Properties

Label 176.2.w.a.5.11
Level $176$
Weight $2$
Character 176.5
Analytic conductor $1.405$
Analytic rank $0$
Dimension $176$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,2,Mod(5,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 5, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 176.w (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40536707557\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 5.11
Character \(\chi\) \(=\) 176.5
Dual form 176.2.w.a.141.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.287066 + 1.38477i) q^{2} +(-0.925602 + 0.146601i) q^{3} +(-1.83519 - 0.795041i) q^{4} +(-1.96526 + 1.00135i) q^{5} +(0.0626996 - 1.32383i) q^{6} +(0.432076 + 0.594702i) q^{7} +(1.62777 - 2.31309i) q^{8} +(-2.01792 + 0.655663i) q^{9} +O(q^{10})\) \(q+(-0.287066 + 1.38477i) q^{2} +(-0.925602 + 0.146601i) q^{3} +(-1.83519 - 0.795041i) q^{4} +(-1.96526 + 1.00135i) q^{5} +(0.0626996 - 1.32383i) q^{6} +(0.432076 + 0.594702i) q^{7} +(1.62777 - 2.31309i) q^{8} +(-2.01792 + 0.655663i) q^{9} +(-0.822483 - 3.00889i) q^{10} +(-1.45785 - 2.97904i) q^{11} +(1.81521 + 0.466851i) q^{12} +(-5.43526 - 2.76940i) q^{13} +(-0.947561 + 0.427609i) q^{14} +(1.67225 - 1.21496i) q^{15} +(2.73582 + 2.91810i) q^{16} +(-1.02771 + 3.16297i) q^{17} +(-0.328667 - 2.98258i) q^{18} +(2.56890 - 0.406874i) q^{19} +(4.40273 - 0.275203i) q^{20} +(-0.487114 - 0.487114i) q^{21} +(4.54379 - 1.16362i) q^{22} +8.39814i q^{23} +(-1.16757 + 2.37963i) q^{24} +(-0.0793790 + 0.109256i) q^{25} +(5.39527 - 6.73160i) q^{26} +(4.27666 - 2.17907i) q^{27} +(-0.320128 - 1.43491i) q^{28} +(-1.17207 + 7.40013i) q^{29} +(1.20240 + 2.66446i) q^{30} +(-1.36897 - 4.21326i) q^{31} +(-4.82626 + 2.95080i) q^{32} +(1.78612 + 2.54368i) q^{33} +(-4.08497 - 2.33113i) q^{34} +(-1.44465 - 0.736085i) q^{35} +(4.22454 + 0.401067i) q^{36} +(-5.69966 - 0.902738i) q^{37} +(-0.174015 + 3.67414i) q^{38} +(5.43688 + 1.76655i) q^{39} +(-0.882781 + 6.17578i) q^{40} +(0.420520 - 0.578796i) q^{41} +(0.814376 - 0.534709i) q^{42} +(-0.0267252 - 0.0267252i) q^{43} +(0.306980 + 6.62614i) q^{44} +(3.30920 - 3.30920i) q^{45} +(-11.6295 - 2.41082i) q^{46} +(4.68618 + 3.40471i) q^{47} +(-2.96008 - 2.29992i) q^{48} +(1.99614 - 6.14348i) q^{49} +(-0.128507 - 0.141285i) q^{50} +(0.487558 - 3.07832i) q^{51} +(7.77293 + 9.40363i) q^{52} +(-2.13215 + 4.18458i) q^{53} +(1.78983 + 6.54774i) q^{54} +(5.84812 + 4.39476i) q^{55} +(2.07892 - 0.0313923i) q^{56} +(-2.31813 + 0.753206i) q^{57} +(-9.91103 - 3.74737i) q^{58} +(-10.3333 - 1.63664i) q^{59} +(-4.03483 + 0.900173i) q^{60} +(3.34828 + 6.57137i) q^{61} +(6.22740 - 0.686232i) q^{62} +(-1.26182 - 0.916766i) q^{63} +(-2.70074 - 7.53034i) q^{64} +13.4548 q^{65} +(-4.03515 + 1.74317i) q^{66} +(7.12513 - 7.12513i) q^{67} +(4.40074 - 4.98757i) q^{68} +(-1.23118 - 7.77334i) q^{69} +(1.43402 - 1.78920i) q^{70} +(-7.44352 - 2.41855i) q^{71} +(-1.76811 + 5.73490i) q^{72} +(-0.395318 - 0.544108i) q^{73} +(2.88626 - 7.63359i) q^{74} +(0.0574563 - 0.112764i) q^{75} +(-5.03789 - 1.29569i) q^{76} +(1.14173 - 2.15416i) q^{77} +(-4.00701 + 7.02173i) q^{78} +(-1.81458 - 5.58470i) q^{79} +(-8.29864 - 2.99531i) q^{80} +(1.51061 - 1.09752i) q^{81} +(0.680784 + 0.748476i) q^{82} +(4.16650 + 8.17722i) q^{83} +(0.506670 + 1.28122i) q^{84} +(-1.14752 - 7.24517i) q^{85} +(0.0446802 - 0.0293364i) q^{86} -7.02140i q^{87} +(-9.26382 - 1.47704i) q^{88} -16.1858i q^{89} +(3.63253 + 5.53244i) q^{90} +(-0.701477 - 4.42895i) q^{91} +(6.67687 - 15.4122i) q^{92} +(1.88479 + 3.69911i) q^{93} +(-6.05999 + 5.51192i) q^{94} +(-4.64113 + 3.37198i) q^{95} +(4.03460 - 3.43880i) q^{96} +(1.32271 + 4.07088i) q^{97} +(7.93430 + 4.52778i) q^{98} +(4.89508 + 5.05560i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8} - 16 q^{10} - 12 q^{11} - 6 q^{13} - 12 q^{15} + 14 q^{16} - 12 q^{17} - 44 q^{18} - 6 q^{19} + 2 q^{20} - 28 q^{21} + 50 q^{22} - 38 q^{24} - 68 q^{26} - 18 q^{27} - 46 q^{28} - 22 q^{29} + 26 q^{30} - 12 q^{31} - 16 q^{32} - 16 q^{33} + 12 q^{34} - 26 q^{35} - 22 q^{36} + 18 q^{37} - 34 q^{38} + 14 q^{40} - 10 q^{42} - 40 q^{43} + 2 q^{44} - 24 q^{45} + 38 q^{46} - 12 q^{47} - 26 q^{48} + 8 q^{49} - 62 q^{50} + 6 q^{51} + 74 q^{52} - 30 q^{53} - 52 q^{54} - 96 q^{56} - 26 q^{58} + 10 q^{59} + 118 q^{60} - 6 q^{61} - 42 q^{62} - 28 q^{63} - 106 q^{64} - 32 q^{65} + 6 q^{66} + 24 q^{67} + 116 q^{68} + 12 q^{69} + 52 q^{70} - 98 q^{72} + 96 q^{74} - 46 q^{75} + 112 q^{76} - 14 q^{77} + 44 q^{78} - 52 q^{79} - 28 q^{80} + 66 q^{82} + 54 q^{83} + 120 q^{84} + 14 q^{85} + 86 q^{86} + 142 q^{88} + 228 q^{90} - 122 q^{91} + 146 q^{92} + 6 q^{93} + 56 q^{94} + 52 q^{95} + 86 q^{96} - 12 q^{97} + 140 q^{98} + 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.287066 + 1.38477i −0.202986 + 0.979182i
\(3\) −0.925602 + 0.146601i −0.534397 + 0.0846401i −0.417800 0.908539i \(-0.637199\pi\)
−0.116597 + 0.993179i \(0.537199\pi\)
\(4\) −1.83519 0.795041i −0.917593 0.397520i
\(5\) −1.96526 + 1.00135i −0.878891 + 0.447817i −0.834379 0.551191i \(-0.814173\pi\)
−0.0445124 + 0.999009i \(0.514173\pi\)
\(6\) 0.0626996 1.32383i 0.0255970 0.540452i
\(7\) 0.432076 + 0.594702i 0.163309 + 0.224776i 0.882827 0.469698i \(-0.155637\pi\)
−0.719518 + 0.694474i \(0.755637\pi\)
\(8\) 1.62777 2.31309i 0.575503 0.817799i
\(9\) −2.01792 + 0.655663i −0.672641 + 0.218554i
\(10\) −0.822483 3.00889i −0.260092 0.951495i
\(11\) −1.45785 2.97904i −0.439560 0.898213i
\(12\) 1.81521 + 0.466851i 0.524005 + 0.134768i
\(13\) −5.43526 2.76940i −1.50747 0.768094i −0.511629 0.859206i \(-0.670958\pi\)
−0.995841 + 0.0911120i \(0.970958\pi\)
\(14\) −0.947561 + 0.427609i −0.253246 + 0.114283i
\(15\) 1.67225 1.21496i 0.431773 0.313702i
\(16\) 2.73582 + 2.91810i 0.683955 + 0.729524i
\(17\) −1.02771 + 3.16297i −0.249257 + 0.767134i 0.745650 + 0.666337i \(0.232139\pi\)
−0.994907 + 0.100796i \(0.967861\pi\)
\(18\) −0.328667 2.98258i −0.0774676 0.703001i
\(19\) 2.56890 0.406874i 0.589346 0.0933432i 0.145363 0.989378i \(-0.453565\pi\)
0.443983 + 0.896035i \(0.353565\pi\)
\(20\) 4.40273 0.275203i 0.984481 0.0615372i
\(21\) −0.487114 0.487114i −0.106297 0.106297i
\(22\) 4.54379 1.16362i 0.968739 0.248084i
\(23\) 8.39814i 1.75113i 0.483097 + 0.875567i \(0.339512\pi\)
−0.483097 + 0.875567i \(0.660488\pi\)
\(24\) −1.16757 + 2.37963i −0.238328 + 0.485740i
\(25\) −0.0793790 + 0.109256i −0.0158758 + 0.0218512i
\(26\) 5.39527 6.73160i 1.05810 1.32017i
\(27\) 4.27666 2.17907i 0.823045 0.419362i
\(28\) −0.320128 1.43491i −0.0604986 0.271172i
\(29\) −1.17207 + 7.40013i −0.217647 + 1.37417i 0.600713 + 0.799464i \(0.294883\pi\)
−0.818360 + 0.574705i \(0.805117\pi\)
\(30\) 1.20240 + 2.66446i 0.219527 + 0.486461i
\(31\) −1.36897 4.21326i −0.245875 0.756725i −0.995491 0.0948524i \(-0.969762\pi\)
0.749617 0.661872i \(-0.230238\pi\)
\(32\) −4.82626 + 2.95080i −0.853170 + 0.521633i
\(33\) 1.78612 + 2.54368i 0.310924 + 0.442798i
\(34\) −4.08497 2.33113i −0.700567 0.399785i
\(35\) −1.44465 0.736085i −0.244190 0.124421i
\(36\) 4.22454 + 0.401067i 0.704091 + 0.0668445i
\(37\) −5.69966 0.902738i −0.937019 0.148409i −0.330794 0.943703i \(-0.607317\pi\)
−0.606224 + 0.795294i \(0.707317\pi\)
\(38\) −0.174015 + 3.67414i −0.0282290 + 0.596024i
\(39\) 5.43688 + 1.76655i 0.870598 + 0.282875i
\(40\) −0.882781 + 6.17578i −0.139580 + 0.976477i
\(41\) 0.420520 0.578796i 0.0656742 0.0903927i −0.774916 0.632064i \(-0.782208\pi\)
0.840591 + 0.541671i \(0.182208\pi\)
\(42\) 0.814376 0.534709i 0.125661 0.0825073i
\(43\) −0.0267252 0.0267252i −0.00407555 0.00407555i 0.705066 0.709142i \(-0.250917\pi\)
−0.709142 + 0.705066i \(0.750917\pi\)
\(44\) 0.306980 + 6.62614i 0.0462789 + 0.998929i
\(45\) 3.30920 3.30920i 0.493306 0.493306i
\(46\) −11.6295 2.41082i −1.71468 0.355456i
\(47\) 4.68618 + 3.40471i 0.683550 + 0.496628i 0.874534 0.484965i \(-0.161168\pi\)
−0.190983 + 0.981593i \(0.561168\pi\)
\(48\) −2.96008 2.29992i −0.427250 0.331965i
\(49\) 1.99614 6.14348i 0.285163 0.877640i
\(50\) −0.128507 0.141285i −0.0181737 0.0199808i
\(51\) 0.487558 3.07832i 0.0682717 0.431051i
\(52\) 7.77293 + 9.40363i 1.07791 + 1.30405i
\(53\) −2.13215 + 4.18458i −0.292873 + 0.574796i −0.989820 0.142327i \(-0.954541\pi\)
0.696947 + 0.717123i \(0.254541\pi\)
\(54\) 1.78983 + 6.54774i 0.243565 + 0.891035i
\(55\) 5.84812 + 4.39476i 0.788561 + 0.592589i
\(56\) 2.07892 0.0313923i 0.277807 0.00419497i
\(57\) −2.31813 + 0.753206i −0.307044 + 0.0997646i
\(58\) −9.91103 3.74737i −1.30138 0.492053i
\(59\) −10.3333 1.63664i −1.34528 0.213072i −0.558092 0.829779i \(-0.688466\pi\)
−0.787193 + 0.616707i \(0.788466\pi\)
\(60\) −4.03483 + 0.900173i −0.520895 + 0.116212i
\(61\) 3.34828 + 6.57137i 0.428704 + 0.841378i 0.999790 + 0.0204883i \(0.00652207\pi\)
−0.571087 + 0.820890i \(0.693478\pi\)
\(62\) 6.22740 0.686232i 0.790880 0.0871515i
\(63\) −1.26182 0.916766i −0.158974 0.115502i
\(64\) −2.70074 7.53034i −0.337592 0.941293i
\(65\) 13.4548 1.66887
\(66\) −4.03515 + 1.74317i −0.496693 + 0.214569i
\(67\) 7.12513 7.12513i 0.870474 0.870474i −0.122050 0.992524i \(-0.538947\pi\)
0.992524 + 0.122050i \(0.0389469\pi\)
\(68\) 4.40074 4.98757i 0.533668 0.604832i
\(69\) −1.23118 7.77334i −0.148216 0.935800i
\(70\) 1.43402 1.78920i 0.171398 0.213851i
\(71\) −7.44352 2.41855i −0.883383 0.287028i −0.168022 0.985783i \(-0.553738\pi\)
−0.715361 + 0.698755i \(0.753738\pi\)
\(72\) −1.76811 + 5.73490i −0.208373 + 0.675864i
\(73\) −0.395318 0.544108i −0.0462685 0.0636831i 0.785256 0.619171i \(-0.212531\pi\)
−0.831524 + 0.555488i \(0.812531\pi\)
\(74\) 2.88626 7.63359i 0.335521 0.887387i
\(75\) 0.0574563 0.112764i 0.00663449 0.0130209i
\(76\) −5.03789 1.29569i −0.577886 0.148626i
\(77\) 1.14173 2.15416i 0.130113 0.245489i
\(78\) −4.00701 + 7.02173i −0.453705 + 0.795054i
\(79\) −1.81458 5.58470i −0.204156 0.628328i −0.999747 0.0224938i \(-0.992839\pi\)
0.795591 0.605834i \(-0.207161\pi\)
\(80\) −8.29864 2.99531i −0.927816 0.334885i
\(81\) 1.51061 1.09752i 0.167845 0.121947i
\(82\) 0.680784 + 0.748476i 0.0751800 + 0.0826554i
\(83\) 4.16650 + 8.17722i 0.457333 + 0.897567i 0.998398 + 0.0565858i \(0.0180215\pi\)
−0.541065 + 0.840981i \(0.681979\pi\)
\(84\) 0.506670 + 1.28122i 0.0552822 + 0.139793i
\(85\) −1.14752 7.24517i −0.124466 0.785849i
\(86\) 0.0446802 0.0293364i 0.00481798 0.00316343i
\(87\) 7.02140i 0.752773i
\(88\) −9.26382 1.47704i −0.987526 0.157453i
\(89\) 16.1858i 1.71569i −0.513905 0.857847i \(-0.671802\pi\)
0.513905 0.857847i \(-0.328198\pi\)
\(90\) 3.63253 + 5.53244i 0.382902 + 0.583170i
\(91\) −0.701477 4.42895i −0.0735348 0.464280i
\(92\) 6.67687 15.4122i 0.696111 1.60683i
\(93\) 1.88479 + 3.69911i 0.195444 + 0.383580i
\(94\) −6.05999 + 5.51192i −0.625040 + 0.568511i
\(95\) −4.64113 + 3.37198i −0.476170 + 0.345958i
\(96\) 4.03460 3.43880i 0.411780 0.350971i
\(97\) 1.32271 + 4.07088i 0.134301 + 0.413335i 0.995481 0.0949653i \(-0.0302740\pi\)
−0.861180 + 0.508300i \(0.830274\pi\)
\(98\) 7.93430 + 4.52778i 0.801485 + 0.457375i
\(99\) 4.89508 + 5.05560i 0.491974 + 0.508107i
\(100\) 0.232538 0.137395i 0.0232538 0.0137395i
\(101\) 0.398218 0.781547i 0.0396242 0.0777668i −0.870346 0.492441i \(-0.836105\pi\)
0.909970 + 0.414675i \(0.136105\pi\)
\(102\) 4.12281 + 1.55883i 0.408219 + 0.154348i
\(103\) −0.0196990 0.0271134i −0.00194100 0.00267156i 0.808045 0.589120i \(-0.200526\pi\)
−0.809986 + 0.586449i \(0.800526\pi\)
\(104\) −15.2532 + 8.06428i −1.49570 + 0.790767i
\(105\) 1.44508 + 0.469535i 0.141025 + 0.0458219i
\(106\) −5.18262 4.15379i −0.503380 0.403452i
\(107\) 0.132779 + 0.838337i 0.0128363 + 0.0810451i 0.993275 0.115780i \(-0.0369368\pi\)
−0.980439 + 0.196825i \(0.936937\pi\)
\(108\) −9.58093 + 0.598877i −0.921925 + 0.0576270i
\(109\) −13.6066 + 13.6066i −1.30328 + 1.30328i −0.377104 + 0.926171i \(0.623080\pi\)
−0.926171 + 0.377104i \(0.876920\pi\)
\(110\) −7.76454 + 6.83673i −0.740320 + 0.651857i
\(111\) 5.40796 0.513301
\(112\) −0.553314 + 2.88784i −0.0522833 + 0.272875i
\(113\) 0.379760 + 0.275912i 0.0357248 + 0.0259556i 0.605504 0.795842i \(-0.292971\pi\)
−0.569780 + 0.821798i \(0.692971\pi\)
\(114\) −0.377563 3.42630i −0.0353620 0.320902i
\(115\) −8.40948 16.5045i −0.784188 1.53906i
\(116\) 8.03436 12.6488i 0.745972 1.17441i
\(117\) 12.7837 + 2.02474i 1.18186 + 0.187188i
\(118\) 5.23271 13.8395i 0.481710 1.27403i
\(119\) −2.32508 + 0.755463i −0.213139 + 0.0692532i
\(120\) −0.0882723 5.84573i −0.00805812 0.533640i
\(121\) −6.74932 + 8.68600i −0.613575 + 0.789637i
\(122\) −10.0610 + 2.75019i −0.910883 + 0.248991i
\(123\) −0.304382 + 0.597383i −0.0274452 + 0.0538642i
\(124\) −0.837396 + 8.82052i −0.0752004 + 0.792106i
\(125\) 1.77181 11.1867i 0.158475 1.00057i
\(126\) 1.63174 1.48416i 0.145367 0.132220i
\(127\) −2.72565 + 8.38870i −0.241863 + 0.744376i 0.754274 + 0.656560i \(0.227989\pi\)
−0.996137 + 0.0878167i \(0.972011\pi\)
\(128\) 11.2031 1.57820i 0.990223 0.139495i
\(129\) 0.0286548 + 0.0208189i 0.00252292 + 0.00183301i
\(130\) −3.86242 + 18.6319i −0.338757 + 1.63413i
\(131\) 3.75420 3.75420i 0.328006 0.328006i −0.523822 0.851828i \(-0.675494\pi\)
0.851828 + 0.523822i \(0.175494\pi\)
\(132\) −1.25554 6.08817i −0.109281 0.529907i
\(133\) 1.35193 + 1.35193i 0.117227 + 0.117227i
\(134\) 7.82131 + 11.9121i 0.675658 + 1.02905i
\(135\) −6.22275 + 8.56488i −0.535569 + 0.737147i
\(136\) 5.64335 + 7.52578i 0.483913 + 0.645330i
\(137\) 12.3001 + 3.99655i 1.05087 + 0.341449i 0.783010 0.622009i \(-0.213683\pi\)
0.267861 + 0.963458i \(0.413683\pi\)
\(138\) 11.1177 + 0.526560i 0.946404 + 0.0448238i
\(139\) −6.72027 1.06439i −0.570006 0.0902801i −0.135223 0.990815i \(-0.543175\pi\)
−0.434783 + 0.900535i \(0.643175\pi\)
\(140\) 2.06598 + 2.49941i 0.174607 + 0.211238i
\(141\) −4.83667 2.46441i −0.407321 0.207541i
\(142\) 5.48591 9.61329i 0.460367 0.806730i
\(143\) −0.326336 + 20.2292i −0.0272896 + 1.69165i
\(144\) −7.43396 4.09472i −0.619497 0.341226i
\(145\) −5.10671 15.7168i −0.424089 1.30521i
\(146\) 0.866948 0.391230i 0.0717491 0.0323785i
\(147\) −0.946989 + 5.97905i −0.0781064 + 0.493144i
\(148\) 9.74223 + 6.18816i 0.800807 + 0.508663i
\(149\) −6.61987 + 3.37299i −0.542321 + 0.276326i −0.703617 0.710580i \(-0.748433\pi\)
0.161296 + 0.986906i \(0.448433\pi\)
\(150\) 0.139659 + 0.111935i 0.0114031 + 0.00913943i
\(151\) −5.35334 + 7.36824i −0.435649 + 0.599619i −0.969238 0.246125i \(-0.920843\pi\)
0.533590 + 0.845744i \(0.320843\pi\)
\(152\) 3.24044 6.60438i 0.262834 0.535686i
\(153\) 7.05647i 0.570481i
\(154\) 2.65527 + 2.19943i 0.213968 + 0.177235i
\(155\) 6.90934 + 6.90934i 0.554972 + 0.554972i
\(156\) −8.57322 7.56449i −0.686407 0.605644i
\(157\) −1.54437 + 0.244605i −0.123254 + 0.0195216i −0.217757 0.976003i \(-0.569874\pi\)
0.0945024 + 0.995525i \(0.469874\pi\)
\(158\) 8.25444 0.909604i 0.656688 0.0723642i
\(159\) 1.36006 4.18583i 0.107860 0.331958i
\(160\) 6.53007 10.6319i 0.516247 0.840523i
\(161\) −4.99439 + 3.62864i −0.393613 + 0.285977i
\(162\) 1.08617 + 2.40691i 0.0853377 + 0.189104i
\(163\) 1.66359 + 0.847642i 0.130303 + 0.0663925i 0.517926 0.855425i \(-0.326704\pi\)
−0.387624 + 0.921818i \(0.626704\pi\)
\(164\) −1.23190 + 0.727868i −0.0961951 + 0.0568370i
\(165\) −6.05731 3.21046i −0.471561 0.249934i
\(166\) −12.5196 + 3.42226i −0.971713 + 0.265619i
\(167\) 0.188132 0.0611278i 0.0145581 0.00473021i −0.301729 0.953394i \(-0.597564\pi\)
0.316287 + 0.948664i \(0.397564\pi\)
\(168\) −1.91965 + 0.333828i −0.148104 + 0.0257554i
\(169\) 14.2313 + 19.5876i 1.09471 + 1.50674i
\(170\) 10.3623 + 0.490782i 0.794753 + 0.0376413i
\(171\) −4.91707 + 2.50537i −0.376018 + 0.191591i
\(172\) 0.0277981 + 0.0702933i 0.00211958 + 0.00535981i
\(173\) −6.98029 + 1.10557i −0.530702 + 0.0840549i −0.416034 0.909349i \(-0.636580\pi\)
−0.114668 + 0.993404i \(0.536580\pi\)
\(174\) 9.72304 + 2.01560i 0.737102 + 0.152802i
\(175\) −0.0992724 −0.00750429
\(176\) 4.70469 12.4043i 0.354629 0.935007i
\(177\) 9.80448 0.736950
\(178\) 22.4137 + 4.64639i 1.67998 + 0.348262i
\(179\) −24.1683 + 3.82788i −1.80642 + 0.286109i −0.966513 0.256619i \(-0.917391\pi\)
−0.839908 + 0.542728i \(0.817391\pi\)
\(180\) −8.70394 + 3.44205i −0.648753 + 0.256555i
\(181\) 10.6143 5.40824i 0.788953 0.401991i −0.0125962 0.999921i \(-0.504010\pi\)
0.801549 + 0.597929i \(0.204010\pi\)
\(182\) 6.33446 + 0.300014i 0.469541 + 0.0222385i
\(183\) −4.06255 5.59161i −0.300312 0.413344i
\(184\) 19.4256 + 13.6702i 1.43208 + 1.00778i
\(185\) 12.1053 3.93324i 0.889998 0.289178i
\(186\) −5.66349 + 1.54812i −0.415267 + 0.113514i
\(187\) 10.9209 1.54956i 0.798613 0.113315i
\(188\) −5.89314 9.97399i −0.429801 0.727428i
\(189\) 3.14374 + 1.60182i 0.228674 + 0.116515i
\(190\) −3.33711 7.39489i −0.242100 0.536482i
\(191\) 2.12495 1.54386i 0.153756 0.111710i −0.508247 0.861211i \(-0.669706\pi\)
0.662003 + 0.749501i \(0.269706\pi\)
\(192\) 3.60376 + 6.57417i 0.260079 + 0.474450i
\(193\) −0.755130 + 2.32405i −0.0543554 + 0.167289i −0.974549 0.224175i \(-0.928031\pi\)
0.920193 + 0.391464i \(0.128031\pi\)
\(194\) −6.01694 + 0.663040i −0.431991 + 0.0476035i
\(195\) −12.4538 + 1.97249i −0.891837 + 0.141253i
\(196\) −8.54761 + 9.68743i −0.610543 + 0.691959i
\(197\) 12.3077 + 12.3077i 0.876888 + 0.876888i 0.993211 0.116323i \(-0.0371108\pi\)
−0.116323 + 0.993211i \(0.537111\pi\)
\(198\) −8.40607 + 5.32728i −0.597393 + 0.378593i
\(199\) 11.2797i 0.799598i −0.916603 0.399799i \(-0.869080\pi\)
0.916603 0.399799i \(-0.130920\pi\)
\(200\) 0.123507 + 0.361454i 0.00873329 + 0.0255586i
\(201\) −5.55049 + 7.63959i −0.391501 + 0.538855i
\(202\) 0.967949 + 0.775796i 0.0681047 + 0.0545848i
\(203\) −4.90729 + 2.50039i −0.344424 + 0.175493i
\(204\) −3.34215 + 5.26166i −0.233997 + 0.368390i
\(205\) −0.246854 + 1.55857i −0.0172410 + 0.108855i
\(206\) 0.0432007 0.0194953i 0.00300994 0.00135830i
\(207\) −5.50635 16.9468i −0.382718 1.17788i
\(208\) −6.78851 23.4372i −0.470699 1.62508i
\(209\) −4.95717 7.05968i −0.342895 0.488328i
\(210\) −1.06503 + 1.86632i −0.0734941 + 0.128788i
\(211\) 22.7301 + 11.5816i 1.56480 + 0.797307i 0.999618 0.0276558i \(-0.00880424\pi\)
0.565186 + 0.824963i \(0.308804\pi\)
\(212\) 7.23980 5.98434i 0.497232 0.411006i
\(213\) 7.24429 + 1.14738i 0.496371 + 0.0786174i
\(214\) −1.19902 0.0567883i −0.0819634 0.00388197i
\(215\) 0.0792832 + 0.0257607i 0.00540707 + 0.00175686i
\(216\) 1.92105 13.4393i 0.130711 0.914430i
\(217\) 1.91414 2.63458i 0.129940 0.178847i
\(218\) −14.9360 22.7480i −1.01160 1.54069i
\(219\) 0.445674 + 0.445674i 0.0301158 + 0.0301158i
\(220\) −7.23839 12.7147i −0.488012 0.857225i
\(221\) 14.3454 14.3454i 0.964978 0.964978i
\(222\) −1.55244 + 7.48879i −0.104193 + 0.502615i
\(223\) 1.95157 + 1.41790i 0.130687 + 0.0949497i 0.651208 0.758899i \(-0.274262\pi\)
−0.520521 + 0.853849i \(0.674262\pi\)
\(224\) −3.84016 1.59521i −0.256581 0.106585i
\(225\) 0.0885457 0.272516i 0.00590305 0.0181677i
\(226\) −0.491091 + 0.446677i −0.0326669 + 0.0297125i
\(227\) 0.480428 3.03330i 0.0318871 0.201327i −0.966602 0.256284i \(-0.917502\pi\)
0.998489 + 0.0549562i \(0.0175019\pi\)
\(228\) 4.85303 + 0.460734i 0.321400 + 0.0305128i
\(229\) 6.73753 13.2231i 0.445229 0.873810i −0.553921 0.832569i \(-0.686869\pi\)
0.999149 0.0412408i \(-0.0131311\pi\)
\(230\) 25.2691 6.90733i 1.66620 0.455456i
\(231\) −0.740990 + 2.16127i −0.0487536 + 0.142201i
\(232\) 15.2093 + 14.7568i 0.998539 + 0.968831i
\(233\) −26.8296 + 8.71746i −1.75766 + 0.571100i −0.996954 0.0779909i \(-0.975150\pi\)
−0.760711 + 0.649091i \(0.775150\pi\)
\(234\) −6.47358 + 17.1213i −0.423191 + 1.11926i
\(235\) −12.6189 1.99863i −0.823165 0.130377i
\(236\) 17.6624 + 11.2189i 1.14972 + 0.730291i
\(237\) 2.49830 + 4.90319i 0.162282 + 0.318497i
\(238\) −0.378695 3.43657i −0.0245471 0.222760i
\(239\) −14.6675 10.6566i −0.948762 0.689316i 0.00175209 0.999998i \(-0.499442\pi\)
−0.950514 + 0.310683i \(0.899442\pi\)
\(240\) 8.12035 + 1.55587i 0.524166 + 0.100431i
\(241\) −23.7447 −1.52953 −0.764764 0.644311i \(-0.777144\pi\)
−0.764764 + 0.644311i \(0.777144\pi\)
\(242\) −10.0906 11.8397i −0.648651 0.761086i
\(243\) −11.4193 + 11.4193i −0.732546 + 0.732546i
\(244\) −0.920213 14.7217i −0.0589106 0.942461i
\(245\) 2.22885 + 14.0724i 0.142396 + 0.899051i
\(246\) −0.739862 0.592988i −0.0471719 0.0378075i
\(247\) −15.0894 4.90285i −0.960118 0.311961i
\(248\) −11.9740 3.69167i −0.760351 0.234421i
\(249\) −5.05531 6.95804i −0.320367 0.440948i
\(250\) 14.9825 + 5.66488i 0.947574 + 0.358278i
\(251\) −10.6136 + 20.8304i −0.669924 + 1.31480i 0.266467 + 0.963844i \(0.414144\pi\)
−0.936392 + 0.350957i \(0.885856\pi\)
\(252\) 1.58681 + 2.68564i 0.0999596 + 0.169179i
\(253\) 25.0184 12.2433i 1.57289 0.769728i
\(254\) −10.8340 6.18251i −0.679785 0.387925i
\(255\) 2.12430 + 6.53791i 0.133029 + 0.409420i
\(256\) −1.03057 + 15.9668i −0.0644108 + 0.997923i
\(257\) −20.7023 + 15.0411i −1.29137 + 0.938236i −0.999832 0.0183231i \(-0.994167\pi\)
−0.291539 + 0.956559i \(0.594167\pi\)
\(258\) −0.0370553 + 0.0337040i −0.00230696 + 0.00209832i
\(259\) −1.92583 3.77965i −0.119665 0.234856i
\(260\) −24.6922 10.6972i −1.53134 0.663409i
\(261\) −2.48685 15.7014i −0.153932 0.971890i
\(262\) 4.12101 + 6.27642i 0.254597 + 0.387758i
\(263\) 13.8344i 0.853067i −0.904472 0.426534i \(-0.859735\pi\)
0.904472 0.426534i \(-0.140265\pi\)
\(264\) 8.79114 + 0.00906686i 0.541058 + 0.000558027i
\(265\) 10.3588i 0.636337i
\(266\) −2.26021 + 1.48402i −0.138582 + 0.0909912i
\(267\) 2.37286 + 14.9816i 0.145216 + 0.916861i
\(268\) −18.7407 + 7.41118i −1.14477 + 0.452710i
\(269\) −3.90636 7.66667i −0.238175 0.467445i 0.740718 0.671816i \(-0.234485\pi\)
−0.978894 + 0.204371i \(0.934485\pi\)
\(270\) −10.0741 11.0758i −0.613088 0.674050i
\(271\) 9.50751 6.90761i 0.577540 0.419607i −0.260296 0.965529i \(-0.583820\pi\)
0.837836 + 0.545921i \(0.183820\pi\)
\(272\) −12.0415 + 5.65436i −0.730123 + 0.342846i
\(273\) 1.29858 + 3.99661i 0.0785935 + 0.241886i
\(274\) −9.06526 + 15.8856i −0.547652 + 0.959684i
\(275\) 0.441200 + 0.0771939i 0.0266054 + 0.00465496i
\(276\) −3.92068 + 15.2444i −0.235997 + 0.917603i
\(277\) −12.0085 + 23.5681i −0.721523 + 1.41607i 0.180146 + 0.983640i \(0.442343\pi\)
−0.901668 + 0.432428i \(0.857657\pi\)
\(278\) 3.40309 9.00049i 0.204104 0.539814i
\(279\) 5.52496 + 7.60446i 0.330771 + 0.455267i
\(280\) −4.05418 + 2.14342i −0.242284 + 0.128094i
\(281\) 11.1922 + 3.63658i 0.667673 + 0.216940i 0.623191 0.782070i \(-0.285836\pi\)
0.0444825 + 0.999010i \(0.485836\pi\)
\(282\) 4.80109 5.99024i 0.285901 0.356714i
\(283\) 3.63109 + 22.9258i 0.215846 + 1.36280i 0.822922 + 0.568154i \(0.192342\pi\)
−0.607076 + 0.794644i \(0.707658\pi\)
\(284\) 11.7374 + 10.3564i 0.696487 + 0.614538i
\(285\) 3.80151 3.80151i 0.225182 0.225182i
\(286\) −27.9192 6.25902i −1.65090 0.370103i
\(287\) 0.525908 0.0310434
\(288\) 7.80428 9.11889i 0.459872 0.537336i
\(289\) 4.80509 + 3.49110i 0.282652 + 0.205359i
\(290\) 23.2302 2.55987i 1.36412 0.150320i
\(291\) −1.82110 3.57410i −0.106755 0.209518i
\(292\) 0.292894 + 1.31283i 0.0171403 + 0.0768278i
\(293\) −12.8387 2.03345i −0.750043 0.118795i −0.230302 0.973119i \(-0.573972\pi\)
−0.519741 + 0.854324i \(0.673972\pi\)
\(294\) −8.00778 3.02774i −0.467023 0.176582i
\(295\) 21.9465 7.13086i 1.27778 0.415175i
\(296\) −11.3658 + 11.7144i −0.660626 + 0.680884i
\(297\) −12.7263 9.56358i −0.738454 0.554935i
\(298\) −2.77049 10.1353i −0.160490 0.587121i
\(299\) 23.2578 45.6461i 1.34504 2.63978i
\(300\) −0.195095 + 0.161264i −0.0112638 + 0.00931056i
\(301\) 0.00434620 0.0274408i 0.000250511 0.00158166i
\(302\) −8.66657 9.52832i −0.498705 0.548293i
\(303\) −0.254016 + 0.781780i −0.0145928 + 0.0449121i
\(304\) 8.21534 + 6.38316i 0.471182 + 0.366099i
\(305\) −13.1605 9.56166i −0.753568 0.547499i
\(306\) 9.77160 + 2.02567i 0.558605 + 0.115800i
\(307\) 9.33986 9.33986i 0.533054 0.533054i −0.388426 0.921480i \(-0.626981\pi\)
0.921480 + 0.388426i \(0.126981\pi\)
\(308\) −3.80794 + 3.04556i −0.216978 + 0.173537i
\(309\) 0.0222083 + 0.0222083i 0.00126339 + 0.00126339i
\(310\) −11.5513 + 7.58443i −0.656070 + 0.430767i
\(311\) 19.4285 26.7410i 1.10169 1.51634i 0.268559 0.963263i \(-0.413453\pi\)
0.833128 0.553080i \(-0.186547\pi\)
\(312\) 12.9362 9.70045i 0.732367 0.549180i
\(313\) −0.573136 0.186223i −0.0323955 0.0105260i 0.292774 0.956182i \(-0.405422\pi\)
−0.325170 + 0.945656i \(0.605422\pi\)
\(314\) 0.104615 2.20882i 0.00590375 0.124651i
\(315\) 3.39781 + 0.538160i 0.191445 + 0.0303219i
\(316\) −1.10997 + 11.6916i −0.0624409 + 0.657706i
\(317\) −9.05801 4.61529i −0.508749 0.259220i 0.180722 0.983534i \(-0.442157\pi\)
−0.689470 + 0.724314i \(0.742157\pi\)
\(318\) 5.40599 + 3.08498i 0.303153 + 0.172997i
\(319\) 23.7540 7.29669i 1.32997 0.408536i
\(320\) 12.8482 + 12.0947i 0.718234 + 0.676114i
\(321\) −0.245802 0.756501i −0.0137193 0.0422237i
\(322\) −3.59112 7.95775i −0.200125 0.443468i
\(323\) −1.35316 + 8.54351i −0.0752917 + 0.475373i
\(324\) −3.64482 + 0.813160i −0.202490 + 0.0451756i
\(325\) 0.734019 0.374001i 0.0407160 0.0207459i
\(326\) −1.65135 + 2.06037i −0.0914599 + 0.114113i
\(327\) 10.5995 14.5890i 0.586156 0.806775i
\(328\) −0.654296 1.91484i −0.0361274 0.105730i
\(329\) 4.25798i 0.234750i
\(330\) 6.18460 7.46638i 0.340451 0.411011i
\(331\) 12.0259 + 12.0259i 0.661005 + 0.661005i 0.955617 0.294612i \(-0.0951903\pi\)
−0.294612 + 0.955617i \(0.595190\pi\)
\(332\) −1.14509 18.3193i −0.0628448 1.00540i
\(333\) 12.0934 1.91540i 0.662713 0.104963i
\(334\) 0.0306418 + 0.278068i 0.00167665 + 0.0152152i
\(335\) −6.86799 + 21.1375i −0.375238 + 1.15487i
\(336\) 0.0887892 2.75410i 0.00484385 0.150249i
\(337\) −10.5193 + 7.64271i −0.573022 + 0.416325i −0.836202 0.548422i \(-0.815229\pi\)
0.263180 + 0.964747i \(0.415229\pi\)
\(338\) −31.2097 + 14.0841i −1.69758 + 0.766074i
\(339\) −0.391956 0.199711i −0.0212881 0.0108468i
\(340\) −3.65429 + 14.2086i −0.198181 + 0.770567i
\(341\) −10.5557 + 10.2205i −0.571624 + 0.553474i
\(342\) −2.05785 7.52822i −0.111276 0.407080i
\(343\) 9.40982 3.05744i 0.508083 0.165086i
\(344\) −0.105320 + 0.0183152i −0.00567848 + 0.000987491i
\(345\) 10.2034 + 14.0438i 0.549333 + 0.756093i
\(346\) 0.472840 9.98348i 0.0254200 0.536715i
\(347\) 19.5889 9.98104i 1.05159 0.535810i 0.159277 0.987234i \(-0.449084\pi\)
0.892310 + 0.451424i \(0.149084\pi\)
\(348\) −5.58230 + 12.8856i −0.299243 + 0.690740i
\(349\) 2.96039 0.468880i 0.158466 0.0250986i −0.0766972 0.997054i \(-0.524437\pi\)
0.235163 + 0.971956i \(0.424437\pi\)
\(350\) 0.0284977 0.137470i 0.00152327 0.00734806i
\(351\) −29.2795 −1.56282
\(352\) 15.8265 + 10.0758i 0.843557 + 0.537040i
\(353\) 14.3733 0.765016 0.382508 0.923952i \(-0.375060\pi\)
0.382508 + 0.923952i \(0.375060\pi\)
\(354\) −2.81453 + 13.5770i −0.149590 + 0.721608i
\(355\) 17.0503 2.70050i 0.904934 0.143327i
\(356\) −12.8684 + 29.7040i −0.682023 + 1.57431i
\(357\) 2.04134 1.04012i 0.108039 0.0550488i
\(358\) 1.63714 34.5664i 0.0865255 1.82689i
\(359\) 4.02898 + 5.54542i 0.212642 + 0.292676i 0.901993 0.431751i \(-0.142104\pi\)
−0.689351 + 0.724427i \(0.742104\pi\)
\(360\) −2.26785 13.0411i −0.119526 0.687324i
\(361\) −11.6364 + 3.78089i −0.612441 + 0.198994i
\(362\) 4.44219 + 16.2509i 0.233476 + 0.854127i
\(363\) 4.97381 9.02924i 0.261057 0.473912i
\(364\) −2.23386 + 8.68566i −0.117086 + 0.455252i
\(365\) 1.32175 + 0.673463i 0.0691833 + 0.0352507i
\(366\) 8.90933 4.02054i 0.465698 0.210157i
\(367\) 24.6588 17.9156i 1.28718 0.935189i 0.287433 0.957801i \(-0.407198\pi\)
0.999744 + 0.0226117i \(0.00719814\pi\)
\(368\) −24.5066 + 22.9758i −1.27749 + 1.19770i
\(369\) −0.469082 + 1.44368i −0.0244194 + 0.0751552i
\(370\) 1.97164 + 17.8922i 0.102501 + 0.930169i
\(371\) −3.40983 + 0.540064i −0.177029 + 0.0280387i
\(372\) −0.518000 8.28705i −0.0268571 0.429664i
\(373\) 11.2225 + 11.2225i 0.581077 + 0.581077i 0.935199 0.354122i \(-0.115220\pi\)
−0.354122 + 0.935199i \(0.615220\pi\)
\(374\) −0.989215 + 15.5677i −0.0511511 + 0.804988i
\(375\) 10.6142i 0.548116i
\(376\) 15.5034 5.29746i 0.799528 0.273196i
\(377\) 26.8644 36.9757i 1.38359 1.90435i
\(378\) −3.12061 + 3.89354i −0.160507 + 0.200262i
\(379\) 20.7071 10.5508i 1.06365 0.541959i 0.167578 0.985859i \(-0.446405\pi\)
0.896076 + 0.443900i \(0.146405\pi\)
\(380\) 11.1982 2.49832i 0.574456 0.128161i
\(381\) 1.29308 8.16418i 0.0662464 0.418263i
\(382\) 1.52790 + 3.38576i 0.0781742 + 0.173230i
\(383\) 1.14919 + 3.53683i 0.0587207 + 0.180724i 0.976114 0.217257i \(-0.0697110\pi\)
−0.917394 + 0.397981i \(0.869711\pi\)
\(384\) −10.1382 + 3.10317i −0.517365 + 0.158358i
\(385\) −0.0867374 + 5.37676i −0.00442055 + 0.274025i
\(386\) −3.00151 1.71284i −0.152773 0.0871811i
\(387\) 0.0714520 + 0.0364066i 0.00363211 + 0.00185065i
\(388\) 0.809097 8.52243i 0.0410757 0.432661i
\(389\) −2.46094 0.389775i −0.124775 0.0197624i 0.0937348 0.995597i \(-0.470119\pi\)
−0.218509 + 0.975835i \(0.570119\pi\)
\(390\) 0.843613 17.8120i 0.0427180 0.901943i
\(391\) −26.5631 8.63087i −1.34335 0.436482i
\(392\) −10.9612 14.6174i −0.553622 0.738291i
\(393\) −2.92453 + 4.02527i −0.147523 + 0.203048i
\(394\) −20.5765 + 13.5103i −1.03663 + 0.680637i
\(395\) 9.15837 + 9.15837i 0.460807 + 0.460807i
\(396\) −4.96398 13.1698i −0.249449 0.661806i
\(397\) −1.55594 + 1.55594i −0.0780904 + 0.0780904i −0.745073 0.666983i \(-0.767585\pi\)
0.666983 + 0.745073i \(0.267585\pi\)
\(398\) 15.6198 + 3.23802i 0.782952 + 0.162307i
\(399\) −1.44954 1.05315i −0.0725679 0.0527236i
\(400\) −0.535986 + 0.0672687i −0.0267993 + 0.00336344i
\(401\) −1.55256 + 4.77830i −0.0775313 + 0.238617i −0.982309 0.187267i \(-0.940037\pi\)
0.904778 + 0.425884i \(0.140037\pi\)
\(402\) −8.98573 9.87922i −0.448168 0.492731i
\(403\) −4.22751 + 26.6914i −0.210587 + 1.32959i
\(404\) −1.35217 + 1.11768i −0.0672728 + 0.0556069i
\(405\) −1.86973 + 3.66956i −0.0929078 + 0.182342i
\(406\) −2.05376 7.51326i −0.101926 0.372877i
\(407\) 5.61999 + 18.2956i 0.278573 + 0.906878i
\(408\) −6.32678 6.13855i −0.313222 0.303904i
\(409\) −18.6464 + 6.05859i −0.922006 + 0.299578i −0.731290 0.682067i \(-0.761081\pi\)
−0.190717 + 0.981645i \(0.561081\pi\)
\(410\) −2.08740 0.789249i −0.103090 0.0389782i
\(411\) −11.9709 1.89601i −0.590482 0.0935231i
\(412\) 0.0145951 + 0.0654196i 0.000719051 + 0.00322299i
\(413\) −3.49147 6.85240i −0.171804 0.337185i
\(414\) 25.0481 2.76020i 1.23105 0.135656i
\(415\) −16.3765 11.8982i −0.803892 0.584062i
\(416\) 34.4039 2.67252i 1.68679 0.131031i
\(417\) 6.37633 0.312250
\(418\) 11.1991 4.83796i 0.547765 0.236632i
\(419\) −18.2599 + 18.2599i −0.892054 + 0.892054i −0.994716 0.102662i \(-0.967264\pi\)
0.102662 + 0.994716i \(0.467264\pi\)
\(420\) −2.27869 2.01058i −0.111189 0.0981063i
\(421\) −0.609729 3.84968i −0.0297164 0.187622i 0.968365 0.249538i \(-0.0802788\pi\)
−0.998081 + 0.0619163i \(0.980279\pi\)
\(422\) −22.5628 + 28.1513i −1.09834 + 1.37039i
\(423\) −11.6887 3.79789i −0.568324 0.184660i
\(424\) 6.20864 + 11.7434i 0.301518 + 0.570308i
\(425\) −0.263994 0.363357i −0.0128056 0.0176254i
\(426\) −3.66845 + 9.70232i −0.177737 + 0.470079i
\(427\) −2.46130 + 4.83056i −0.119110 + 0.233767i
\(428\) 0.422837 1.64407i 0.0204386 0.0794691i
\(429\) −2.66357 18.7721i −0.128598 0.906323i
\(430\) −0.0584321 + 0.102394i −0.00281785 + 0.00493788i
\(431\) 7.50338 + 23.0930i 0.361425 + 1.11235i 0.952190 + 0.305508i \(0.0988262\pi\)
−0.590765 + 0.806844i \(0.701174\pi\)
\(432\) 18.0589 + 6.51818i 0.868860 + 0.313606i
\(433\) −14.3249 + 10.4077i −0.688412 + 0.500161i −0.876138 0.482061i \(-0.839888\pi\)
0.187726 + 0.982222i \(0.439888\pi\)
\(434\) 3.09881 + 3.40694i 0.148748 + 0.163538i
\(435\) 7.03088 + 13.7989i 0.337105 + 0.661606i
\(436\) 35.7884 14.1528i 1.71395 0.677798i
\(437\) 3.41698 + 21.5740i 0.163456 + 1.03202i
\(438\) −0.745094 + 0.489219i −0.0356020 + 0.0233758i
\(439\) 34.8072i 1.66126i −0.556828 0.830628i \(-0.687982\pi\)
0.556828 0.830628i \(-0.312018\pi\)
\(440\) 19.6849 6.37356i 0.938439 0.303848i
\(441\) 13.7059i 0.652660i
\(442\) 15.7471 + 23.9832i 0.749012 + 1.14077i
\(443\) −3.35342 21.1726i −0.159326 1.00594i −0.929691 0.368340i \(-0.879926\pi\)
0.770366 0.637602i \(-0.220074\pi\)
\(444\) −9.92462 4.29955i −0.471002 0.204048i
\(445\) 16.2077 + 31.8094i 0.768318 + 1.50791i
\(446\) −2.52370 + 2.29545i −0.119501 + 0.108693i
\(447\) 5.63288 4.09253i 0.266426 0.193570i
\(448\) 3.31138 4.85981i 0.156448 0.229605i
\(449\) −0.175602 0.540446i −0.00828716 0.0255052i 0.946827 0.321742i \(-0.104268\pi\)
−0.955115 + 0.296237i \(0.904268\pi\)
\(450\) 0.351954 + 0.200845i 0.0165912 + 0.00946794i
\(451\) −2.33731 0.408944i −0.110060 0.0192564i
\(452\) −0.477570 0.808275i −0.0224630 0.0380181i
\(453\) 3.87487 7.60486i 0.182057 0.357308i
\(454\) 4.06252 + 1.53604i 0.190663 + 0.0720899i
\(455\) 5.81352 + 8.00162i 0.272542 + 0.375122i
\(456\) −2.03115 + 6.58808i −0.0951173 + 0.308515i
\(457\) −33.2957 10.8184i −1.55751 0.506065i −0.601366 0.798973i \(-0.705377\pi\)
−0.956140 + 0.292909i \(0.905377\pi\)
\(458\) 16.3769 + 13.1259i 0.765244 + 0.613331i
\(459\) 2.49716 + 15.7664i 0.116557 + 0.735914i
\(460\) 2.31119 + 36.9748i 0.107760 + 1.72396i
\(461\) −26.1945 + 26.1945i −1.22000 + 1.22000i −0.252366 + 0.967632i \(0.581209\pi\)
−0.967632 + 0.252366i \(0.918791\pi\)
\(462\) −2.78016 1.64653i −0.129345 0.0766035i
\(463\) −8.02419 −0.372916 −0.186458 0.982463i \(-0.559701\pi\)
−0.186458 + 0.982463i \(0.559701\pi\)
\(464\) −24.8009 + 16.8252i −1.15135 + 0.781092i
\(465\) −7.40822 5.38238i −0.343548 0.249602i
\(466\) −4.36985 39.6553i −0.202429 1.83700i
\(467\) −15.3315 30.0899i −0.709459 1.39239i −0.910790 0.412869i \(-0.864527\pi\)
0.201331 0.979523i \(-0.435473\pi\)
\(468\) −21.8508 13.8794i −1.01005 0.641574i
\(469\) 7.31593 + 1.15873i 0.337818 + 0.0535052i
\(470\) 6.39010 16.9005i 0.294753 0.779564i
\(471\) 1.39362 0.452813i 0.0642145 0.0208645i
\(472\) −20.6059 + 21.2378i −0.948466 + 0.977549i
\(473\) −0.0406539 + 0.118577i −0.00186927 + 0.00545216i
\(474\) −7.50698 + 2.05204i −0.344807 + 0.0942533i
\(475\) −0.159463 + 0.312964i −0.00731668 + 0.0143598i
\(476\) 4.86757 + 0.462114i 0.223105 + 0.0211810i
\(477\) 1.55884 9.84212i 0.0713743 0.450640i
\(478\) 18.9674 17.2520i 0.867551 0.789088i
\(479\) −0.640069 + 1.96993i −0.0292455 + 0.0900084i −0.964614 0.263667i \(-0.915068\pi\)
0.935368 + 0.353675i \(0.115068\pi\)
\(480\) −4.48560 + 10.7982i −0.204739 + 0.492868i
\(481\) 28.4791 + 20.6913i 1.29854 + 0.943441i
\(482\) 6.81627 32.8809i 0.310473 1.49769i
\(483\) 4.09086 4.09086i 0.186140 0.186140i
\(484\) 19.2920 10.5745i 0.876909 0.480657i
\(485\) −6.67584 6.67584i −0.303134 0.303134i
\(486\) −12.5350 19.0912i −0.568599 0.865992i
\(487\) −14.8996 + 20.5075i −0.675164 + 0.929284i −0.999863 0.0165334i \(-0.994737\pi\)
0.324699 + 0.945817i \(0.394737\pi\)
\(488\) 20.6504 + 2.95181i 0.934799 + 0.133622i
\(489\) −1.66409 0.540695i −0.0752527 0.0244511i
\(490\) −20.1269 0.953252i −0.909239 0.0430636i
\(491\) 22.4074 + 3.54898i 1.01123 + 0.160163i 0.639998 0.768377i \(-0.278935\pi\)
0.371233 + 0.928540i \(0.378935\pi\)
\(492\) 1.03354 0.854314i 0.0465957 0.0385154i
\(493\) −22.2019 11.3124i −0.999922 0.509486i
\(494\) 11.1210 19.4880i 0.500357 0.876806i
\(495\) −14.6825 5.03389i −0.659931 0.226257i
\(496\) 8.54945 15.5215i 0.383882 0.696937i
\(497\) −1.77785 5.47167i −0.0797476 0.245438i
\(498\) 11.0865 5.00304i 0.496798 0.224192i
\(499\) 3.64716 23.0273i 0.163269 1.03084i −0.760903 0.648866i \(-0.775244\pi\)
0.924172 0.381976i \(-0.124756\pi\)
\(500\) −12.1455 + 19.1211i −0.543164 + 0.855122i
\(501\) −0.165174 + 0.0841603i −0.00737943 + 0.00376001i
\(502\) −25.7985 20.6771i −1.15144 0.922864i
\(503\) −19.6782 + 27.0847i −0.877407 + 1.20765i 0.0997254 + 0.995015i \(0.468204\pi\)
−0.977132 + 0.212632i \(0.931796\pi\)
\(504\) −4.17451 + 1.42642i −0.185948 + 0.0635376i
\(505\) 1.93470i 0.0860930i
\(506\) 9.77222 + 38.1594i 0.434428 + 1.69639i
\(507\) −16.0440 16.0440i −0.712541 0.712541i
\(508\) 11.6714 13.2278i 0.517836 0.586890i
\(509\) −4.37975 + 0.693684i −0.194129 + 0.0307470i −0.252742 0.967534i \(-0.581332\pi\)
0.0586128 + 0.998281i \(0.481332\pi\)
\(510\) −9.66333 + 1.06486i −0.427899 + 0.0471526i
\(511\) 0.152775 0.470193i 0.00675836 0.0208001i
\(512\) −21.8145 6.01062i −0.964074 0.265634i
\(513\) 10.0997 7.33787i 0.445913 0.323975i
\(514\) −14.8855 32.9857i −0.656573 1.45494i
\(515\) 0.0658637 + 0.0335592i 0.00290230 + 0.00147880i
\(516\) −0.0360350 0.0609884i −0.00158635 0.00268486i
\(517\) 3.31099 18.9239i 0.145617 0.832272i
\(518\) 5.78680 1.58183i 0.254257 0.0695015i
\(519\) 6.29889 2.04663i 0.276491 0.0898373i
\(520\) 21.9014 31.1222i 0.960439 1.36480i
\(521\) 7.22560 + 9.94518i 0.316559 + 0.435706i 0.937413 0.348220i \(-0.113214\pi\)
−0.620854 + 0.783927i \(0.713214\pi\)
\(522\) 22.4567 + 1.06360i 0.982903 + 0.0465525i
\(523\) −10.8491 + 5.52788i −0.474397 + 0.241717i −0.674806 0.737995i \(-0.735773\pi\)
0.200409 + 0.979712i \(0.435773\pi\)
\(524\) −9.87441 + 3.90492i −0.431365 + 0.170587i
\(525\) 0.0918867 0.0145534i 0.00401027 0.000635164i
\(526\) 19.1575 + 3.97139i 0.835308 + 0.173161i
\(527\) 14.7333 0.641795
\(528\) −2.53619 + 12.1711i −0.110374 + 0.529680i
\(529\) −47.5288 −2.06647
\(530\) 14.3446 + 2.97366i 0.623089 + 0.129167i
\(531\) 21.9249 3.47257i 0.951461 0.150697i
\(532\) −1.40620 3.55588i −0.0609666 0.154167i
\(533\) −3.88855 + 1.98132i −0.168432 + 0.0858204i
\(534\) −21.4273 1.01484i −0.927250 0.0439166i
\(535\) −1.10042 1.51459i −0.0475751 0.0654815i
\(536\) −4.88298 28.0791i −0.210912 1.21283i
\(537\) 21.8090 7.08618i 0.941129 0.305791i
\(538\) 11.7380 3.20859i 0.506060 0.138332i
\(539\) −21.2117 + 3.00973i −0.913654 + 0.129638i
\(540\) 18.2293 10.7708i 0.784466 0.463502i
\(541\) 18.1658 + 9.25592i 0.781007 + 0.397943i 0.798569 0.601903i \(-0.205590\pi\)
−0.0175621 + 0.999846i \(0.505590\pi\)
\(542\) 6.83618 + 15.1487i 0.293639 + 0.650691i
\(543\) −9.03174 + 6.56194i −0.387589 + 0.281600i
\(544\) −4.37330 18.2979i −0.187504 0.784516i
\(545\) 13.1155 40.3655i 0.561808 1.72907i
\(546\) −5.90717 + 0.650944i −0.252804 + 0.0278578i
\(547\) −16.7349 + 2.65055i −0.715532 + 0.113329i −0.503577 0.863950i \(-0.667983\pi\)
−0.211955 + 0.977279i \(0.567983\pi\)
\(548\) −19.3956 17.1135i −0.828539 0.731053i
\(549\) −11.0652 11.0652i −0.472250 0.472250i
\(550\) −0.233549 + 0.588802i −0.00995857 + 0.0251066i
\(551\) 19.4871i 0.830177i
\(552\) −19.9845 9.80538i −0.850595 0.417345i
\(553\) 2.53720 3.49215i 0.107893 0.148501i
\(554\) −29.1892 23.3947i −1.24013 0.993944i
\(555\) −10.6281 + 5.41526i −0.451136 + 0.229865i
\(556\) 11.4867 + 7.29624i 0.487145 + 0.309429i
\(557\) −2.75422 + 17.3895i −0.116700 + 0.736816i 0.858058 + 0.513553i \(0.171671\pi\)
−0.974758 + 0.223263i \(0.928329\pi\)
\(558\) −12.1165 + 5.46783i −0.512931 + 0.231472i
\(559\) 0.0712455 + 0.219271i 0.00301336 + 0.00927418i
\(560\) −1.80433 6.22942i −0.0762469 0.263241i
\(561\) −9.88121 + 3.03529i −0.417185 + 0.128150i
\(562\) −8.24874 + 14.4548i −0.347952 + 0.609737i
\(563\) −15.5962 7.94666i −0.657302 0.334912i 0.0933277 0.995635i \(-0.470250\pi\)
−0.750629 + 0.660724i \(0.770250\pi\)
\(564\) 6.91690 + 8.36800i 0.291254 + 0.352356i
\(565\) −1.02261 0.161966i −0.0430216 0.00681396i
\(566\) −32.7894 1.55298i −1.37824 0.0652765i
\(567\) 1.30539 + 0.424148i 0.0548214 + 0.0178126i
\(568\) −17.7106 + 13.2807i −0.743121 + 0.557244i
\(569\) 26.6209 36.6406i 1.11601 1.53605i 0.303751 0.952751i \(-0.401761\pi\)
0.812256 0.583301i \(-0.198239\pi\)
\(570\) 4.17294 + 6.35550i 0.174785 + 0.266203i
\(571\) 17.4677 + 17.4677i 0.730999 + 0.730999i 0.970818 0.239818i \(-0.0770879\pi\)
−0.239818 + 0.970818i \(0.577088\pi\)
\(572\) 16.6819 36.8650i 0.697507 1.54140i
\(573\) −1.74052 + 1.74052i −0.0727114 + 0.0727114i
\(574\) −0.150970 + 0.728262i −0.00630137 + 0.0303971i
\(575\) −0.917546 0.666636i −0.0382643 0.0278006i
\(576\) 10.3872 + 13.4249i 0.432802 + 0.559370i
\(577\) 9.74064 29.9786i 0.405508 1.24803i −0.514962 0.857213i \(-0.672194\pi\)
0.920470 0.390813i \(-0.127806\pi\)
\(578\) −6.21375 + 5.65177i −0.258458 + 0.235083i
\(579\) 0.358242 2.26185i 0.0148880 0.0939992i
\(580\) −3.12376 + 32.9034i −0.129707 + 1.36624i
\(581\) −3.06276 + 6.01101i −0.127065 + 0.249379i
\(582\) 5.47209 1.49580i 0.226825 0.0620029i
\(583\) 15.5744 + 0.251244i 0.645025 + 0.0104055i
\(584\) −1.90206 + 0.0287216i −0.0787076 + 0.00118851i
\(585\) −27.1508 + 8.82184i −1.12255 + 0.364738i
\(586\) 6.50140 17.1949i 0.268570 0.710315i
\(587\) −24.0790 3.81373i −0.993845 0.157410i −0.361729 0.932283i \(-0.617813\pi\)
−0.632116 + 0.774874i \(0.717813\pi\)
\(588\) 6.49149 10.2198i 0.267705 0.421457i
\(589\) −5.23102 10.2665i −0.215540 0.423022i
\(590\) 3.57452 + 32.4380i 0.147161 + 1.33545i
\(591\) −13.1964 9.58772i −0.542826 0.394386i
\(592\) −12.9590 19.1019i −0.532611 0.785083i
\(593\) 38.7616 1.59175 0.795874 0.605462i \(-0.207012\pi\)
0.795874 + 0.605462i \(0.207012\pi\)
\(594\) 16.8966 14.8776i 0.693278 0.610436i
\(595\) 3.81290 3.81290i 0.156314 0.156314i
\(596\) 14.8304 0.927004i 0.607475 0.0379716i
\(597\) 1.65362 + 10.4405i 0.0676781 + 0.427302i
\(598\) 56.5329 + 45.3102i 2.31180 + 1.85287i
\(599\) −13.0481 4.23958i −0.533130 0.173225i 0.0300656 0.999548i \(-0.490428\pi\)
−0.563196 + 0.826323i \(0.690428\pi\)
\(600\) −0.167308 0.316456i −0.00683033 0.0129193i
\(601\) 14.5814 + 20.0696i 0.594789 + 0.818657i 0.995219 0.0976702i \(-0.0311390\pi\)
−0.400429 + 0.916328i \(0.631139\pi\)
\(602\) 0.0367516 + 0.0138958i 0.00149789 + 0.000566351i
\(603\) −9.70628 + 19.0497i −0.395270 + 0.775762i
\(604\) 15.6824 9.26597i 0.638109 0.377027i
\(605\) 4.56644 23.8287i 0.185652 0.968774i
\(606\) −1.00967 0.576176i −0.0410150 0.0234056i
\(607\) 4.89026 + 15.0507i 0.198490 + 0.610888i 0.999918 + 0.0127975i \(0.00407368\pi\)
−0.801429 + 0.598091i \(0.795926\pi\)
\(608\) −11.1976 + 9.54399i −0.454121 + 0.387060i
\(609\) 4.17564 3.03378i 0.169206 0.122935i
\(610\) 17.0186 15.4795i 0.689065 0.626745i
\(611\) −16.0416 31.4834i −0.648974 1.27368i
\(612\) −5.61018 + 12.9499i −0.226778 + 0.523470i
\(613\) −1.15229 7.27529i −0.0465406 0.293846i 0.953429 0.301617i \(-0.0975264\pi\)
−0.999970 + 0.00777100i \(0.997526\pi\)
\(614\) 10.2524 + 15.6147i 0.413754 + 0.630159i
\(615\) 1.47881i 0.0596312i
\(616\) −3.12428 6.14741i −0.125881 0.247686i
\(617\) 31.7288i 1.27735i 0.769475 + 0.638677i \(0.220518\pi\)
−0.769475 + 0.638677i \(0.779482\pi\)
\(618\) −0.0371287 + 0.0243782i −0.00149353 + 0.000980634i
\(619\) 4.61444 + 29.1344i 0.185470 + 1.17101i 0.888167 + 0.459522i \(0.151979\pi\)
−0.702697 + 0.711490i \(0.748021\pi\)
\(620\) −7.18672 18.1731i −0.288626 0.729851i
\(621\) 18.3001 + 35.9160i 0.734359 + 1.44126i
\(622\) 31.4529 + 34.5804i 1.26115 + 1.38655i
\(623\) 9.62574 6.99351i 0.385647 0.280189i
\(624\) 9.71937 + 20.6983i 0.389086 + 0.828596i
\(625\) 7.51113 + 23.1169i 0.300445 + 0.924675i
\(626\) 0.422404 0.740204i 0.0168827 0.0295845i
\(627\) 5.62332 + 5.80773i 0.224574 + 0.231938i
\(628\) 3.02869 + 0.778945i 0.120858 + 0.0310833i
\(629\) 8.71295 17.1001i 0.347408 0.681827i
\(630\) −1.72062 + 4.55070i −0.0685513 + 0.181304i
\(631\) −7.13134 9.81544i −0.283894 0.390747i 0.643125 0.765761i \(-0.277638\pi\)
−0.927019 + 0.375015i \(0.877638\pi\)
\(632\) −15.8716 4.89333i −0.631339 0.194646i
\(633\) −22.7369 7.38766i −0.903710 0.293633i
\(634\) 8.99136 11.2184i 0.357093 0.445539i
\(635\) −3.04341 19.2153i −0.120774 0.762536i
\(636\) −5.82386 + 6.60047i −0.230931 + 0.261726i
\(637\) −27.8633 + 27.8633i −1.10398 + 1.10398i
\(638\) 3.28530 + 34.9884i 0.130066 + 1.38521i
\(639\) 16.6062 0.656931
\(640\) −20.4367 + 14.3198i −0.807830 + 0.566040i
\(641\) 16.0173 + 11.6372i 0.632644 + 0.459643i 0.857315 0.514792i \(-0.172131\pi\)
−0.224671 + 0.974435i \(0.572131\pi\)
\(642\) 1.11814 0.123214i 0.0441295 0.00486288i
\(643\) 19.8073 + 38.8739i 0.781122 + 1.53304i 0.844809 + 0.535068i \(0.179714\pi\)
−0.0636871 + 0.997970i \(0.520286\pi\)
\(644\) 12.0506 2.68848i 0.474858 0.105941i
\(645\) −0.0771612 0.0122211i −0.00303822 0.000481207i
\(646\) −11.4424 4.32636i −0.450194 0.170218i
\(647\) 3.34277 1.08613i 0.131418 0.0427003i −0.242570 0.970134i \(-0.577990\pi\)
0.373987 + 0.927434i \(0.377990\pi\)
\(648\) −0.0797397 5.28067i −0.00313247 0.207444i
\(649\) 10.1889 + 33.1693i 0.399948 + 1.30201i
\(650\) 0.307195 + 1.12381i 0.0120492 + 0.0440795i
\(651\) −1.38550 + 2.71919i −0.0543019 + 0.106573i
\(652\) −2.37909 2.87820i −0.0931724 0.112719i
\(653\) 1.87034 11.8088i 0.0731919 0.462115i −0.923686 0.383151i \(-0.874839\pi\)
0.996877 0.0789640i \(-0.0251612\pi\)
\(654\) 17.1597 + 18.8660i 0.670998 + 0.737718i
\(655\) −3.61872 + 11.1373i −0.141395 + 0.435169i
\(656\) 2.83945 0.356364i 0.110862 0.0139137i
\(657\) 1.15447 + 0.838773i 0.0450403 + 0.0327237i
\(658\) −5.89633 1.22232i −0.229863 0.0476509i
\(659\) −0.938277 + 0.938277i −0.0365501 + 0.0365501i −0.725146 0.688596i \(-0.758228\pi\)
0.688596 + 0.725146i \(0.258228\pi\)
\(660\) 8.56385 + 10.7076i 0.333347 + 0.416793i
\(661\) −18.2588 18.2588i −0.710187 0.710187i 0.256387 0.966574i \(-0.417468\pi\)
−0.966574 + 0.256387i \(0.917468\pi\)
\(662\) −20.1054 + 13.2009i −0.781419 + 0.513069i
\(663\) −11.1751 + 15.3812i −0.434005 + 0.597357i
\(664\) 25.6967 + 3.67315i 0.997226 + 0.142546i
\(665\) −4.01065 1.30314i −0.155526 0.0505335i
\(666\) −0.819196 + 17.2964i −0.0317432 + 0.670222i
\(667\) −62.1474 9.84317i −2.40636 0.381129i
\(668\) −0.393856 0.0373917i −0.0152388 0.00144673i
\(669\) −2.01425 1.02631i −0.0778752 0.0396794i
\(670\) −27.2991 15.5785i −1.05465 0.601848i
\(671\) 14.6951 19.5548i 0.567296 0.754903i
\(672\) 3.78832 + 0.913561i 0.146138 + 0.0352414i
\(673\) 3.25318 + 10.0123i 0.125401 + 0.385944i 0.993974 0.109617i \(-0.0349625\pi\)
−0.868573 + 0.495561i \(0.834962\pi\)
\(674\) −7.56368 16.7608i −0.291342 0.645601i
\(675\) −0.101401 + 0.640223i −0.00390294 + 0.0246422i
\(676\) −10.5440 47.2614i −0.405540 1.81775i
\(677\) 26.9565 13.7350i 1.03602 0.527879i 0.148628 0.988893i \(-0.452514\pi\)
0.887393 + 0.461014i \(0.152514\pi\)
\(678\) 0.389072 0.485439i 0.0149422 0.0186432i
\(679\) −1.84945 + 2.54555i −0.0709753 + 0.0976891i
\(680\) −18.6266 9.13914i −0.714297 0.350470i
\(681\) 2.87806i 0.110288i
\(682\) −11.1229 17.5512i −0.425920 0.672071i
\(683\) −8.19014 8.19014i −0.313387 0.313387i 0.532833 0.846220i \(-0.321127\pi\)
−0.846220 + 0.532833i \(0.821127\pi\)
\(684\) 11.0156 0.688555i 0.421192 0.0263275i
\(685\) −28.1749 + 4.46247i −1.07651 + 0.170502i
\(686\) 1.53262 + 13.9081i 0.0585156 + 0.531015i
\(687\) −4.29775 + 13.2271i −0.163969 + 0.504645i
\(688\) 0.00487135 0.151102i 0.000185719 0.00576071i
\(689\) 23.1776 16.8395i 0.882995 0.641533i
\(690\) −22.3765 + 10.0979i −0.851859 + 0.384421i
\(691\) 31.6376 + 16.1202i 1.20355 + 0.613239i 0.936576 0.350464i \(-0.113976\pi\)
0.266974 + 0.963704i \(0.413976\pi\)
\(692\) 13.6891 + 3.52069i 0.520382 + 0.133837i
\(693\) −0.891530 + 5.09552i −0.0338664 + 0.193563i
\(694\) 8.19816 + 29.9914i 0.311198 + 1.13846i
\(695\) 14.2729 4.63755i 0.541402 0.175912i
\(696\) −16.2411 11.4292i −0.615618 0.433223i
\(697\) 1.39854 + 1.92493i 0.0529736 + 0.0729119i
\(698\) −0.200535 + 4.23407i −0.00759036 + 0.160262i
\(699\) 23.5555 12.0021i 0.890952 0.453963i
\(700\) 0.182183 + 0.0789256i 0.00688589 + 0.00298311i
\(701\) 7.42985 1.17677i 0.280621 0.0444461i −0.0145372 0.999894i \(-0.504628\pi\)
0.295159 + 0.955448i \(0.404628\pi\)
\(702\) 8.40514 40.5454i 0.317232 1.53029i
\(703\) −15.0092 −0.566081
\(704\) −18.4959 + 19.0237i −0.697090 + 0.716984i
\(705\) 11.9731 0.450932
\(706\) −4.12609 + 19.9038i −0.155288 + 0.749090i
\(707\) 0.636848 0.100867i 0.0239511 0.00379349i
\(708\) −17.9930 7.79496i −0.676220 0.292952i
\(709\) 16.5544 8.43491i 0.621715 0.316780i −0.114607 0.993411i \(-0.536561\pi\)
0.736322 + 0.676631i \(0.236561\pi\)
\(710\) −1.15497 + 24.3859i −0.0433453 + 0.915188i
\(711\) 7.32336 + 10.0797i 0.274648 + 0.378020i
\(712\) −37.4392 26.3468i −1.40309 0.987387i
\(713\) 35.3836 11.4968i 1.32513 0.430560i
\(714\) 0.854324 + 3.12538i 0.0319723 + 0.116964i
\(715\) −19.6152 40.0825i −0.733567 1.49900i
\(716\) 47.3966 + 12.1899i 1.77129 + 0.455557i
\(717\) 15.1385 + 7.71346i 0.565359 + 0.288065i
\(718\) −8.83573 + 3.98733i −0.329746 + 0.148806i
\(719\) 3.58621 2.60554i 0.133743 0.0971702i −0.518902 0.854834i \(-0.673659\pi\)
0.652645 + 0.757663i \(0.273659\pi\)
\(720\) 18.7099 + 0.603186i 0.697277 + 0.0224794i
\(721\) 0.00761290 0.0234301i 0.000283519 0.000872582i
\(722\) −1.89526 17.1991i −0.0705344 0.640084i
\(723\) 21.9781 3.48099i 0.817374 0.129459i
\(724\) −23.7789 + 1.48636i −0.883738 + 0.0552400i
\(725\) −0.715470 0.715470i −0.0265719 0.0265719i
\(726\) 11.0756 + 9.47957i 0.411055 + 0.351820i
\(727\) 39.8924i 1.47953i 0.672867 + 0.739763i \(0.265062\pi\)
−0.672867 + 0.739763i \(0.734938\pi\)
\(728\) −11.3864 5.58674i −0.422008 0.207058i
\(729\) 5.60306 7.71195i 0.207521 0.285628i
\(730\) −1.31202 + 1.63699i −0.0485601 + 0.0605877i
\(731\) 0.111997 0.0570652i 0.00414235 0.00211063i
\(732\) 3.00997 + 13.4915i 0.111252 + 0.498662i
\(733\) 7.23889 45.7045i 0.267374 1.68814i −0.379224 0.925305i \(-0.623809\pi\)
0.646598 0.762831i \(-0.276191\pi\)
\(734\) 17.7304 + 39.2897i 0.654441 + 1.45021i
\(735\) −4.12605 12.6987i −0.152192 0.468397i
\(736\) −24.7813 40.5316i −0.913449 1.49401i
\(737\) −31.6134 10.8386i −1.16450 0.399246i
\(738\) −1.86452 1.06400i −0.0686338 0.0391665i
\(739\) −1.94934 0.993238i −0.0717076 0.0365369i 0.417769 0.908553i \(-0.362812\pi\)
−0.489477 + 0.872016i \(0.662812\pi\)
\(740\) −25.3425 2.40595i −0.931610 0.0884446i
\(741\) 14.6856 + 2.32597i 0.539488 + 0.0854465i
\(742\) 0.230979 4.87687i 0.00847951 0.179035i
\(743\) 15.3256 + 4.97958i 0.562241 + 0.182683i 0.576329 0.817218i \(-0.304485\pi\)
−0.0140885 + 0.999901i \(0.504485\pi\)
\(744\) 11.6244 + 1.66161i 0.426170 + 0.0609177i
\(745\) 9.63222 13.2576i 0.352897 0.485722i
\(746\) −18.7621 + 12.3190i −0.686930 + 0.451029i
\(747\) −13.7692 13.7692i −0.503788 0.503788i
\(748\) −21.2738 5.83880i −0.777847 0.213488i
\(749\) −0.441190 + 0.441190i −0.0161207 + 0.0161207i
\(750\) −14.6983 3.04698i −0.536705 0.111260i
\(751\) −30.5592 22.2026i −1.11512 0.810183i −0.131659 0.991295i \(-0.542030\pi\)
−0.983462 + 0.181112i \(0.942030\pi\)
\(752\) 2.88528 + 22.9894i 0.105215 + 0.838338i
\(753\) 6.77022 20.8366i 0.246720 0.759327i
\(754\) 43.4911 + 47.8156i 1.58385 + 1.74134i
\(755\) 3.14252 19.8411i 0.114368 0.722091i
\(756\) −4.49584 5.43904i −0.163512 0.197816i
\(757\) −1.96146 + 3.84959i −0.0712906 + 0.139916i −0.923901 0.382631i \(-0.875018\pi\)
0.852611 + 0.522547i \(0.175018\pi\)
\(758\) 8.66617 + 31.7034i 0.314769 + 1.15152i
\(759\) −21.3622 + 15.0001i −0.775398 + 0.544470i
\(760\) 0.244989 + 16.2241i 0.00888670 + 0.588512i
\(761\) −2.35416 + 0.764914i −0.0853384 + 0.0277281i −0.351375 0.936235i \(-0.614286\pi\)
0.266037 + 0.963963i \(0.414286\pi\)
\(762\) 10.9343 + 4.13427i 0.396109 + 0.149769i
\(763\) −13.9710 2.21278i −0.505782 0.0801081i
\(764\) −5.12711 + 1.14386i −0.185492 + 0.0413834i
\(765\) 7.06599 + 13.8678i 0.255472 + 0.501391i
\(766\) −5.22760 + 0.576058i −0.188881 + 0.0208138i