201\) −8.70061 + 11.9754i −0.613694 + 0.844677i
\(202\) 21.5647 + 12.0505i 1.51729 + 0.847867i
\(203\) −7.83960 + 3.99448i −0.550232 + 0.280357i
\(204\) −7.74057 + 32.5084i −0.541948 + 2.27604i
\(205\) 0.0884102 0.558200i 0.00617484 0.0389864i
\(206\) 12.2225 8.18332i 0.851585 0.570159i
\(207\) 11.4236 + 35.1582i 0.793994 + 2.44366i
\(208\) −4.63575 3.34176i −0.321432 0.231709i
\(209\) −0.324097 + 2.32705i −0.0224183 + 0.160965i
\(210\) −1.36128 + 3.70052i −0.0939372 + 0.255360i
\(211\) 14.9186 + 7.60143i 1.02704 + 0.523304i 0.884527 0.466489i \(-0.154481\pi\)
0.142514 + 0.989793i \(0.454481\pi\)
\(212\) 12.9161 21.1655i 0.887081 1.45366i
\(213\) 1.54482 + 0.244676i 0.105850 + 0.0167649i
\(214\) −4.66724 + 0.556812i −0.319046 + 0.0380629i
\(215\) −0.139266 0.0452502i −0.00949786 0.00308604i
\(216\) −14.6371 39.3369i −0.995931 2.67654i
\(217\) 13.6845 18.8351i 0.928965 1.27861i
\(218\) −16.8347 18.1777i −1.14019 1.23115i
\(219\) −8.78620 8.78620i −0.593717 0.593717i
\(220\) −0.196420 1.97558i −0.0132426 0.133194i
\(221\) 5.19298 5.19298i 0.349317 0.349317i
\(222\) −1.43128 + 37.3141i −0.0960609 + 2.50436i
\(223\) −15.7617 11.4515i −1.05548 0.766852i −0.0822345 0.996613i \(-0.526206\pi\)
−0.973247 + 0.229761i \(0.926206\pi\)
\(224\) 14.6910 6.85577i 0.981584 0.458070i
\(225\) −11.4797 + 35.3307i −0.765310 + 2.35538i
\(226\) 1.94224 2.46845i 0.129196 0.164199i
\(227\) 1.15124 7.26867i 0.0764108 0.482439i −0.919574 0.392917i \(-0.871466\pi\)
0.995985 0.0895220i \(-0.0285339\pi\)
\(228\) 4.47598 1.08341i 0.296429 0.0717505i
\(229\) −1.21225 + 2.37918i −0.0801078 + 0.157220i −0.927586 0.373610i \(-0.878120\pi\)
0.847478 + 0.530830i \(0.178120\pi\)
\(230\) 1.87750 0.867660i 0.123799 0.0572118i
\(231\) 27.2612 14.5385i 1.79366 0.956565i
\(232\) −8.36409 2.33371i −0.549130 0.153216i
\(233\) 14.0685 4.57113i 0.921657 0.299464i 0.190510 0.981685i \(-0.438986\pi\)
0.731146 + 0.682221i \(0.238986\pi\)
\(234\) −2.96806 + 14.9944i −0.194028 + 0.980214i
\(235\) −0.812713 0.128721i −0.0530155 0.00839684i
\(236\) −6.61813 1.57584i −0.430804 0.102579i
\(237\) −10.7725 21.1423i −0.699751 1.37334i
\(238\) 5.67388 + 20.0466i 0.367783 + 1.29943i
\(239\) 17.9922 + 13.0721i 1.16382 + 0.845562i 0.990256 0.139261i \(-0.0444726\pi\)
0.173561 + 0.984823i \(0.444473\pi\)
\(240\) −3.46067 + 1.77957i −0.223385 + 0.114870i
\(241\) −2.35965 −0.151998 −0.0759992 0.997108i \(-0.524215\pi\)
−0.0759992 + 0.997108i \(0.524215\pi\)
\(242\) −9.15571 + 12.5767i −0.588551 + 0.808460i
\(243\) −27.2182 + 27.2182i −1.74605 + 1.74605i
\(244\) −0.963264 2.31333i −0.0616667 0.148096i
\(245\) 0.0568100 + 0.358684i 0.00362946 + 0.0229155i
\(246\) 7.57724 + 4.23419i 0.483107 + 0.269962i
\(247\) −0.962540 0.312748i −0.0612449 0.0198997i
\(248\) 22.5230 4.54555i 1.43021 0.288643i
\(249\) 21.9570 + 30.2213i 1.39147 + 1.91519i
\(250\) 4.11497 + 0.814535i 0.260253 + 0.0515157i
\(251\) 4.93594 9.68733i 0.311554 0.611459i −0.681135 0.732157i \(-0.738514\pi\)
0.992689 + 0.120699i \(0.0385135\pi\)
\(252\) −33.0258 28.1005i −2.08043 1.77016i
\(253\) −15.5042 4.71905i −0.974741 0.296684i
\(254\) 13.0585 + 4.80371i 0.819361 + 0.301412i
\(255\) −1.54536 4.75611i −0.0967739 0.297839i
\(256\) 15.2533 + 4.83077i 0.953332 + 0.301923i
\(257\) −16.5869 + 12.0511i −1.03466 + 0.751727i −0.969237 0.246131i \(-0.920841\pi\)
−0.0654263 + 0.997857i \(0.520841\pi\)
\(258\) 1.39070 1.76747i 0.0865811 0.110038i
\(259\) 10.5692 + 20.7433i 0.656739 + 1.28892i
\(260\) 0.852687 + 0.0655102i 0.0528814 + 0.00406277i
\(261\) 3.63340 + 22.9404i 0.224902 + 1.41997i
\(262\) 1.66382 + 1.79655i 0.102791 + 0.110991i
\(263\) 12.3018i 0.758562i 0.925282 + 0.379281i \(0.123829\pi\)
−0.925282 + 0.379281i \(0.876171\pi\)
\(264\) 29.5180 + 7.64419i 1.81671 + 0.470468i
\(265\) 3.71060i 0.227940i
\(266\) 2.10653 1.95090i 0.129160 0.119617i
\(267\) 5.87268 + 37.0786i 0.359402 + 2.26917i
\(268\) −6.91469 + 5.92801i −0.422382 + 0.362111i
\(269\) 3.15910 + 6.20008i 0.192614 + 0.378026i 0.967035 0.254645i \(-0.0819587\pi\)
−0.774421 + 0.632671i \(0.781959\pi\)
\(270\) 4.93625 + 3.88398i 0.300411 + 0.236371i
\(271\) −12.0921 + 8.78544i −0.734544 + 0.533677i −0.890998 0.454008i \(-0.849994\pi\)
0.156454 + 0.987685i \(0.449994\pi\)
\(272\) −9.26651 + 18.3553i −0.561865 + 1.11295i
\(273\) 4.11260 + 12.6573i 0.248906 + 0.766053i
\(274\) −6.35067 + 17.2637i −0.383658 + 1.04294i
\(275\) −9.81732 12.9944i −0.592007 0.783592i
\(276\) 2.55131 + 31.6635i 0.153571 + 1.90592i
\(277\) 12.6762 24.8785i 0.761640 1.49480i −0.104240 0.994552i \(-0.533241\pi\)
0.865880 0.500251i \(-0.166759\pi\)
\(278\) 5.14255 25.9798i 0.308430 1.55816i
\(279\) −36.1241 49.7205i −2.16269 2.97669i
\(280\) −1.34223 + 2.02099i −0.0802138 + 0.120778i
\(281\) 12.6655 + 4.11528i 0.755563 + 0.245497i 0.661373 0.750057i \(-0.269974\pi\)
0.0941898 + 0.995554i \(0.469974\pi\)
\(282\) 6.16478 11.0321i 0.367107 0.656952i
\(283\) 2.49770 + 15.7698i 0.148473 + 0.937420i 0.943627 + 0.331012i \(0.107390\pi\)
−0.795154 + 0.606408i \(0.792610\pi\)
\(284\) 0.889810 + 0.366631i 0.0528005 + 0.0217556i
\(285\) −0.487318 + 0.487318i −0.0288662 + 0.0288662i
\(286\) −4.64438 4.83052i −0.274628 0.285635i
\(287\) 5.41159 0.319436
\(288\) −5.22795 42.4754i −0.308060 2.50289i
\(289\) −7.62417 5.53928i −0.448480 0.325840i
\(290\) 1.25037 0.353899i 0.0734244 0.0207817i
\(291\) 5.44668 + 10.6897i 0.319290 + 0.626642i
\(292\) −4.00689 6.51139i −0.234485 0.381050i
\(293\) −6.36240 1.00771i −0.371695 0.0588708i −0.0322075 0.999481i \(-0.510254\pi\)
−0.339488 + 0.940610i \(0.610254\pi\)
\(294\) −5.47139 1.08303i −0.319098 0.0631636i
\(295\) 0.968260 0.314607i 0.0563743 0.0183171i
\(296\) −6.17491 + 22.1310i −0.358909 + 1.28634i
\(297\) −8.60655 48.4580i −0.499403 2.81182i
\(298\) −6.63122 14.3491i −0.384136 0.831219i
\(299\) 3.16935 6.22021i 0.183289 0.359724i
\(300\) −16.6285 + 27.2490i −0.960046 + 1.57322i
\(301\) 0.219344 1.38488i 0.0126428 0.0798234i
\(302\) −6.95058 5.46891i −0.399961 0.314700i
\(303\) 17.5454 53.9991i 1.00796 3.10217i
\(304\) 2.83359 0.0105548i 0.162518 0.000605361i
\(305\) 0.303383 + 0.220421i 0.0173717 + 0.0126212i
\(306\) 54.9570 + 2.10801i 3.14168 + 0.120507i
\(307\) 20.3323 20.3323i 1.16042 1.16042i 0.176041 0.984383i \(-0.443671\pi\)
0.984383 0.176041i \(-0.0563292\pi\)
\(308\) 18.3898 4.81689i 1.04786 0.274468i
\(309\) −23.9055 23.9055i −1.35993 1.35993i
\(310\) −2.52280 + 2.33641i −0.143286 + 0.132699i
\(311\) −3.14522 + 4.32903i −0.178349 + 0.245477i −0.888827 0.458243i \(-0.848479\pi\)
0.710478 + 0.703720i \(0.248479\pi\)
\(312\) −5.46561 + 11.9435i −0.309429 + 0.676165i
\(313\) 2.92135 + 0.949206i 0.165125 + 0.0536523i 0.390413 0.920640i \(-0.372332\pi\)
−0.225288 + 0.974292i \(0.572332\pi\)
\(314\) −0.240435 2.01534i −0.0135685 0.113732i
\(315\) 6.40934 + 1.01514i 0.361125 + 0.0571966i
\(316\) −3.43479 14.1904i −0.193222 0.798275i
\(317\) −1.42905 0.728136i −0.0802633 0.0408962i 0.413398 0.910550i \(-0.364342\pi\)
−0.493661 + 0.869654i \(0.664342\pi\)
\(318\) −53.4855 19.6753i −2.99932 1.10333i
\(319\) −9.15740 4.45229i −0.512716 0.249280i
\(320\) −2.32508 + 0.571960i −0.129976 + 0.0319735i
\(321\) 3.33840 + 10.2745i 0.186331 + 0.573468i
\(322\) 11.0182 + 16.4567i 0.614021 + 0.917097i
\(323\) −0.569655 + 3.59666i −0.0316965 + 0.200124i
\(324\) −43.5000 + 26.7684i −2.41667 + 1.48713i
\(325\) 6.25074 3.18491i 0.346729 0.176667i
\(326\) −8.07280 + 14.4466i −0.447111 + 0.800121i
\(327\) −33.4713 + 46.0692i −1.85096 + 2.54763i
\(328\) 3.93201 + 3.61440i 0.217109 + 0.199572i
\(329\) 7.87902i 0.434384i
\(330\) −4.36661 + 1.32456i −0.240374 + 0.0729145i
\(331\) 0.124641 + 0.124641i 0.00685091 + 0.00685091i 0.710524 0.703673i \(-0.248458\pi\)
−0.703673 + 0.710524i \(0.748458\pi\)
\(332\) 8.83549 + 21.2189i 0.484911 + 1.16454i
\(333\) 60.6993 9.61382i 3.32630 0.526834i
\(334\) −7.04599 24.8944i −0.385540 1.36216i
\(335\) 0.421189 1.29629i 0.0230120 0.0708237i
\(336\) −22.0140 30.0635i −1.20096 1.64010i
\(337\) 22.2249 16.1474i 1.21067 0.879602i 0.215378 0.976531i \(-0.430902\pi\)
0.995291 + 0.0969284i \(0.0309018\pi\)
\(338\) −12.8783 + 8.62235i −0.700486 + 0.468994i
\(339\) −6.43232 3.27743i −0.349356 0.178006i
\(340\) −0.247135 3.06711i −0.0134028 0.166337i
\(341\) 26.9383 0.503690i 1.45879 0.0272764i
\(342\) −3.17951 6.88004i −0.171928 0.372030i
\(343\) 15.7722 5.12471i 0.851621 0.276709i
\(344\) 1.08434 0.859745i 0.0584635 0.0463543i
\(345\) −2.79420 3.84589i −0.150435 0.207056i
\(346\) 1.53046 + 12.8285i 0.0822782 + 0.689663i
\(347\) −1.47373 + 0.750903i −0.0791139 + 0.0403106i −0.493100 0.869973i \(-0.664136\pi\)
0.413986 + 0.910283i \(0.364136\pi\)
\(348\) −1.52885 + 19.8997i −0.0819552 + 1.06674i
\(349\) 12.7453 2.01865i 0.682239 0.108056i 0.194311 0.980940i \(-0.437753\pi\)
0.487928 + 0.872884i \(0.337753\pi\)
\(350\) −0.762825 + 19.8872i −0.0407747 + 1.06302i
\(351\) 21.2005 1.13160
\(352\) 16.5791 + 8.78263i 0.883667 + 0.468116i
\(353\) 21.0326 1.11945 0.559727 0.828677i \(-0.310906\pi\)
0.559727 + 0.828677i \(0.310906\pi\)
\(354\) −0.599332 + 15.6249i −0.0318542 + 0.830455i
\(355\) −0.142247 + 0.0225297i −0.00754969 + 0.00119575i
\(356\) −1.76943 + 23.0311i −0.0937797 + 1.22064i
\(357\) 42.6660 21.7394i 2.25812 1.15057i
\(358\) −2.39664 20.0888i −0.126667 1.06173i
\(359\) −15.5808 21.4452i −0.822325 1.13183i −0.989303 0.145872i \(-0.953401\pi\)
0.166979 0.985961i \(-0.446599\pi\)
\(360\) 3.97896 + 5.01838i 0.209709 + 0.264492i
\(361\) −17.5928 + 5.71625i −0.925937 + 0.300855i
\(362\) 0.537009 + 1.16201i 0.0282245 + 0.0610741i
\(363\) 32.4423 + 15.0301i 1.70278 + 0.788873i
\(364\) 0.657692 + 8.16238i 0.0344724 + 0.427825i
\(365\) 1.01944 + 0.519430i 0.0533598 + 0.0271882i
\(366\) −4.78587 + 3.20426i −0.250161 + 0.167490i
\(367\) −25.1041 + 18.2392i −1.31042 + 0.952078i −0.310424 + 0.950598i \(0.600471\pi\)
−0.999999 + 0.00147973i \(0.999529\pi\)
\(368\) −2.98570 + 19.3164i −0.155640 + 1.00693i
\(369\) 4.41443 13.5862i 0.229806 0.707271i
\(370\) −0.936402 3.30843i −0.0486812 0.171997i
\(371\) −35.0929 + 5.55817i −1.82193 + 0.288566i
\(372\) −20.3006 48.7530i −1.05254 2.52772i
\(373\) −8.06922 8.06922i −0.417808 0.417808i 0.466639 0.884448i \(-0.345465\pi\)
−0.884448 + 0.466639i \(0.845465\pi\)
\(374\) −14.5523 + 19.2239i −0.752483 + 0.994043i
\(375\) 9.64137i 0.497878i
\(376\) 5.26239 5.72482i 0.271387 0.295235i
\(377\) 2.57812 3.54848i 0.132780 0.182756i
\(378\) −29.3385 + 52.5023i −1.50901 + 2.70043i
\(379\) −27.1827 + 13.8503i −1.39628 + 0.711442i −0.980223 0.197896i \(-0.936589\pi\)
−0.416060 + 0.909337i \(0.636589\pi\)
\(380\) −0.361148 + 0.222238i −0.0185265 + 0.0114006i
\(381\) 5.00277 31.5862i 0.256300 1.61821i
\(382\) −5.42422 8.10158i −0.277527 0.414513i
\(383\) 8.70447 + 26.7896i 0.444778 + 1.36889i 0.882727 + 0.469886i \(0.155705\pi\)
−0.437949 + 0.899000i \(0.644295\pi\)
\(384\) 4.08423 36.5470i 0.208423 1.86503i
\(385\) −1.97367 + 2.04888i −0.100587 + 0.104421i
\(386\) −7.83751 2.88312i −0.398919 0.146747i
\(387\) −3.29793 1.68038i −0.167643 0.0854186i
\(388\) 1.73666 + 7.17481i 0.0881655 + 0.364246i
\(389\) −13.5055 2.13906i −0.684757 0.108455i −0.195643 0.980675i \(-0.562680\pi\)
−0.489113 + 0.872220i \(0.662680\pi\)
\(390\) −0.232848 1.95175i −0.0117907 0.0988309i
\(391\) −23.8890 7.76200i −1.20812 0.392541i
\(392\) −3.12064 1.42808i −0.157616 0.0721287i
\(393\) 3.30805 4.55314i 0.166869 0.229676i
\(394\) 24.1369 22.3536i 1.21600 1.12616i
\(395\) 1.54497 + 1.54497i 0.0777358 + 0.0777358i
\(396\) 2.90805 50.0984i 0.146135 2.51754i
\(397\) 12.5511 12.5511i 0.629921 0.629921i −0.318127 0.948048i \(-0.603054\pi\)
0.948048 + 0.318127i \(0.103054\pi\)
\(398\) 8.54110 + 0.327615i 0.428127 + 0.0164219i
\(399\) −5.33875 3.87883i −0.267272 0.194184i
\(400\) −13.8369 + 13.9404i −0.691847 + 0.697020i
\(401\) 2.11099 6.49694i 0.105418 0.324442i −0.884411 0.466710i \(-0.845439\pi\)
0.989828 + 0.142268i \(0.0454394\pi\)
\(402\) 16.4517 + 12.9446i 0.820534 + 0.645619i
\(403\) −1.81558 + 11.4631i −0.0904403 + 0.571018i
\(404\) 18.1983 29.8215i 0.905401 1.48367i
\(405\) 3.47010 6.81046i 0.172431 0.338415i
\(406\) 5.21994 + 11.2952i 0.259061 + 0.560574i
\(407\) −11.7806 + 24.2301i −0.583941 + 1.20104i
\(408\) 45.5205 + 12.7009i 2.25360 + 0.628789i
\(409\) −10.9629 + 3.56207i −0.542081 + 0.176133i −0.567243 0.823551i \(-0.691990\pi\)
0.0251617 + 0.999683i \(0.491990\pi\)
\(410\) −0.784042 0.155197i −0.0387211 0.00766462i
\(411\) 41.7581 + 6.61383i 2.05977 + 0.326236i
\(412\) −10.9019 17.7162i −0.537099 0.872813i
\(413\) 4.42576 + 8.68603i 0.217777 + 0.427412i
\(414\) 50.3038 14.2377i 2.47230 0.699746i
\(415\) −2.78276 2.02180i −0.136601 0.0992461i
\(416\) −4.97378 + 6.36999i −0.243859 + 0.312314i
\(417\) −60.8706 −2.98085
\(418\) 3.27095 + 0.584145i 0.159988 + 0.0285715i
\(419\) −2.69653 + 2.69653i −0.131734 + 0.131734i −0.769899 0.638165i \(-0.779694\pi\)
0.638165 + 0.769899i \(0.279694\pi\)
\(420\) 5.15569 + 2.12431i 0.251572 + 0.103656i
\(421\) 3.05920 + 19.3150i 0.149096 + 0.941356i 0.942874 + 0.333149i \(0.108111\pi\)
−0.793778 + 0.608207i \(0.791889\pi\)
\(422\) 11.5508 20.6706i 0.562285 1.00623i
\(423\) −19.7809 6.42720i −0.961780 0.312501i
\(424\) −29.2105 19.4000i −1.41859 0.942147i
\(425\) −14.8367 20.4209i −0.719684 0.990561i
\(426\) 0.429509 2.16984i 0.0208098 0.105129i
\(427\) −1.63018 + 3.19941i −0.0788899 + 0.154830i
\(428\) 0.533881 + 6.62581i 0.0258061 + 0.320271i
\(429\) −8.81840 + 12.6273i −0.425756 + 0.609654i
\(430\) −0.0714955 + 0.194354i −0.00344782 + 0.00937259i
\(431\) 5.70272 + 17.5512i 0.274690 + 0.845409i 0.989301 + 0.145887i \(0.0466037\pi\)
−0.714611 + 0.699522i \(0.753396\pi\)
\(432\) −56.3834 + 18.5525i −2.71275 + 0.892609i
\(433\) −3.02872 + 2.20050i −0.145551 + 0.105749i −0.658178 0.752863i \(-0.728673\pi\)
0.512627 + 0.858612i \(0.328673\pi\)
\(434\) −25.8755 20.3596i −1.24206 0.977290i
\(435\) −1.35596 2.66122i −0.0650133 0.127596i
\(436\) −26.6008 + 22.8051i −1.27395 + 1.09216i
\(437\) 0.541508 + 3.41895i 0.0259038 + 0.163550i
\(438\) −12.8927 + 11.9402i −0.616037 + 0.570524i
\(439\) 14.4896i 0.691550i 0.938317 + 0.345775i \(0.112384\pi\)
−0.938317 + 0.345775i \(0.887616\pi\)
\(440\) −2.80249 + 0.170487i −0.133604 + 0.00812766i
\(441\) 9.17940i 0.437114i
\(442\) −7.05709 7.62007i −0.335672 0.362450i
\(443\) −4.89889 30.9304i −0.232753 1.46955i −0.776404 0.630235i \(-0.782958\pi\)
0.543651 0.839311i \(-0.317042\pi\)
\(444\) 52.6538 + 4.04528i 2.49884 + 0.191981i
\(445\) −1.56933 3.07998i −0.0743934 0.146005i
\(446\) −17.0374 + 21.6533i −0.806745 + 1.02531i
\(447\) −29.3927 + 21.3551i −1.39023 + 1.01006i
\(448\) −8.89206 21.1326i −0.420110 0.998420i
\(449\) −6.68055 20.5606i −0.315274 0.970315i −0.975641 0.219372i \(-0.929599\pi\)
0.660367 0.750943i \(-0.270401\pi\)
\(450\) 49.3062 + 18.1379i 2.32432 + 0.855028i
\(451\) 3.77519 + 4.99692i 0.177767 + 0.235296i
\(452\) −3.38307 2.87853i −0.159126 0.135395i
\(453\) −9.22849 + 18.1119i −0.433592 + 0.850973i
\(454\) −10.2095 2.02091i −0.479156 0.0948462i
\(455\) −0.720305 0.991414i −0.0337684 0.0464782i
\(456\) −1.28842 6.38407i −0.0603359 0.298961i
\(457\) 10.5871 + 3.43997i 0.495246 + 0.160915i 0.545982 0.837797i \(-0.316157\pi\)
−0.0507362 + 0.998712i \(0.516157\pi\)
\(458\) 3.29648 + 1.84209i 0.154034 + 0.0860751i
\(459\) −11.9329 75.3412i −0.556979 3.51663i
\(460\) −1.12438 2.70027i −0.0524247 0.125901i
\(461\) −18.7726 + 18.7726i −0.874328 + 0.874328i −0.992941 0.118613i \(-0.962155\pi\)
0.118613 + 0.992941i \(0.462155\pi\)
\(462\) −19.0678 39.3130i −0.887113 1.82900i
\(463\) 16.9830 0.789267 0.394633 0.918839i \(-0.370872\pi\)
0.394633 + 0.918839i \(0.370872\pi\)
\(464\) −3.75133 + 11.6934i −0.174151 + 0.542853i
\(465\) 6.39374 + 4.64532i 0.296502 + 0.215422i
\(466\) −5.69720 20.1290i −0.263918 0.932458i
\(467\) −0.410720 0.806083i −0.0190058 0.0373011i 0.881308 0.472542i \(-0.156663\pi\)
−0.900314 + 0.435240i \(0.856663\pi\)
\(468\) 21.0288 + 5.00717i 0.972057 + 0.231456i
\(469\) 12.8905 + 2.04165i 0.595228 + 0.0942748i
\(470\) −0.225959 + 1.14153i −0.0104227 + 0.0526547i
\(471\) −4.43661 + 1.44154i −0.204428 + 0.0664227i
\(472\) −2.58568 + 9.26715i −0.119016 + 0.426555i
\(473\) 1.43178 0.763576i 0.0658335 0.0351093i
\(474\) −30.4617 + 14.0774i −1.39915 + 0.646598i
\(475\) −1.57923 + 3.09942i −0.0724601 + 0.142211i
\(476\) 28.6369 6.93154i 1.31257 0.317707i
\(477\) −14.6723 + 92.6375i −0.671800 + 4.24158i
\(478\) 19.4484 24.7175i 0.889549 1.13055i
\(479\) −3.84163 + 11.8233i −0.175529 + 0.540221i −0.999657 0.0261814i \(-0.991665\pi\)
0.824129 + 0.566403i \(0.191665\pi\)
\(480\) 2.32725 + 4.98699i 0.106224 + 0.227624i
\(481\) −9.38913 6.82161i −0.428108 0.311038i
\(482\) −0.127907 + 3.33460i −0.00582599 + 0.151887i
\(483\) 32.1869 32.1869i 1.46455 1.46455i
\(484\) 17.2768 + 13.6203i 0.785307 + 0.619107i
\(485\) −0.781150 0.781150i −0.0354702 0.0354702i
\(486\) 36.9887 + 39.9395i 1.67784 + 1.81169i
\(487\) 0.219954 0.302741i 0.00996708 0.0137185i −0.804004 0.594623i \(-0.797301\pi\)
0.813971 + 0.580905i \(0.197301\pi\)
\(488\) −3.32135 + 1.23586i −0.150351 + 0.0559450i
\(489\) 36.1749 + 11.7539i 1.63589 + 0.531532i
\(490\) 0.509962 0.0608396i 0.0230378 0.00274845i
\(491\) 1.08361 + 0.171627i 0.0489025 + 0.00774540i 0.180838 0.983513i \(-0.442119\pi\)
−0.131935 + 0.991258i \(0.542119\pi\)
\(492\) 6.39438 10.4784i 0.288281 0.472404i
\(493\) −14.0615 7.16471i −0.633300 0.322683i
\(494\) −0.494143 + 1.34328i −0.0222325 + 0.0604372i
\(495\) 3.53388 + 6.62639i 0.158836 + 0.297834i
\(496\) −5.20278 32.0753i −0.233612 1.44022i
\(497\) −0.426148 1.31155i −0.0191153 0.0588310i
\(498\) 43.8981 29.3909i 1.96712 1.31704i
\(499\) −2.01384 + 12.7149i −0.0901519 + 0.569197i 0.900721 + 0.434398i \(0.143039\pi\)
−0.990873 + 0.134799i \(0.956961\pi\)
\(500\) 1.37414 5.77102i 0.0614532 0.258088i
\(501\) −52.9839 + 26.9966i −2.36714 + 1.20612i
\(502\) −13.4223 7.50045i −0.599068 0.334762i
\(503\) 8.05319 11.0843i 0.359074 0.494223i −0.590816 0.806806i \(-0.701194\pi\)
0.949890 + 0.312583i \(0.101194\pi\)
\(504\) −41.5011 + 45.1480i −1.84860 + 2.01105i
\(505\) 5.22811i 0.232648i
\(506\) −7.50926 + 21.6543i −0.333827 + 0.962653i
\(507\) 25.1880 + 25.1880i 1.11864 + 1.11864i
\(508\) 7.49632 18.1935i 0.332596 0.807206i
\(509\) −26.6210 + 4.21636i −1.17996 + 0.186887i −0.715438 0.698676i \(-0.753773\pi\)
−0.464519 + 0.885563i \(0.653773\pi\)
\(510\) −6.80499 + 1.92605i −0.301330 + 0.0852868i
\(511\) −3.38546 + 10.4194i −0.149764 + 0.460926i
\(512\) 7.65354 21.2937i 0.338242 0.941059i
\(513\) −8.50455 + 6.17892i −0.375485 + 0.272806i
\(514\) 16.1312 + 24.0934i 0.711516 + 1.06272i
\(515\) 2.77368 + 1.41326i 0.122223 + 0.0622758i
\(516\) −2.42237 2.06111i −0.106639 0.0907351i
\(517\) 7.27528 5.49650i 0.319966 0.241736i
\(518\) 29.8868 13.8117i 1.31315 0.606853i
\(519\) 28.2408 9.17598i 1.23963 0.402781i
\(520\) 0.138798 1.20144i 0.00608669 0.0526868i
\(521\) 3.37324 + 4.64287i 0.147784 + 0.203408i 0.876491 0.481418i \(-0.159878\pi\)
−0.728707 + 0.684826i \(0.759878\pi\)
\(522\) 32.6157 3.89113i 1.42755 0.170310i
\(523\) −10.4385 + 5.31867i −0.456442 + 0.232569i −0.667067 0.744998i \(-0.732450\pi\)
0.210624 + 0.977567i \(0.432450\pi\)
\(524\) 2.62903 2.25389i 0.114850 0.0984615i
\(525\) 45.1794 7.15571i 1.97179 0.312301i
\(526\) 17.3846 + 0.666829i 0.758004 + 0.0290751i
\(527\) 41.7589 1.81905
\(528\) 12.4026 41.2998i 0.539755 1.79734i
\(529\) −0.877236 −0.0381407
\(530\) 5.24373 + 0.201136i 0.227773 + 0.00873680i
\(531\) 25.4172 4.02569i 1.10301 0.174700i
\(532\) −2.64278 3.08265i −0.114579 0.133650i
\(533\) −2.40369 + 1.22474i −0.104115 + 0.0530493i
\(534\) 52.7169 6.28924i 2.28128 0.272162i
\(535\) −0.584707 0.804780i −0.0252791 0.0347937i
\(536\) 8.00250 + 10.0930i 0.345655 + 0.435951i
\(537\) −44.2239 + 14.3692i −1.90840 + 0.620077i
\(538\) 8.93304 4.12828i 0.385130 0.177983i
\(539\) −3.29932 2.30411i −0.142112 0.0992449i
\(540\) 5.75631 6.76525i 0.247712 0.291130i
\(541\) 3.92298 + 1.99886i 0.168662 + 0.0859377i 0.536284 0.844038i \(-0.319828\pi\)
−0.367621 + 0.929976i \(0.619828\pi\)
\(542\) 11.7599 + 17.5645i 0.505131 + 0.754460i
\(543\) 2.38028 1.72937i 0.102148 0.0742146i
\(544\) 25.4369 + 14.0902i 1.09060 + 0.604111i
\(545\) 1.62032 4.98682i 0.0694067 0.213612i
\(546\) 18.1099 5.12572i 0.775030 0.219361i
\(547\) −27.6941 + 4.38632i −1.18412 + 0.187545i −0.717271 0.696794i \(-0.754609\pi\)
−0.466844 + 0.884340i \(0.654609\pi\)
\(548\) 24.0524 + 9.91040i 1.02747 + 0.423351i
\(549\) 6.70256 + 6.70256i 0.286058 + 0.286058i
\(550\) −18.8955 + 13.1692i −0.805708 + 0.561537i
\(551\) 2.17487i 0.0926526i
\(552\) 44.8843 1.88911i 1.91040 0.0804057i
\(553\) −12.2973 + 16.9257i −0.522933 + 0.719755i
\(554\) −34.4705 19.2623i −1.46451 0.818375i
\(555\) −7.04147 + 3.58781i −0.298894 + 0.152294i
\(556\) −36.4352 8.67558i −1.54520 0.367926i
\(557\) 1.52353 9.61920i 0.0645541 0.407579i −0.934159 0.356858i \(-0.883848\pi\)
0.998713 0.0507210i \(-0.0161519\pi\)
\(558\) −72.2219 + 48.3545i −3.05740 + 2.04701i
\(559\) 0.215997 + 0.664770i 0.00913570 + 0.0281168i
\(560\) 2.78326 + 2.00636i 0.117614 + 0.0847842i
\(561\) 49.8379 + 24.2310i 2.10416 + 1.02303i
\(562\) 6.50216 17.6755i 0.274277 0.745598i
\(563\) 17.0916 + 8.70861i 0.720325 + 0.367024i 0.775410 0.631458i \(-0.217543\pi\)
−0.0550850 + 0.998482i \(0.517543\pi\)
\(564\) −15.2561 9.30991i −0.642398 0.392018i
\(565\) 0.656554 + 0.103988i 0.0276214 + 0.00437481i
\(566\) 22.4209 2.67487i 0.942422 0.112433i
\(567\) 69.6077 + 22.6169i 2.92325 + 0.949820i
\(568\) 0.566347 1.23758i 0.0237634 0.0519278i
\(569\) 0.577869 0.795369i 0.0242255 0.0333436i −0.796732 0.604332i \(-0.793440\pi\)
0.820958 + 0.570989i \(0.193440\pi\)
\(570\) 0.662249 + 0.715080i 0.0277386 + 0.0299514i
\(571\) −10.4188 10.4188i −0.436013 0.436013i 0.454655 0.890668i \(-0.349763\pi\)
−0.890668 + 0.454655i \(0.849763\pi\)
\(572\) −7.07812 + 6.30148i −0.295951 + 0.263478i
\(573\) −15.8455 + 15.8455i −0.661955 + 0.661955i
\(574\) 0.293340 7.64752i 0.0122438 0.319201i
\(575\) −19.4119 14.1036i −0.809533 0.588160i
\(576\) −60.3086 + 5.08559i −2.51286 + 0.211900i
\(577\) 7.92288 24.3841i 0.329834 1.01512i −0.639377 0.768893i \(-0.720808\pi\)
0.969211 0.246231i \(-0.0791922\pi\)
\(578\) −8.24124 + 10.4740i −0.342791 + 0.435662i
\(579\) −3.00259 + 18.9576i −0.124784 + 0.787852i
\(580\) −0.432343 1.78618i −0.0179521 0.0741670i
\(581\) 14.9527 29.3464i 0.620344 1.21749i
\(582\) 15.4017 7.11767i 0.638420 0.295037i
\(583\) −29.6135 28.5264i −1.22647 1.18144i
\(584\) −9.41893 + 5.30947i −0.389758 + 0.219708i
\(585\) −3.07660 + 0.999649i −0.127202 + 0.0413304i
\(586\) −1.76894 + 8.93656i −0.0730743 + 0.369166i
\(587\) −3.23740 0.512754i −0.133622 0.0211636i 0.0892652 0.996008i \(-0.471548\pi\)
−0.222887 + 0.974844i \(0.571548\pi\)
\(588\) −1.82709 + 7.67332i −0.0753480 + 0.316442i
\(589\) −2.61263 5.12757i −0.107651 0.211278i
\(590\) −0.392109 1.38537i −0.0161429 0.0570349i
\(591\) −61.1720 44.4441i −2.51628 1.82818i
\(592\) 30.9403 + 9.92585i 1.27164 + 0.407950i
\(593\) −10.6155 −0.435926 −0.217963 0.975957i \(-0.569941\pi\)
−0.217963 + 0.975957i \(0.569941\pi\)
\(594\) −68.9462 + 9.53585i −2.82890 + 0.391261i
\(595\) −3.11781 + 3.11781i −0.127818 + 0.127818i
\(596\) −20.6372 + 8.59327i −0.845332 + 0.351994i
\(597\) −3.07321 19.4035i −0.125778 0.794131i
\(598\) −8.61844 4.81602i −0.352434 0.196942i
\(599\) 10.6669 + 3.46590i 0.435839 + 0.141613i 0.518715 0.854947i \(-0.326411\pi\)
−0.0828759 + 0.996560i \(0.526411\pi\)
\(600\) 37.6062 + 24.9760i 1.53527 + 1.01964i
\(601\) 22.7319 + 31.2878i 0.927253 + 1.27625i 0.960921 + 0.276821i \(0.0892810\pi\)
−0.0336683 + 0.999433i \(0.510719\pi\)
\(602\) −1.94519 0.385040i −0.0792801 0.0156931i
\(603\) 15.6410 30.6972i 0.636950 1.25009i
\(604\) −8.10528 + 9.52593i −0.329799 + 0.387605i
\(605\) −3.26874 0.393108i −0.132893 0.0159821i
\(606\) −75.3591 27.7218i −3.06126 1.12612i
\(607\) −4.52760 13.9345i −0.183770 0.565585i 0.816155 0.577833i \(-0.196101\pi\)
−0.999925 + 0.0122476i \(0.996101\pi\)
\(608\) 0.138681 4.00493i 0.00562427 0.162421i
\(609\) 23.1373 16.8102i 0.937570 0.681184i
\(610\) 0.327938 0.416785i 0.0132778 0.0168751i
\(611\) 1.78316 + 3.49965i 0.0721390 + 0.141581i
\(612\) 5.95797 77.5495i 0.240837 3.13475i
\(613\) −1.63692 10.3351i −0.0661147 0.417432i −0.998441 0.0558141i \(-0.982225\pi\)
0.932326 0.361618i \(-0.117775\pi\)
\(614\) −27.6309 29.8352i −1.11509 1.20405i
\(615\) 1.83701i 0.0740754i
\(616\) −5.81028 26.2491i −0.234103 1.05761i
\(617\) 27.3899i 1.10268i −0.834282 0.551338i \(-0.814117\pi\)
0.834282 0.551338i \(-0.185883\pi\)
\(618\) −35.0784 + 32.4868i −1.41106 + 1.30681i
\(619\) 4.22619 + 26.6831i 0.169865 + 1.07248i 0.914374 + 0.404871i \(0.132684\pi\)
−0.744509 + 0.667613i \(0.767316\pi\)
\(620\) 3.16501 + 3.69181i 0.127110 + 0.148267i
\(621\) −32.9194 64.6080i −1.32101 2.59263i
\(622\) 5.94719 + 4.67941i 0.238460 + 0.187627i
\(623\) 26.7781 19.4554i 1.07284 0.779466i
\(624\) 16.5819 + 8.37126i 0.663808 + 0.335119i
\(625\) −7.31268 22.5061i −0.292507 0.900244i
\(626\) 1.49975 4.07693i 0.0599420 0.162947i
\(627\) −0.142769 7.63558i −0.00570166 0.304936i
\(628\) −2.86106 + 0.230533i −0.114169 + 0.00919927i
\(629\) −18.9575 + 37.2063i −0.755886 + 1.48351i
\(630\) 1.78199 9.00249i 0.0709963 0.358668i
\(631\) 13.7619 + 18.9417i 0.547853 + 0.754056i 0.989719 0.143026i \(-0.0456832\pi\)
−0.441866 + 0.897081i \(0.645683\pi\)
\(632\) −20.2398 + 4.08475i −0.805094 + 0.162483i
\(633\) −51.7602 16.8179i −2.05728 0.668452i
\(634\) −1.10645 + 1.98002i −0.0439426 + 0.0786368i
\(635\) 0.460653 + 2.90845i 0.0182805 + 0.115418i
\(636\) −30.7038 + 74.5178i −1.21748 + 2.95482i
\(637\) 1.22576 1.22576i 0.0485662 0.0485662i
\(638\) −6.78824 + 12.6997i −0.268749 + 0.502785i
\(639\) −3.64037 −0.144011
\(640\) 0.682246 + 3.31674i 0.0269681 + 0.131106i
\(641\) −9.52588 6.92095i −0.376249 0.273361i 0.383548 0.923521i \(-0.374702\pi\)
−0.759798 + 0.650160i \(0.774702\pi\)
\(642\) 14.7007 4.16080i 0.580189 0.164214i
\(643\) −12.9935 25.5012i −0.512414 1.00567i −0.991768 0.128047i \(-0.959129\pi\)
0.479354 0.877621i \(-0.340871\pi\)
\(644\) 23.8535 14.6786i 0.939958 0.578418i
\(645\) 0.470111 + 0.0744582i 0.0185106 + 0.00293179i
\(646\) 5.05183 + 0.999982i 0.198762 + 0.0393438i
\(647\) 41.9334 13.6250i 1.64857 0.535653i 0.670141 0.742234i \(-0.266234\pi\)
0.978430 + 0.206581i \(0.0662336\pi\)
\(648\) 35.4705 + 62.9241i 1.39341 + 2.47189i
\(649\) −4.93299 + 10.1461i −0.193637 + 0.398270i
\(650\) −4.16201 9.00603i −0.163247 0.353246i
\(651\) −34.3557 + 67.4268i −1.34651 + 2.64267i
\(652\) 19.9779 + 12.1914i 0.782396 + 0.477451i
\(653\) −2.69363 + 17.0069i −0.105410 + 0.665531i 0.877239 + 0.480054i \(0.159383\pi\)
−0.982649 + 0.185477i \(0.940617\pi\)
\(654\) 63.2895 + 49.7979i 2.47482 + 1.94725i
\(655\) −0.160140 + 0.492860i −0.00625719 + 0.0192576i
\(656\) 5.32091 5.36070i 0.207747 0.209300i
\(657\) 23.3970 + 16.9989i 0.912804 + 0.663191i
\(658\) −11.1344 0.427088i −0.434065 0.0166496i
\(659\) −19.0663 + 19.0663i −0.742717 + 0.742717i −0.973100 0.230383i \(-0.926002\pi\)
0.230383 + 0.973100i \(0.426002\pi\)
\(660\) 1.63514 + 6.24258i 0.0636476 + 0.242992i
\(661\) −11.3411 11.3411i −0.441119 0.441119i 0.451269 0.892388i \(-0.350971\pi\)
−0.892388 + 0.451269i \(0.850971\pi\)
\(662\) 0.182896 0.169384i 0.00710847 0.00658328i
\(663\) −14.0311 + 19.3121i −0.544922 + 0.750021i
\(664\) 30.4649 11.3359i 1.18227 0.439918i
\(665\) 0.577899 + 0.187771i 0.0224100 + 0.00728144i
\(666\) −10.2958 86.2998i −0.398952 3.34405i
\(667\) −14.8172 2.34681i −0.573723 0.0908687i
\(668\) −35.5621 + 8.60779i −1.37594 + 0.333045i
\(669\) 56.4245 + 28.7497i 2.18150 + 1.11153i
\(670\) −1.80905 0.665480i −0.0698897 0.0257097i
\(671\) −4.09148 + 0.726681i −0.157950 + 0.0280532i
\(672\) −43.6782 + 29.4800i −1.68492 + 1.13721i
\(673\) 14.6501 + 45.0884i 0.564720 + 1.73803i 0.668782 + 0.743459i \(0.266816\pi\)
−0.104062 + 0.994571i \(0.533184\pi\)
\(674\) −21.6143 32.2830i −0.832552 1.24349i
\(675\) 11.3989 71.9701i 0.438746 2.77013i
\(676\) 11.4868 + 18.6666i 0.441800 + 0.717948i
\(677\) 40.5627 20.6677i 1.55895 0.794324i 0.559544 0.828801i \(-0.310976\pi\)
0.999406 + 0.0344763i \(0.0109763\pi\)
\(678\) −4.98025 + 8.91234i −0.191265 + 0.342276i
\(679\) 6.21760 8.55779i 0.238610 0.328418i
\(680\) −4.34776 + 0.182990i −0.166729 + 0.00701735i
\(681\) 23.9209i 0.916649i
\(682\) 0.748412 38.0959i 0.0286582 1.45877i
\(683\) −19.0373 19.0373i −0.728442 0.728442i 0.241868 0.970309i \(-0.422240\pi\)
−0.970309 + 0.241868i \(0.922240\pi\)
\(684\) −9.89504 + 4.12027i −0.378346 + 0.157542i
\(685\) −3.84507 + 0.609000i −0.146913 + 0.0232687i
\(686\) −6.38717 22.5667i −0.243863 0.861602i
\(687\) 2.68207 8.25455i 0.102327 0.314931i
\(688\) −1.15619 1.57896i −0.0440794 0.0601973i
\(689\) 14.3294 10.4109i 0.545907 0.396625i
\(690\) −5.58637 + 3.74022i −0.212669 + 0.142388i
\(691\) 29.7721 + 15.1697i 1.13259 + 0.577081i 0.916795 0.399358i \(-0.130767\pi\)
0.215791 + 0.976440i \(0.430767\pi\)
\(692\) 18.2118 1.46743i 0.692310 0.0557835i
\(693\) −57.3754 + 43.3473i −2.17951 + 1.64663i
\(694\) 0.981272 + 2.12334i 0.0372486 + 0.0806009i
\(695\) 5.33062 1.73202i 0.202202 0.0656994i
\(696\) 28.0389 + 3.23922i 1.06281 + 0.122782i
\(697\) 5.70535 + 7.85274i 0.216106 + 0.297444i
\(698\) −2.16184 18.1207i −0.0818268 0.685879i
\(699\) −42.8414 + 21.8288i −1.62041 + 0.825640i
\(700\) 28.0628 + 2.15601i 1.06067 + 0.0814895i
\(701\) −7.42393 + 1.17584i −0.280398 + 0.0444107i −0.295050 0.955482i \(-0.595336\pi\)
0.0146514 + 0.999893i \(0.495336\pi\)
\(702\) 1.14919 29.9600i 0.0433733 1.13077i
\(703\) 5.75461 0.217039
\(704\) 13.3101 22.9530i 0.501642 0.865075i
\(705\) 2.67460 0.100731
\(706\) 1.14009 29.7228i 0.0429079 1.11863i
\(707\) −49.4446 + 7.83126i −1.85956 + 0.294525i
\(708\) 22.0482 + 1.69392i 0.828624 + 0.0636615i
\(709\) −35.4902 + 18.0832i −1.33286 + 0.679128i −0.967768 0.251842i \(-0.918964\pi\)
−0.365095 + 0.930970i \(0.618964\pi\)
\(710\) 0.0241278 + 0.202241i 0.000905500 + 0.00758997i
\(711\) 32.4621 + 44.6802i 1.21742 + 1.67564i
\(712\) 32.4510 + 3.74893i 1.21615 + 0.140497i
\(713\) 37.7527 12.2666i 1.41385 0.459388i
\(714\) −28.4088 61.4729i −1.06317 2.30056i
\(715\) 0.412953 1.35673i 0.0154436 0.0507390i
\(716\) −28.5190 + 2.29794i −1.06580 + 0.0858781i
\(717\) −64.4093 32.8182i −2.40541 1.22562i
\(718\) −31.1503 + 20.8560i −1.16252 + 0.778338i
\(719\) 12.7434 9.25860i 0.475247 0.345287i −0.324235 0.945976i \(-0.605107\pi\)
0.799483 + 0.600689i \(0.205107\pi\)
\(720\) 7.30753 5.35093i 0.272336 0.199418i
\(721\) −9.21114 + 28.3490i −0.343041 + 1.05577i
\(722\) 7.12442 + 25.1715i 0.265144 + 0.936788i
\(723\) 7.57546 1.19983i 0.281734 0.0446223i
\(724\) 1.67124 0.695899i 0.0621111 0.0258629i
\(725\) −10.6600 10.6600i −0.395902 0.395902i
\(726\) 22.9987 45.0319i 0.853560 1.67129i
\(727\) 24.9036i 0.923624i 0.886978 + 0.461812i \(0.152801\pi\)
−0.886978 + 0.461812i \(0.847199\pi\)
\(728\) 11.5705 0.486985i 0.428832 0.0180489i
\(729\) 28.5090 39.2392i 1.05589 1.45330i
\(730\) 0.789304 1.41249i 0.0292135 0.0522785i
\(731\) 2.24085 1.14177i 0.0828809 0.0422299i
\(732\) 4.26876 + 6.93695i 0.157778 + 0.256397i
\(733\) 1.74321 11.0062i 0.0643871 0.406524i −0.934353 0.356348i \(-0.884022\pi\)
0.998740 0.0501761i \(-0.0159783\pi\)
\(734\) 24.4144 + 36.4651i 0.901151 + 1.34595i
\(735\) −0.364767 1.12264i −0.0134546 0.0414091i
\(736\) 27.1355 + 5.26637i 1.00023 + 0.194121i
\(737\) 7.10736 + 13.3270i 0.261803 + 0.490908i
\(738\) −18.9604 6.97481i −0.697942 0.256746i
\(739\) −8.86451 4.51669i −0.326086 0.166149i 0.283282 0.959037i \(-0.408577\pi\)
−0.609368 + 0.792887i \(0.708577\pi\)
\(740\) −4.72615 + 1.14396i −0.173737 + 0.0420529i
\(741\) 3.24918 + 0.514620i 0.119362 + 0.0189050i
\(742\) 5.95242 + 49.8936i 0.218520 + 1.83165i
\(743\) −44.7710 14.5470i −1.64249 0.533677i −0.665397 0.746490i \(-0.731738\pi\)
−0.977093 + 0.212813i \(0.931738\pi\)
\(744\) −69.9969 + 26.0456i −2.56621 + 0.954878i
\(745\) 1.96637 2.70647i 0.0720422 0.0991576i
\(746\) −11.8406 + 10.9658i −0.433516 + 0.401487i
\(747\) −61.4789 61.4789i −2.24940 2.24940i
\(748\) 26.3779 + 21.6070i 0.964470 + 0.790031i
\(749\) 6.73534 6.73534i 0.246104 0.246104i
\(750\) −13.6249 0.522618i −0.497513 0.0190833i
\(751\) 34.9419 + 25.3868i 1.27505 + 0.926377i 0.999392 0.0348791i \(-0.0111046\pi\)
0.275657 + 0.961256i \(0.411105\pi\)
\(752\) −7.80492 7.74699i −0.284616 0.282504i
\(753\) −10.9206 + 33.6102i −0.397969 + 1.22482i
\(754\) −4.87487 3.83569i −0.177532 0.139687i
\(755\) 0.292806 1.84871i 0.0106563 0.0672813i
\(756\) 72.6046 + 44.3064i 2.64060 + 1.61141i
\(757\) −16.3723 + 32.1324i −0.595060 + 1.16787i 0.375458 + 0.926840i \(0.377486\pi\)
−0.970517 + 0.241031i \(0.922514\pi\)
\(758\) 18.0994 + 39.1647i 0.657400 + 1.42253i
\(759\) 52.1745 + 7.26655i 1.89381 + 0.263759i
\(760\) 0.294484 + 0.522411i 0.0106821 + 0.0189498i
\(761\) 21.2422 6.90201i 0.770030 0.250198i 0.102452 0.994738i \(-0.467331\pi\)
0.667578 + 0.744540i \(0.267331\pi\)
\(762\) −44.3657 8.78194i −1.60720 0.318136i
\(763\) 49.5897 + 7.85424i 1.79527 + 0.284343i
\(764\) −11.7430 + 7.22622i −0.424846 + 0.261436i
\(765\) 5.28420 + 10.3708i 0.191051 + 0.374958i
\(766\) 38.3302 10.8488i 1.38493 0.391983i
\(767\) −3.93161 2.85648i −0.141962