# Properties

 Label 176.2.w.a.5.10 Level $176$ Weight $2$ Character 176.5 Analytic conductor $1.405$ Analytic rank $0$ Dimension $176$ CM no Inner twists $4$

# Learn more

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [176,2,Mod(5,176)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(176, base_ring=CyclotomicField(20))

chi = DirichletCharacter(H, H._module([0, 5, 8]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("176.5");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$176 = 2^{4} \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 176.w (of order $$20$$, degree $$8$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.40536707557$$ Analytic rank: $$0$$ Dimension: $$176$$ Relative dimension: $$22$$ over $$\Q(\zeta_{20})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

## Embedding invariants

 Embedding label 5.10 Character $$\chi$$ $$=$$ 176.5 Dual form 176.2.w.a.141.10

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-0.520421 - 1.31498i) q^{2} +(1.22266 - 0.193650i) q^{3} +(-1.45832 + 1.36868i) q^{4} +(2.51383 - 1.28086i) q^{5} +(-0.890940 - 1.50698i) q^{6} +(2.24956 + 3.09626i) q^{7} +(2.55873 + 1.20537i) q^{8} +(-1.39578 + 0.453517i) q^{9} +O(q^{10})$$ $$q+(-0.520421 - 1.31498i) q^{2} +(1.22266 - 0.193650i) q^{3} +(-1.45832 + 1.36868i) q^{4} +(2.51383 - 1.28086i) q^{5} +(-0.890940 - 1.50698i) q^{6} +(2.24956 + 3.09626i) q^{7} +(2.55873 + 1.20537i) q^{8} +(-1.39578 + 0.453517i) q^{9} +(-2.99255 - 2.63904i) q^{10} +(1.77974 - 2.79867i) q^{11} +(-1.51798 + 1.95583i) q^{12} +(-5.17109 - 2.63480i) q^{13} +(2.90079 - 4.56948i) q^{14} +(2.82551 - 2.05285i) q^{15} +(0.253419 - 3.99196i) q^{16} +(-1.47895 + 4.55175i) q^{17} +(1.32276 + 1.59940i) q^{18} +(-0.705700 + 0.111772i) q^{19} +(-1.91289 + 5.30854i) q^{20} +(3.35003 + 3.35003i) q^{21} +(-4.60639 - 0.883830i) q^{22} -6.60939i q^{23} +(3.36186 + 0.978257i) q^{24} +(1.73981 - 2.39465i) q^{25} +(-0.773558 + 8.17106i) q^{26} +(-4.92766 + 2.51077i) q^{27} +(-7.51838 - 1.43641i) q^{28} +(-0.0784914 + 0.495575i) q^{29} +(-4.16991 - 2.64713i) q^{30} +(-0.0659809 - 0.203068i) q^{31} +(-5.38122 + 1.74426i) q^{32} +(1.63405 - 3.76645i) q^{33} +(6.75512 - 0.424038i) q^{34} +(9.62089 + 4.90209i) q^{35} +(1.41478 - 2.57176i) q^{36} +(-0.727269 - 0.115188i) q^{37} +(0.514238 + 0.869810i) q^{38} +(-6.83269 - 2.22008i) q^{39} +(7.97612 - 0.247275i) q^{40} +(-7.30494 + 10.0544i) q^{41} +(2.66178 - 6.14863i) q^{42} +(5.51195 + 5.51195i) q^{43} +(1.23505 + 6.51726i) q^{44} +(-2.92787 + 2.92787i) q^{45} +(-8.69119 + 3.43967i) q^{46} +(5.27184 + 3.83021i) q^{47} +(-0.463199 - 4.92987i) q^{48} +(-2.36316 + 7.27306i) q^{49} +(-4.05434 - 1.04159i) q^{50} +(-0.926806 + 5.85162i) q^{51} +(11.1473 - 3.23518i) q^{52} +(3.32835 - 6.53226i) q^{53} +(5.86606 + 5.17310i) q^{54} +(0.889261 - 9.31497i) q^{55} +(2.02388 + 10.6340i) q^{56} +(-0.841183 + 0.273317i) q^{57} +(0.692518 - 0.154693i) q^{58} +(4.45499 + 0.705601i) q^{59} +(-1.31081 + 6.86095i) q^{60} +(-3.44312 - 6.75750i) q^{61} +(-0.232692 + 0.192444i) q^{62} +(-4.54411 - 3.30149i) q^{63} +(5.09416 + 6.16843i) q^{64} -16.3741 q^{65} +(-5.80318 - 0.188593i) q^{66} +(-3.56525 + 3.56525i) q^{67} +(-4.07311 - 8.66214i) q^{68} +(-1.27991 - 8.08101i) q^{69} +(1.43922 - 15.2024i) q^{70} +(-3.82575 - 1.24306i) q^{71} +(-4.11808 - 0.522009i) q^{72} +(-6.82396 - 9.39237i) q^{73} +(0.227017 + 1.01629i) q^{74} +(1.66347 - 3.26474i) q^{75} +(0.876159 - 1.12888i) q^{76} +(12.6690 - 0.785245i) q^{77} +(0.636528 + 10.1402i) q^{78} +(-1.16703 - 3.59174i) q^{79} +(-4.47610 - 10.3597i) q^{80} +(-1.97665 + 1.43612i) q^{81} +(17.0229 + 4.37331i) q^{82} +(2.77375 + 5.44380i) q^{83} +(-9.47055 - 0.300303i) q^{84} +(2.11232 + 13.3367i) q^{85} +(4.37954 - 10.1166i) q^{86} +0.621118i q^{87} +(7.92729 - 5.01578i) q^{88} -6.85772i q^{89} +(5.37380 + 2.32635i) q^{90} +(-3.47467 - 21.9382i) q^{91} +(9.04615 + 9.63863i) q^{92} +(-0.119996 - 0.235505i) q^{93} +(2.29307 - 8.92566i) q^{94} +(-1.63085 + 1.18488i) q^{95} +(-6.24161 + 3.17470i) q^{96} +(-0.340919 - 1.04924i) q^{97} +(10.7937 - 0.677553i) q^{98} +(-1.21489 + 4.71347i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8}+O(q^{10})$$ 176 * q - 6 * q^2 - 6 * q^3 - 10 * q^4 - 6 * q^5 - 6 * q^6 - 6 * q^8 $$176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8} - 16 q^{10} - 12 q^{11} - 6 q^{13} - 12 q^{15} + 14 q^{16} - 12 q^{17} - 44 q^{18} - 6 q^{19} + 2 q^{20} - 28 q^{21} + 50 q^{22} - 38 q^{24} - 68 q^{26} - 18 q^{27} - 46 q^{28} - 22 q^{29} + 26 q^{30} - 12 q^{31} - 16 q^{32} - 16 q^{33} + 12 q^{34} - 26 q^{35} - 22 q^{36} + 18 q^{37} - 34 q^{38} + 14 q^{40} - 10 q^{42} - 40 q^{43} + 2 q^{44} - 24 q^{45} + 38 q^{46} - 12 q^{47} - 26 q^{48} + 8 q^{49} - 62 q^{50} + 6 q^{51} + 74 q^{52} - 30 q^{53} - 52 q^{54} - 96 q^{56} - 26 q^{58} + 10 q^{59} + 118 q^{60} - 6 q^{61} - 42 q^{62} - 28 q^{63} - 106 q^{64} - 32 q^{65} + 6 q^{66} + 24 q^{67} + 116 q^{68} + 12 q^{69} + 52 q^{70} - 98 q^{72} + 96 q^{74} - 46 q^{75} + 112 q^{76} - 14 q^{77} + 44 q^{78} - 52 q^{79} - 28 q^{80} + 66 q^{82} + 54 q^{83} + 120 q^{84} + 14 q^{85} + 86 q^{86} + 142 q^{88} + 228 q^{90} - 122 q^{91} + 146 q^{92} + 6 q^{93} + 56 q^{94} + 52 q^{95} + 86 q^{96} - 12 q^{97} + 140 q^{98} + 92 q^{99}+O(q^{100})$$ 176 * q - 6 * q^2 - 6 * q^3 - 10 * q^4 - 6 * q^5 - 6 * q^6 - 6 * q^8 - 16 * q^10 - 12 * q^11 - 6 * q^13 - 12 * q^15 + 14 * q^16 - 12 * q^17 - 44 * q^18 - 6 * q^19 + 2 * q^20 - 28 * q^21 + 50 * q^22 - 38 * q^24 - 68 * q^26 - 18 * q^27 - 46 * q^28 - 22 * q^29 + 26 * q^30 - 12 * q^31 - 16 * q^32 - 16 * q^33 + 12 * q^34 - 26 * q^35 - 22 * q^36 + 18 * q^37 - 34 * q^38 + 14 * q^40 - 10 * q^42 - 40 * q^43 + 2 * q^44 - 24 * q^45 + 38 * q^46 - 12 * q^47 - 26 * q^48 + 8 * q^49 - 62 * q^50 + 6 * q^51 + 74 * q^52 - 30 * q^53 - 52 * q^54 - 96 * q^56 - 26 * q^58 + 10 * q^59 + 118 * q^60 - 6 * q^61 - 42 * q^62 - 28 * q^63 - 106 * q^64 - 32 * q^65 + 6 * q^66 + 24 * q^67 + 116 * q^68 + 12 * q^69 + 52 * q^70 - 98 * q^72 + 96 * q^74 - 46 * q^75 + 112 * q^76 - 14 * q^77 + 44 * q^78 - 52 * q^79 - 28 * q^80 + 66 * q^82 + 54 * q^83 + 120 * q^84 + 14 * q^85 + 86 * q^86 + 142 * q^88 + 228 * q^90 - 122 * q^91 + 146 * q^92 + 6 * q^93 + 56 * q^94 + 52 * q^95 + 86 * q^96 - 12 * q^97 + 140 * q^98 + 92 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/176\mathbb{Z}\right)^\times$$.

 $$n$$ $$111$$ $$133$$ $$145$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{4}\right)$$ $$e\left(\frac{2}{5}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.520421 1.31498i −0.367993 0.929828i
$$3$$ 1.22266 0.193650i 0.705901 0.111804i 0.206845 0.978374i $$-0.433680\pi$$
0.499055 + 0.866570i $$0.333680\pi$$
$$4$$ −1.45832 + 1.36868i −0.729162 + 0.684341i
$$5$$ 2.51383 1.28086i 1.12422 0.572818i 0.209864 0.977731i $$-0.432698\pi$$
0.914355 + 0.404912i $$0.132698\pi$$
$$6$$ −0.890940 1.50698i −0.363725 0.615223i
$$7$$ 2.24956 + 3.09626i 0.850255 + 1.17028i 0.983807 + 0.179234i $$0.0573618\pi$$
−0.133552 + 0.991042i $$0.542638\pi$$
$$8$$ 2.55873 + 1.20537i 0.904646 + 0.426163i
$$9$$ −1.39578 + 0.453517i −0.465261 + 0.151172i
$$10$$ −2.99255 2.63904i −0.946328 0.834538i
$$11$$ 1.77974 2.79867i 0.536611 0.843829i
$$12$$ −1.51798 + 1.95583i −0.438204 + 0.564600i
$$13$$ −5.17109 2.63480i −1.43420 0.730762i −0.447650 0.894209i $$-0.647739\pi$$
−0.986552 + 0.163446i $$0.947739\pi$$
$$14$$ 2.90079 4.56948i 0.775267 1.22124i
$$15$$ 2.82551 2.05285i 0.729544 0.530044i
$$16$$ 0.253419 3.99196i 0.0633546 0.997991i
$$17$$ −1.47895 + 4.55175i −0.358699 + 1.10396i 0.595135 + 0.803626i $$0.297099\pi$$
−0.953834 + 0.300336i $$0.902901\pi$$
$$18$$ 1.32276 + 1.59940i 0.311777 + 0.376983i
$$19$$ −0.705700 + 0.111772i −0.161899 + 0.0256422i −0.236858 0.971544i $$-0.576117\pi$$
0.0749588 + 0.997187i $$0.476117\pi$$
$$20$$ −1.91289 + 5.30854i −0.427735 + 1.18703i
$$21$$ 3.35003 + 3.35003i 0.731036 + 0.731036i
$$22$$ −4.60639 0.883830i −0.982086 0.188433i
$$23$$ 6.60939i 1.37815i −0.724688 0.689077i $$-0.758016\pi$$
0.724688 0.689077i $$-0.241984\pi$$
$$24$$ 3.36186 + 0.978257i 0.686237 + 0.199686i
$$25$$ 1.73981 2.39465i 0.347962 0.478929i
$$26$$ −0.773558 + 8.17106i −0.151707 + 1.60248i
$$27$$ −4.92766 + 2.51077i −0.948328 + 0.483197i
$$28$$ −7.51838 1.43641i −1.42084 0.271456i
$$29$$ −0.0784914 + 0.495575i −0.0145755 + 0.0920260i −0.993904 0.110252i $$-0.964834\pi$$
0.979328 + 0.202278i $$0.0648343\pi$$
$$30$$ −4.16991 2.64713i −0.761318 0.483298i
$$31$$ −0.0659809 0.203068i −0.0118505 0.0364721i 0.944956 0.327196i $$-0.106104\pi$$
−0.956807 + 0.290724i $$0.906104\pi$$
$$32$$ −5.38122 + 1.74426i −0.951275 + 0.308345i
$$33$$ 1.63405 3.76645i 0.284451 0.655655i
$$34$$ 6.75512 0.424038i 1.15849 0.0727219i
$$35$$ 9.62089 + 4.90209i 1.62623 + 0.828604i
$$36$$ 1.41478 2.57176i 0.235797 0.428626i
$$37$$ −0.727269 0.115188i −0.119562 0.0189368i 0.0963665 0.995346i $$-0.469278\pi$$
−0.215929 + 0.976409i $$0.569278\pi$$
$$38$$ 0.514238 + 0.869810i 0.0834205 + 0.141102i
$$39$$ −6.83269 2.22008i −1.09411 0.355497i
$$40$$ 7.97612 0.247275i 1.26113 0.0390976i
$$41$$ −7.30494 + 10.0544i −1.14084 + 1.57023i −0.375223 + 0.926934i $$0.622434\pi$$
−0.765617 + 0.643297i $$0.777566\pi$$
$$42$$ 2.66178 6.14863i 0.410722 0.948755i
$$43$$ 5.51195 + 5.51195i 0.840564 + 0.840564i 0.988932 0.148368i $$-0.0474021\pi$$
−0.148368 + 0.988932i $$0.547402\pi$$
$$44$$ 1.23505 + 6.51726i 0.186190 + 0.982514i
$$45$$ −2.92787 + 2.92787i −0.436461 + 0.436461i
$$46$$ −8.69119 + 3.43967i −1.28145 + 0.507151i
$$47$$ 5.27184 + 3.83021i 0.768976 + 0.558694i 0.901650 0.432466i $$-0.142356\pi$$
−0.132674 + 0.991160i $$0.542356\pi$$
$$48$$ −0.463199 4.92987i −0.0668570 0.711566i
$$49$$ −2.36316 + 7.27306i −0.337594 + 1.03901i
$$50$$ −4.05434 1.04159i −0.573370 0.147303i
$$51$$ −0.926806 + 5.85162i −0.129779 + 0.819391i
$$52$$ 11.1473 3.23518i 1.54586 0.448639i
$$53$$ 3.32835 6.53226i 0.457185 0.897275i −0.541224 0.840879i $$-0.682039\pi$$
0.998408 0.0563968i $$-0.0179612\pi$$
$$54$$ 5.86606 + 5.17310i 0.798269 + 0.703969i
$$55$$ 0.889261 9.31497i 0.119908 1.25603i
$$56$$ 2.02388 + 10.6340i 0.270452 + 1.42103i
$$57$$ −0.841183 + 0.273317i −0.111417 + 0.0362017i
$$58$$ 0.692518 0.154693i 0.0909321 0.0203122i
$$59$$ 4.45499 + 0.705601i 0.579990 + 0.0918614i 0.439535 0.898226i $$-0.355143\pi$$
0.140456 + 0.990087i $$0.455143\pi$$
$$60$$ −1.31081 + 6.86095i −0.169224 + 0.885745i
$$61$$ −3.44312 6.75750i −0.440846 0.865209i −0.999362 0.0357152i $$-0.988629\pi$$
0.558516 0.829494i $$-0.311371\pi$$
$$62$$ −0.232692 + 0.192444i −0.0295519 + 0.0244404i
$$63$$ −4.54411 3.30149i −0.572504 0.415948i
$$64$$ 5.09416 + 6.16843i 0.636770 + 0.771053i
$$65$$ −16.3741 −2.03095
$$66$$ −5.80318 0.188593i −0.714323 0.0232142i
$$67$$ −3.56525 + 3.56525i −0.435565 + 0.435565i −0.890516 0.454952i $$-0.849657\pi$$
0.454952 + 0.890516i $$0.349657\pi$$
$$68$$ −4.07311 8.66214i −0.493937 1.05044i
$$69$$ −1.27991 8.08101i −0.154083 0.972839i
$$70$$ 1.43922 15.2024i 0.172019 1.81703i
$$71$$ −3.82575 1.24306i −0.454032 0.147524i 0.0730682 0.997327i $$-0.476721\pi$$
−0.527101 + 0.849803i $$0.676721\pi$$
$$72$$ −4.11808 0.522009i −0.485321 0.0615193i
$$73$$ −6.82396 9.39237i −0.798684 1.09929i −0.992972 0.118350i $$-0.962240\pi$$
0.194288 0.980945i $$-0.437760\pi$$
$$74$$ 0.227017 + 1.01629i 0.0263901 + 0.118141i
$$75$$ 1.66347 3.26474i 0.192081 0.376980i
$$76$$ 0.876159 1.12888i 0.100502 0.129491i
$$77$$ 12.6690 0.785245i 1.44377 0.0894870i
$$78$$ 0.636528 + 10.1402i 0.0720727 + 1.14815i
$$79$$ −1.16703 3.59174i −0.131301 0.404103i 0.863695 0.504014i $$-0.168144\pi$$
−0.994996 + 0.0999115i $$0.968144\pi$$
$$80$$ −4.47610 10.3597i −0.500443 1.15825i
$$81$$ −1.97665 + 1.43612i −0.219628 + 0.159569i
$$82$$ 17.0229 + 4.37331i 1.87987 + 0.482951i
$$83$$ 2.77375 + 5.44380i 0.304459 + 0.597535i 0.991652 0.128940i $$-0.0411575\pi$$
−0.687193 + 0.726475i $$0.741157\pi$$
$$84$$ −9.47055 0.300303i −1.03332 0.0327658i
$$85$$ 2.11232 + 13.3367i 0.229113 + 1.44656i
$$86$$ 4.37954 10.1166i 0.472258 1.09090i
$$87$$ 0.621118i 0.0665908i
$$88$$ 7.92729 5.01578i 0.845052 0.534684i
$$89$$ 6.85772i 0.726917i −0.931610 0.363458i $$-0.881596\pi$$
0.931610 0.363458i $$-0.118404\pi$$
$$90$$ 5.37380 + 2.32635i 0.566449 + 0.245219i
$$91$$ −3.47467 21.9382i −0.364244 2.29975i
$$92$$ 9.04615 + 9.63863i 0.943127 + 1.00490i
$$93$$ −0.119996 0.235505i −0.0124430 0.0244208i
$$94$$ 2.29307 8.92566i 0.236512 0.920612i
$$95$$ −1.63085 + 1.18488i −0.167321 + 0.121566i
$$96$$ −6.24161 + 3.17470i −0.637031 + 0.324017i
$$97$$ −0.340919 1.04924i −0.0346150 0.106534i 0.932256 0.361799i $$-0.117837\pi$$
−0.966871 + 0.255265i $$0.917837\pi$$
$$98$$ 10.7937 0.677553i 1.09033 0.0684432i
$$99$$ −1.21489 + 4.71347i −0.122101 + 0.473722i
$$100$$ 0.740299 + 5.87342i 0.0740299 + 0.587342i
$$101$$ −0.0733045 + 0.143868i −0.00729407 + 0.0143154i −0.894625 0.446818i $$-0.852557\pi$$
0.887331 + 0.461134i $$0.152557\pi$$
$$102$$ 8.17707 1.82658i 0.809651 0.180858i
$$103$$ 2.53047 + 3.48289i 0.249334 + 0.343179i 0.915278 0.402823i $$-0.131971\pi$$
−0.665944 + 0.746002i $$0.731971\pi$$
$$104$$ −10.0555 12.9748i −0.986022 1.27229i
$$105$$ 12.7123 + 4.13049i 1.24060 + 0.403094i
$$106$$ −10.3219 0.977180i −1.00255 0.0949121i
$$107$$ 0.383684 + 2.42248i 0.0370921 + 0.234190i 0.999269 0.0382360i $$-0.0121739\pi$$
−0.962177 + 0.272426i $$0.912174\pi$$
$$108$$ 3.74968 10.4059i 0.360813 1.00131i
$$109$$ 0.310827 0.310827i 0.0297718 0.0297718i −0.692064 0.721836i $$-0.743298\pi$$
0.721836 + 0.692064i $$0.243298\pi$$
$$110$$ −12.7117 + 3.67835i −1.21202 + 0.350717i
$$111$$ −0.911506 −0.0865163
$$112$$ 12.9302 8.19553i 1.22179 0.774404i
$$113$$ 5.20416 + 3.78104i 0.489566 + 0.355691i 0.805017 0.593251i $$-0.202156\pi$$
−0.315451 + 0.948942i $$0.602156\pi$$
$$114$$ 0.797175 + 0.963896i 0.0746623 + 0.0902772i
$$115$$ −8.46571 16.6149i −0.789431 1.54935i
$$116$$ −0.563819 0.830139i −0.0523493 0.0770765i
$$117$$ 8.41265 + 1.33243i 0.777750 + 0.123183i
$$118$$ −1.39062 6.22542i −0.128017 0.573096i
$$119$$ −17.4204 + 5.66023i −1.59692 + 0.518872i
$$120$$ 9.70416 1.84690i 0.885864 0.168598i
$$121$$ −4.66506 9.96179i −0.424096 0.905617i
$$122$$ −7.09408 + 8.04436i −0.642268 + 0.728302i
$$123$$ −6.98440 + 13.7077i −0.629762 + 1.23598i
$$124$$ 0.374157 + 0.205832i 0.0336003 + 0.0184843i
$$125$$ −0.900387 + 5.68482i −0.0805331 + 0.508466i
$$126$$ −1.97653 + 7.69356i −0.176083 + 0.685397i
$$127$$ 1.59666 4.91401i 0.141681 0.436048i −0.854889 0.518812i $$-0.826375\pi$$
0.996569 + 0.0827634i $$0.0263746\pi$$
$$128$$ 5.46023 9.90888i 0.482620 0.875830i
$$129$$ 7.80660 + 5.67182i 0.687332 + 0.499376i
$$130$$ 8.52140 + 21.5315i 0.747376 + 1.88844i
$$131$$ 4.35266 4.35266i 0.380294 0.380294i −0.490914 0.871208i $$-0.663337\pi$$
0.871208 + 0.490914i $$0.163337\pi$$
$$132$$ 2.77210 + 7.72920i 0.241281 + 0.672740i
$$133$$ −1.93359 1.93359i −0.167664 0.167664i
$$134$$ 6.54365 + 2.83279i 0.565285 + 0.244716i
$$135$$ −9.17135 + 12.6233i −0.789345 + 1.08644i
$$136$$ −9.27078 + 9.86400i −0.794963 + 0.845831i
$$137$$ 1.67101 + 0.542945i 0.142764 + 0.0463869i 0.379528 0.925180i $$-0.376087\pi$$
−0.236763 + 0.971567i $$0.576087\pi$$
$$138$$ −9.96024 + 5.88857i −0.847872 + 0.501268i
$$139$$ 2.12281 + 0.336220i 0.180054 + 0.0285178i 0.245810 0.969318i $$-0.420946\pi$$
−0.0657562 + 0.997836i $$0.520946\pi$$
$$140$$ −20.7398 + 6.01911i −1.75283 + 0.508708i
$$141$$ 7.18736 + 3.66214i 0.605285 + 0.308408i
$$142$$ 0.356404 + 5.67768i 0.0299087 + 0.476460i
$$143$$ −16.5771 + 9.78289i −1.38625 + 0.818086i
$$144$$ 1.45671 + 5.68685i 0.121392 + 0.473904i
$$145$$ 0.437449 + 1.34633i 0.0363281 + 0.111807i
$$146$$ −8.79941 + 13.8613i −0.728245 + 1.14717i
$$147$$ −1.48091 + 9.35007i −0.122143 + 0.771181i
$$148$$ 1.21825 0.827419i 0.100140 0.0680134i
$$149$$ 12.1485 6.18996i 0.995242 0.507101i 0.121032 0.992649i $$-0.461380\pi$$
0.874210 + 0.485548i $$0.161380\pi$$
$$150$$ −5.15876 0.488382i −0.421211 0.0398762i
$$151$$ −8.69107 + 11.9622i −0.707270 + 0.973473i 0.292582 + 0.956240i $$0.405486\pi$$
−0.999852 + 0.0172326i $$0.994514\pi$$
$$152$$ −1.94042 0.564636i −0.157389 0.0457981i
$$153$$ 7.02399i 0.567856i
$$154$$ −7.62580 16.2508i −0.614505 1.30953i
$$155$$ −0.425967 0.425967i −0.0342145 0.0342145i
$$156$$ 13.0029 6.11419i 1.04106 0.489527i
$$157$$ 4.75364 0.752902i 0.379382 0.0600881i 0.0361685 0.999346i $$-0.488485\pi$$
0.343213 + 0.939258i $$0.388485\pi$$
$$158$$ −4.11571 + 3.40383i −0.327428 + 0.270794i
$$159$$ 2.80446 8.63124i 0.222408 0.684502i
$$160$$ −11.2933 + 11.2774i −0.892815 + 0.891555i
$$161$$ 20.4644 14.8682i 1.61282 1.17178i
$$162$$ 2.91715 + 1.85186i 0.229193 + 0.145496i
$$163$$ 5.94792 + 3.03062i 0.465877 + 0.237376i 0.671140 0.741331i $$-0.265805\pi$$
−0.205263 + 0.978707i $$0.565805\pi$$
$$164$$ −3.10829 24.6607i −0.242717 1.92568i
$$165$$ −0.716580 11.5612i −0.0557857 0.900038i
$$166$$ 5.71495 6.48049i 0.443566 0.502983i
$$167$$ 19.9215 6.47289i 1.54157 0.500887i 0.589763 0.807576i $$-0.299221\pi$$
0.951810 + 0.306689i $$0.0992211\pi$$
$$168$$ 4.53378 + 12.6098i 0.349789 + 0.972870i
$$169$$ 12.1568 + 16.7324i 0.935137 + 1.28711i
$$170$$ 16.4381 9.71833i 1.26074 0.745362i
$$171$$ 0.934314 0.476057i 0.0714488 0.0364050i
$$172$$ −15.5823 0.494102i −1.18814 0.0376749i
$$173$$ 12.8731 2.03889i 0.978721 0.155014i 0.353477 0.935443i $$-0.384999\pi$$
0.625244 + 0.780429i $$0.284999\pi$$
$$174$$ 0.816755 0.323243i 0.0619180 0.0245050i
$$175$$ 11.3283 0.856336
$$176$$ −10.7212 7.81389i −0.808137 0.588994i
$$177$$ 5.58356 0.419686
$$178$$ −9.01774 + 3.56890i −0.675908 + 0.267500i
$$179$$ −4.57953 + 0.725327i −0.342290 + 0.0542135i −0.325213 0.945641i $$-0.605436\pi$$
−0.0170771 + 0.999854i $$0.505436\pi$$
$$180$$ 0.262460 8.27710i 0.0195626 0.616939i
$$181$$ −20.7826 + 10.5893i −1.54476 + 0.787094i −0.998716 0.0506639i $$-0.983866\pi$$
−0.546042 + 0.837758i $$0.683866\pi$$
$$182$$ −27.0399 + 15.9862i −2.00433 + 1.18498i
$$183$$ −5.51833 7.59533i −0.407927 0.561463i
$$184$$ 7.96676 16.9116i 0.587318 1.24674i
$$185$$ −1.97577 + 0.641967i −0.145262 + 0.0471984i
$$186$$ −0.247235 + 0.280354i −0.0181282 + 0.0205565i
$$187$$ 10.1067 + 12.2400i 0.739073 + 0.895079i
$$188$$ −12.9304 + 1.62978i −0.943046 + 0.118864i
$$189$$ −18.8591 9.60917i −1.37179 0.698964i
$$190$$ 2.40681 + 1.52789i 0.174609 + 0.110845i
$$191$$ 15.1144 10.9812i 1.09364 0.794573i 0.113627 0.993524i $$-0.463753\pi$$
0.980010 + 0.198950i $$0.0637532\pi$$
$$192$$ 7.42292 + 6.55538i 0.535703 + 0.473094i
$$193$$ −1.28035 + 3.94050i −0.0921613 + 0.283643i −0.986503 0.163740i $$-0.947644\pi$$
0.894342 + 0.447383i $$0.147644\pi$$
$$194$$ −1.20230 + 0.994346i −0.0863204 + 0.0713899i
$$195$$ −20.0198 + 3.17083i −1.43365 + 0.227068i
$$196$$ −6.50825 13.8409i −0.464875 0.988635i
$$197$$ −7.35951 7.35951i −0.524344 0.524344i 0.394537 0.918880i $$-0.370905\pi$$
−0.918880 + 0.394537i $$0.870905\pi$$
$$198$$ 6.83036 0.855444i 0.485412 0.0607938i
$$199$$ 1.25904i 0.0892509i 0.999004 + 0.0446255i $$0.0142094\pi$$
−0.999004 + 0.0446255i $$0.985791\pi$$
$$200$$ 7.33814 4.03013i 0.518885 0.284973i
$$201$$ −3.66866 + 5.04948i −0.258768 + 0.356163i
$$202$$ 0.227332 + 0.0215217i 0.0159951 + 0.00151426i
$$203$$ −1.71100 + 0.871798i −0.120089 + 0.0611882i
$$204$$ −6.65743 9.80206i −0.466113 0.686282i
$$205$$ −5.48511 + 34.6316i −0.383097 + 2.41878i
$$206$$ 3.26301 5.14007i 0.227344 0.358126i
$$207$$ 2.99747 + 9.22528i 0.208339 + 0.641201i
$$208$$ −11.8285 + 19.9751i −0.820158 + 1.38502i
$$209$$ −0.943149 + 2.17394i −0.0652390 + 0.150375i
$$210$$ −1.18427 18.8660i −0.0817225 1.30188i
$$211$$ −8.97151 4.57121i −0.617624 0.314695i 0.117039 0.993127i $$-0.462660\pi$$
−0.734663 + 0.678432i $$0.762660\pi$$
$$212$$ 4.08677 + 14.0816i 0.280681 + 0.967129i
$$213$$ −4.91829 0.778980i −0.336995 0.0533748i
$$214$$ 2.98583 1.76525i 0.204107 0.120670i
$$215$$ 20.9161 + 6.79606i 1.42647 + 0.463488i
$$216$$ −15.6349 + 0.484713i −1.06382 + 0.0329805i
$$217$$ 0.480323 0.661108i 0.0326065 0.0448790i
$$218$$ −0.570491 0.246969i −0.0386385 0.0167269i
$$219$$ −10.1622 10.1622i −0.686696 0.686696i
$$220$$ 11.4524 + 14.8014i 0.772121 + 0.997907i
$$221$$ 19.6408 19.6408i 1.32118 1.32118i
$$222$$ 0.474367 + 1.19861i 0.0318374 + 0.0804454i
$$223$$ 4.18749 + 3.04239i 0.280415 + 0.203733i 0.719098 0.694908i $$-0.244555\pi$$
−0.438683 + 0.898642i $$0.644555\pi$$
$$224$$ −17.5061 12.7378i −1.16967 0.851082i
$$225$$ −1.34239 + 4.13144i −0.0894925 + 0.275429i
$$226$$ 2.26363 8.81108i 0.150574 0.586104i
$$227$$ 2.46967 15.5929i 0.163918 1.03494i −0.759323 0.650714i $$-0.774470\pi$$
0.923241 0.384222i $$-0.125530\pi$$
$$228$$ 0.852634 1.54990i 0.0564671 0.102644i
$$229$$ −6.47202 + 12.7021i −0.427683 + 0.839375i 0.572132 + 0.820161i $$0.306116\pi$$
−0.999815 + 0.0192139i $$0.993884\pi$$
$$230$$ −17.4424 + 19.7789i −1.15012 + 1.30418i
$$231$$ 15.3378 3.41344i 1.00915 0.224588i
$$232$$ −0.798190 + 1.17343i −0.0524037 + 0.0770395i
$$233$$ 12.2246 3.97200i 0.800858 0.260215i 0.120137 0.992757i $$-0.461667\pi$$
0.680721 + 0.732543i $$0.261667\pi$$
$$234$$ −2.62600 11.7559i −0.171667 0.768504i
$$235$$ 18.1585 + 2.87602i 1.18453 + 0.187611i
$$236$$ −7.46256 + 5.06847i −0.485772 + 0.329929i
$$237$$ −2.12241 4.16547i −0.137865 0.270576i
$$238$$ 16.5090 + 19.9617i 1.07012 + 1.29392i
$$239$$ −11.7960 8.57032i −0.763022 0.554368i 0.136813 0.990597i $$-0.456314\pi$$
−0.899836 + 0.436229i $$0.856314\pi$$
$$240$$ −7.47888 11.7996i −0.482760 0.761659i
$$241$$ −7.30879 −0.470800 −0.235400 0.971899i $$-0.575640\pi$$
−0.235400 + 0.971899i $$0.575640\pi$$
$$242$$ −10.6717 + 11.3188i −0.686004 + 0.727598i
$$243$$ 9.59318 9.59318i 0.615403 0.615403i
$$244$$ 14.2700 + 5.14209i 0.913546 + 0.329189i
$$245$$ 3.37519 + 21.3101i 0.215633 + 1.36145i
$$246$$ 21.6601 + 2.05057i 1.38099 + 0.130739i
$$247$$ 3.94373 + 1.28140i 0.250934 + 0.0815333i
$$248$$ 0.0759454 0.599127i 0.00482254 0.0380446i
$$249$$ 4.44554 + 6.11875i 0.281724 + 0.387760i
$$250$$ 7.94398 1.77451i 0.502422 0.112230i
$$251$$ −4.16488 + 8.17404i −0.262885 + 0.515941i −0.984287 0.176576i $$-0.943498\pi$$
0.721402 + 0.692517i $$0.243498\pi$$
$$252$$ 11.1455 1.40480i 0.702099 0.0884941i
$$253$$ −18.4975 11.7630i −1.16293 0.739533i
$$254$$ −7.29275 + 0.457786i −0.457588 + 0.0287241i
$$255$$ 5.16528 + 15.8971i 0.323462 + 0.995514i
$$256$$ −15.8716 2.02328i −0.991972 0.126455i
$$257$$ 6.10625 4.43645i 0.380897 0.276738i −0.380818 0.924650i $$-0.624358\pi$$
0.761715 + 0.647912i $$0.224358\pi$$
$$258$$ 3.39560 13.2172i 0.211401 0.822868i
$$259$$ −1.27939 2.51094i −0.0794972 0.156022i
$$260$$ 23.8787 22.4109i 1.48089 1.38986i
$$261$$ −0.115195 0.727313i −0.00713039 0.0450195i
$$262$$ −7.98887 3.45843i −0.493554 0.213663i
$$263$$ 1.05124i 0.0648222i −0.999475 0.0324111i $$-0.989681\pi$$
0.999475 0.0324111i $$-0.0103186\pi$$
$$264$$ 8.72105 7.66768i 0.536743 0.471913i
$$265$$ 20.6842i 1.27062i
$$266$$ −1.53634 + 3.54891i −0.0941994 + 0.217597i
$$267$$ −1.32799 8.38463i −0.0812720 0.513131i
$$268$$ 0.319596 10.0790i 0.0195224 0.615672i
$$269$$ −6.83378 13.4120i −0.416663 0.817747i −0.999985 0.00550574i $$-0.998247\pi$$
0.583322 0.812241i $$-0.301753\pi$$
$$270$$ 21.3723 + 5.49069i 1.30068 + 0.334153i
$$271$$ 1.43277 1.04097i 0.0870347 0.0632344i −0.543417 0.839463i $$-0.682870\pi$$
0.630452 + 0.776229i $$0.282870\pi$$
$$272$$ 17.7956 + 7.05743i 1.07902 + 0.427919i
$$273$$ −8.49664 26.1500i −0.514240 1.58267i
$$274$$ −0.155670 2.47990i −0.00940439 0.149816i
$$275$$ −3.60540 9.13100i −0.217414 0.550620i
$$276$$ 12.9268 + 10.0329i 0.778105 + 0.603912i
$$277$$ 12.4025 24.3412i 0.745193 1.46252i −0.136470 0.990644i $$-0.543576\pi$$
0.881663 0.471880i $$-0.156424\pi$$
$$278$$ −0.662633 2.96642i −0.0397421 0.177914i
$$279$$ 0.184190 + 0.253516i 0.0110272 + 0.0151776i
$$280$$ 18.7084 + 24.1398i 1.11804 + 1.44263i
$$281$$ −3.92759 1.27615i −0.234300 0.0761288i 0.189513 0.981878i $$-0.439309\pi$$
−0.423814 + 0.905749i $$0.639309\pi$$
$$282$$ 1.07518 11.3571i 0.0640259 0.676303i
$$283$$ 0.778202 + 4.91337i 0.0462593 + 0.292070i 0.999962 0.00868025i $$-0.00276305\pi$$
−0.953703 + 0.300750i $$0.902763\pi$$
$$284$$ 7.28053 3.42344i 0.432020 0.203144i
$$285$$ −1.76451 + 1.76451i −0.104521 + 0.104521i
$$286$$ 21.4913 + 16.7073i 1.27081 + 0.987923i
$$287$$ −47.5639 −2.80761
$$288$$ 6.71997 4.87509i 0.395978 0.287267i
$$289$$ −4.77784 3.47130i −0.281049 0.204194i
$$290$$ 1.54273 1.27589i 0.0905924 0.0749230i
$$291$$ −0.620011 1.21684i −0.0363457 0.0713324i
$$292$$ 22.8067 + 4.35729i 1.33466 + 0.254991i
$$293$$ −1.79154 0.283752i −0.104663 0.0165770i 0.103883 0.994589i $$-0.466873\pi$$
−0.208546 + 0.978013i $$0.566873\pi$$
$$294$$ 13.0658 2.91862i 0.762014 0.170217i
$$295$$ 12.1029 3.93246i 0.704656 0.228957i
$$296$$ −1.72204 1.17136i −0.100092 0.0680842i
$$297$$ −1.74315 + 18.2594i −0.101148 + 1.05952i
$$298$$ −14.4620 12.7536i −0.837759 0.738795i
$$299$$ −17.4144 + 34.1777i −1.00710 + 1.97655i
$$300$$ 2.04252 + 7.03781i 0.117925 + 0.406328i
$$301$$ −4.66694 + 29.4659i −0.268998 + 1.69838i
$$302$$ 20.2531 + 5.20316i 1.16543 + 0.299408i
$$303$$ −0.0617661 + 0.190097i −0.00354837 + 0.0109208i
$$304$$ 0.267352 + 2.84545i 0.0153337 + 0.163198i
$$305$$ −17.3108 12.5770i −0.991215 0.720160i
$$306$$ −9.23638 + 3.65543i −0.528008 + 0.208967i
$$307$$ 14.0600 14.0600i 0.802448 0.802448i −0.181029 0.983478i $$-0.557943\pi$$
0.983478 + 0.181029i $$0.0579429\pi$$
$$308$$ −17.4008 + 18.4850i −0.991502 + 1.05328i
$$309$$ 3.76835 + 3.76835i 0.214374 + 0.214374i
$$310$$ −0.338454 + 0.781818i −0.0192229 + 0.0444043i
$$311$$ 9.20110 12.6642i 0.521746 0.718122i −0.464098 0.885784i $$-0.653622\pi$$
0.985845 + 0.167662i $$0.0536216\pi$$
$$312$$ −14.8070 13.9165i −0.838280 0.787866i
$$313$$ 13.8678 + 4.50591i 0.783853 + 0.254689i 0.673484 0.739202i $$-0.264797\pi$$
0.110368 + 0.993891i $$0.464797\pi$$
$$314$$ −3.46394 5.85909i −0.195482 0.330648i
$$315$$ −15.6519 2.47901i −0.881883 0.139676i
$$316$$ 6.61786 + 3.64063i 0.372284 + 0.204802i
$$317$$ 17.5742 + 8.95449i 0.987064 + 0.502934i 0.871516 0.490368i $$-0.163138\pi$$
0.115548 + 0.993302i $$0.463138\pi$$
$$318$$ −12.8094 + 0.804081i −0.718314 + 0.0450906i
$$319$$ 1.24726 + 1.10167i 0.0698329 + 0.0616814i
$$320$$ 20.7068 + 8.98147i 1.15754 + 0.502079i
$$321$$ 0.938226 + 2.88756i 0.0523667 + 0.161168i
$$322$$ −30.2015 19.1724i −1.68306 1.06844i
$$323$$ 0.534940 3.37748i 0.0297648 0.187928i
$$324$$ 0.917003 4.79973i 0.0509446 0.266652i
$$325$$ −15.3061 + 7.79887i −0.849032 + 0.432603i
$$326$$ 0.889767 9.39857i 0.0492796 0.520539i
$$327$$ 0.319843 0.440226i 0.0176874 0.0243446i
$$328$$ −30.8106 + 16.9213i −1.70123 + 0.934321i
$$329$$ 24.9393i 1.37495i
$$330$$ −14.8298 + 6.95898i −0.816353 + 0.383079i
$$331$$ −22.1352 22.1352i −1.21666 1.21666i −0.968794 0.247868i $$-0.920270\pi$$
−0.247868 0.968794i $$-0.579730\pi$$
$$332$$ −11.4959 4.14244i −0.630917 0.227346i
$$333$$ 1.06735 0.169052i 0.0584904 0.00926398i
$$334$$ −18.8793 22.8277i −1.03303 1.24908i
$$335$$ −4.39584 + 13.5290i −0.240171 + 0.739169i
$$336$$ 14.2222 12.5242i 0.775882 0.683253i
$$337$$ −26.8826 + 19.5314i −1.46439 + 1.06394i −0.482199 + 0.876062i $$0.660162\pi$$
−0.982192 + 0.187881i $$0.939838\pi$$
$$338$$ 15.6760 24.6937i 0.852663 1.34316i
$$339$$ 7.09509 + 3.61513i 0.385353 + 0.196347i
$$340$$ −21.3341 16.5581i −1.15700 0.897988i
$$341$$ −0.685749 0.176750i −0.0371354 0.00957155i
$$342$$ −1.11224 0.980850i −0.0601430 0.0530383i
$$343$$ −2.35625 + 0.765593i −0.127226 + 0.0413381i
$$344$$ 7.45962 + 20.7475i 0.402196 + 1.11863i
$$345$$ −13.5681 18.6749i −0.730482 1.00542i
$$346$$ −9.38051 15.8667i −0.504299 0.852999i
$$347$$ 3.94735 2.01127i 0.211905 0.107971i −0.344817 0.938670i $$-0.612059\pi$$
0.556722 + 0.830699i $$0.312059\pi$$
$$348$$ −0.850113 0.905791i −0.0455708 0.0485555i
$$349$$ 22.4654 3.55817i 1.20254 0.190464i 0.477165 0.878814i $$-0.341664\pi$$
0.725379 + 0.688350i $$0.241664\pi$$
$$350$$ −5.89546 14.8964i −0.315126 0.796246i
$$351$$ 32.0967 1.71320
$$352$$ −4.69556 + 18.1646i −0.250274 + 0.968175i
$$353$$ 30.3594 1.61587 0.807933 0.589274i $$-0.200586\pi$$
0.807933 + 0.589274i $$0.200586\pi$$
$$354$$ −2.90580 7.34225i −0.154442 0.390236i
$$355$$ −11.2095 + 1.77540i −0.594936 + 0.0942287i
$$356$$ 9.38604 + 10.0008i 0.497459 + 0.530040i
$$357$$ −20.2030 + 10.2940i −1.06926 + 0.544814i
$$358$$ 3.33707 + 5.64450i 0.176370 + 0.298321i
$$359$$ 2.78914 + 3.83893i 0.147205 + 0.202611i 0.876252 0.481853i $$-0.160036\pi$$
−0.729047 + 0.684464i $$0.760036\pi$$
$$360$$ −11.0208 + 3.96245i −0.580846 + 0.208839i
$$361$$ −17.5846 + 5.71357i −0.925503 + 0.300714i
$$362$$ 24.7403 + 21.8177i 1.30032 + 1.14672i
$$363$$ −7.63286 11.2764i −0.400621 0.591860i
$$364$$ 35.0936 + 27.2373i 1.83940 + 1.42762i
$$365$$ −29.1846 14.8703i −1.52759 0.778347i
$$366$$ −7.11583 + 11.2092i −0.371950 + 0.585917i
$$367$$ −20.7925 + 15.1066i −1.08536 + 0.788559i −0.978609 0.205727i $$-0.934044\pi$$
−0.106749 + 0.994286i $$0.534044\pi$$
$$368$$ −26.3845 1.67494i −1.37538 0.0873124i
$$369$$ 5.63627 17.3467i 0.293413 0.903031i
$$370$$ 1.87240 + 2.26400i 0.0973417 + 0.117700i
$$371$$ 27.7129 4.38929i 1.43878 0.227881i
$$372$$ 0.497325 + 0.179207i 0.0257851 + 0.00929144i
$$373$$ −0.617783 0.617783i −0.0319876 0.0319876i 0.690932 0.722920i $$-0.257200\pi$$
−0.722920 + 0.690932i $$0.757200\pi$$
$$374$$ 10.8356 19.6600i 0.560296 1.01659i
$$375$$ 7.12494i 0.367930i
$$376$$ 8.87236 + 16.1550i 0.457557 + 0.833130i
$$377$$ 1.71163 2.35585i 0.0881534 0.121333i
$$378$$ −2.82118 + 29.8000i −0.145106 + 1.53275i
$$379$$ 20.7488 10.5720i 1.06579 0.543049i 0.169053 0.985607i $$-0.445929\pi$$
0.896740 + 0.442558i $$0.145929\pi$$
$$380$$ 0.756579 3.96005i 0.0388117 0.203146i
$$381$$ 1.00057 6.31734i 0.0512607 0.323647i
$$382$$ −22.3059 14.1602i −1.14127 0.724497i
$$383$$ 2.54058 + 7.81909i 0.129817 + 0.399537i 0.994748 0.102355i $$-0.0326377\pi$$
−0.864931 + 0.501891i $$0.832638\pi$$
$$384$$ 4.75712 13.1725i 0.242761 0.672207i
$$385$$ 30.8420 18.2012i 1.57185 0.927620i
$$386$$ 5.84798 0.367094i 0.297654 0.0186846i
$$387$$ −10.1932 5.19372i −0.518152 0.264011i
$$388$$ 1.93325 + 1.06352i 0.0981457 + 0.0539922i
$$389$$ −32.9149 5.21321i −1.66885 0.264320i −0.750728 0.660611i $$-0.770297\pi$$
−0.918125 + 0.396291i $$0.870297\pi$$
$$390$$ 14.5883 + 24.6754i 0.738707 + 1.24949i
$$391$$ 30.0843 + 9.77498i 1.52143 + 0.494342i
$$392$$ −14.8134 + 15.7613i −0.748190 + 0.796065i
$$393$$ 4.47892 6.16470i 0.225932 0.310968i
$$394$$ −5.84754 + 13.5076i −0.294595 + 0.680504i
$$395$$ −7.53423 7.53423i −0.379088 0.379088i
$$396$$ −4.67955 8.53656i −0.235156 0.428978i
$$397$$ −12.4650 + 12.4650i −0.625599 + 0.625599i −0.946958 0.321358i $$-0.895861\pi$$
0.321358 + 0.946958i $$0.395861\pi$$
$$398$$ 1.65561 0.655230i 0.0829881 0.0328437i
$$399$$ −2.73856 1.98968i −0.137099 0.0996084i
$$400$$ −9.11844 7.55212i −0.455922 0.377606i
$$401$$ −10.9730 + 33.7713i −0.547963 + 1.68646i 0.165875 + 0.986147i $$0.446955\pi$$
−0.713838 + 0.700311i $$0.753045\pi$$
$$402$$ 8.54920 + 2.19635i 0.426395 + 0.109544i
$$403$$ −0.193851 + 1.22393i −0.00965643 + 0.0609683i
$$404$$ −0.0900081 0.310137i −0.00447807 0.0154299i
$$405$$ −3.12949 + 6.14197i −0.155506 + 0.305197i
$$406$$ 2.03683 + 1.79622i 0.101086 + 0.0891450i
$$407$$ −1.61672 + 1.83038i −0.0801380 + 0.0907285i
$$408$$ −9.42481 + 13.8556i −0.466598 + 0.685952i
$$409$$ −32.3167 + 10.5003i −1.59796 + 0.519208i −0.966601 0.256286i $$-0.917501\pi$$
−0.631356 + 0.775493i $$0.717501\pi$$
$$410$$ 48.3943 10.8102i 2.39003 0.533879i
$$411$$ 2.14821 + 0.340244i 0.105964 + 0.0167830i
$$412$$ −8.45721 1.61578i −0.416657 0.0796036i
$$413$$ 7.83706 + 15.3811i 0.385636 + 0.756854i
$$414$$ 10.5711 8.74263i 0.519540 0.429677i
$$415$$ 13.9455 + 10.1320i 0.684557 + 0.497360i
$$416$$ 32.4226 + 5.15872i 1.58965 + 0.252927i
$$417$$ 2.66057 0.130289
$$418$$ 3.34952 + 0.108853i 0.163830 + 0.00532420i
$$419$$ −13.7299 + 13.7299i −0.670749 + 0.670749i −0.957889 0.287140i $$-0.907296\pi$$
0.287140 + 0.957889i $$0.407296\pi$$
$$420$$ −24.1920 + 11.3755i −1.18045 + 0.555070i
$$421$$ 0.487451 + 3.07765i 0.0237569 + 0.149995i 0.996715 0.0809852i $$-0.0258067\pi$$
−0.972958 + 0.230980i $$0.925807\pi$$
$$422$$ −1.34207 + 14.1763i −0.0653311 + 0.690090i
$$423$$ −9.09541 2.95528i −0.442234 0.143691i
$$424$$ 16.3901 12.7024i 0.795976 0.616882i
$$425$$ 8.32673 + 11.4608i 0.403906 + 0.555929i
$$426$$ 1.53524 + 6.87283i 0.0743826 + 0.332990i
$$427$$ 13.1774 25.8622i 0.637701 1.25156i
$$428$$ −3.87515 3.00763i −0.187312 0.145379i
$$429$$ −18.3736 + 15.1713i −0.887088 + 0.732475i
$$430$$ −1.94853 31.0410i −0.0939665 1.49693i
$$431$$ −3.75670 11.5619i −0.180954 0.556918i 0.818902 0.573934i $$-0.194583\pi$$
−0.999855 + 0.0170158i $$0.994583\pi$$
$$432$$ 8.77413 + 20.3073i 0.422146 + 0.977036i
$$433$$ 24.6888 17.9374i 1.18647 0.862018i 0.193580 0.981084i $$-0.437990\pi$$
0.992886 + 0.119066i $$0.0379900\pi$$
$$434$$ −1.11931 0.287559i −0.0537287 0.0138033i
$$435$$ 0.795565 + 1.56138i 0.0381444 + 0.0748627i
$$436$$ −0.0278632 + 0.878710i −0.00133440 + 0.0420826i
$$437$$ 0.738744 + 4.66425i 0.0353389 + 0.223121i
$$438$$ −8.07441 + 18.6516i −0.385810 + 0.891210i
$$439$$ 26.2696i 1.25378i 0.779108 + 0.626890i $$0.215672\pi$$
−0.779108 + 0.626890i $$0.784328\pi$$
$$440$$ 13.5034 22.7626i 0.643748 1.08516i
$$441$$ 11.2233i 0.534445i
$$442$$ −36.0486 15.6057i −1.71466 0.742286i
$$443$$ 4.14057 + 26.1425i 0.196724 + 1.24207i 0.866376 + 0.499392i $$0.166443\pi$$
−0.669652 + 0.742675i $$0.733557\pi$$
$$444$$ 1.32927 1.24756i 0.0630844 0.0592067i
$$445$$ −8.78378 17.2391i −0.416391 0.817214i
$$446$$ 1.82141 7.08977i 0.0862463 0.335710i
$$447$$ 13.6547 9.92073i 0.645846 0.469235i
$$448$$ −7.63940 + 29.6491i −0.360928 + 1.40079i
$$449$$ −9.59291 29.5239i −0.452717 1.39332i −0.873794 0.486296i $$-0.838348\pi$$
0.421077 0.907025i $$-0.361652\pi$$
$$450$$ 6.13135 0.384882i 0.289035 0.0181435i
$$451$$ 15.1380 + 38.3383i 0.712820 + 1.80528i
$$452$$ −12.7644 + 1.60885i −0.600387 + 0.0756741i
$$453$$ −8.30971 + 16.3087i −0.390424 + 0.766250i
$$454$$ −21.7895 + 4.86731i −1.02263 + 0.228434i
$$455$$ −36.8345 50.6983i −1.72683 2.37677i
$$456$$ −2.48181 0.314594i −0.116221 0.0147322i
$$457$$ 1.21991 + 0.396372i 0.0570648 + 0.0185415i 0.337410 0.941358i $$-0.390449\pi$$
−0.280345 + 0.959899i $$0.590449\pi$$
$$458$$ 20.0711 + 1.90014i 0.937859 + 0.0887875i
$$459$$ −4.14061 26.1428i −0.193267 1.22024i
$$460$$ 35.0862 + 12.6430i 1.63590 + 0.589484i
$$461$$ −14.4115 + 14.4115i −0.671211 + 0.671211i −0.957995 0.286784i $$-0.907414\pi$$
0.286784 + 0.957995i $$0.407414\pi$$
$$462$$ −12.4707 18.3924i −0.580189 0.855692i
$$463$$ 30.0222 1.39525 0.697625 0.716463i $$-0.254240\pi$$
0.697625 + 0.716463i $$0.254240\pi$$
$$464$$ 1.95843 + 0.438923i 0.0909177 + 0.0203765i
$$465$$ −0.603299 0.438322i −0.0279773 0.0203267i
$$466$$ −11.5850 14.0079i −0.536665 0.648903i
$$467$$ −9.63753 18.9147i −0.445972 0.875269i −0.999110 0.0421793i $$-0.986570\pi$$
0.553138 0.833089i $$-0.313430\pi$$
$$468$$ −14.0920 + 9.57112i −0.651405 + 0.442425i
$$469$$ −19.0592 3.01868i −0.880071 0.139390i
$$470$$ −5.66815 25.3747i −0.261452 1.17045i
$$471$$ 5.66626 1.84108i 0.261088 0.0848325i
$$472$$ 10.5486 + 7.17535i 0.485538 + 0.330272i
$$473$$ 25.2359 5.61627i 1.16035 0.258236i
$$474$$ −4.37294 + 4.95872i −0.200856 + 0.227761i
$$475$$ −0.960131 + 1.88436i −0.0440539 + 0.0864606i
$$476$$ 17.6575 32.0974i 0.809331 1.47118i
$$477$$ −1.68317 + 10.6271i −0.0770669 + 0.486581i
$$478$$ −5.13087 + 19.9717i −0.234680 + 0.913484i
$$479$$ −7.25171 + 22.3185i −0.331339 + 1.01976i 0.637158 + 0.770733i $$0.280110\pi$$
−0.968497 + 0.249024i $$0.919890\pi$$
$$480$$ −11.6240 + 15.9753i −0.530560 + 0.729169i
$$481$$ 3.45728 + 2.51186i 0.157638 + 0.114531i
$$482$$ 3.80365 + 9.61088i 0.173251 + 0.437764i
$$483$$ 22.1417 22.1417i 1.00748 1.00748i
$$484$$ 20.4377 + 8.14253i 0.928986 + 0.370115i
$$485$$ −2.20094 2.20094i −0.0999396 0.0999396i
$$486$$ −17.6073 7.62231i −0.798683 0.345755i
$$487$$ −16.9443 + 23.3218i −0.767819 + 1.05681i 0.228705 + 0.973496i $$0.426551\pi$$
−0.996523 + 0.0833157i $$0.973449\pi$$
$$488$$ −0.664706 21.4408i −0.0300898 0.970580i
$$489$$ 7.85914 + 2.55359i 0.355403 + 0.115477i
$$490$$ 26.2658 15.5285i 1.18657 0.701507i
$$491$$ 27.9273 + 4.42326i 1.26034 + 0.199619i 0.750628 0.660725i $$-0.229751\pi$$
0.509715 + 0.860343i $$0.329751\pi$$
$$492$$ −8.57590 29.5496i −0.386632 1.33220i
$$493$$ −2.13965 1.09021i −0.0963650 0.0491004i
$$494$$ −0.367396 5.85278i −0.0165299 0.263329i
$$495$$ 2.98329 + 13.4050i 0.134089 + 0.602509i
$$496$$ −0.827362 + 0.211932i −0.0371496 + 0.00951603i
$$497$$ −4.75742 14.6418i −0.213399 0.656776i
$$498$$ 5.73247 9.03010i 0.256878 0.404648i
$$499$$ 2.28009 14.3959i 0.102071 0.644449i −0.882613 0.470100i $$-0.844218\pi$$
0.984684 0.174349i $$-0.0557821\pi$$
$$500$$ −6.46766 9.52265i −0.289242 0.425866i
$$501$$ 23.1037 11.7719i 1.03220 0.525930i
$$502$$ 12.9162 + 1.22278i 0.576477 + 0.0545753i
$$503$$ −3.59156 + 4.94336i −0.160140 + 0.220414i −0.881545 0.472099i $$-0.843496\pi$$
0.721406 + 0.692513i $$0.243496\pi$$
$$504$$ −7.64762 13.9249i −0.340652 0.620266i
$$505$$ 0.455553i 0.0202718i
$$506$$ −5.84158 + 30.4454i −0.259690 + 1.35347i
$$507$$ 18.1038 + 18.1038i 0.804016 + 0.804016i
$$508$$ 4.39728 + 9.35155i 0.195098 + 0.414908i
$$509$$ 12.0875 1.91447i 0.535768 0.0848573i 0.117313 0.993095i $$-0.462572\pi$$
0.418455 + 0.908238i $$0.362572\pi$$
$$510$$ 18.2162 15.0654i 0.806626 0.667107i
$$511$$ 13.7303 42.2575i 0.607392 1.86936i
$$512$$ 5.59933 + 21.9237i 0.247458 + 0.968899i
$$513$$ 3.19682 2.32262i 0.141143 0.102546i
$$514$$ −9.01164 5.72075i −0.397486 0.252331i
$$515$$ 10.8223 + 5.51421i 0.476886 + 0.242985i
$$516$$ −19.1475 + 2.41339i −0.842920 + 0.106244i
$$517$$ 20.1020 7.93733i 0.884084 0.349083i
$$518$$ −2.63600 + 2.98911i −0.115819 + 0.131334i
$$519$$ 15.3445 4.98573i 0.673549 0.218849i
$$520$$ −41.8967 19.7368i −1.83729 0.865516i
$$521$$ −0.0310883 0.0427894i −0.00136201 0.00187464i 0.808335 0.588722i $$-0.200369\pi$$
−0.809697 + 0.586848i $$0.800369\pi$$
$$522$$ −0.896449 + 0.529988i −0.0392365 + 0.0231969i
$$523$$ −30.1766 + 15.3758i −1.31953 + 0.672335i −0.964887 0.262665i $$-0.915398\pi$$
−0.354646 + 0.935001i $$0.615398\pi$$
$$524$$ −0.390182 + 12.3050i −0.0170452 + 0.537547i
$$525$$ 13.8506 2.19371i 0.604488 0.0957415i
$$526$$ −1.38235 + 0.547087i −0.0602735 + 0.0238541i
$$527$$ 1.02190 0.0445146
$$528$$ −14.6214 7.47755i −0.636316 0.325418i
$$529$$ −20.6840 −0.899306
$$530$$ −27.1992 + 10.7645i −1.18146 + 0.467579i
$$531$$ −6.53820 + 1.03555i −0.283734 + 0.0449390i
$$532$$ 5.46627 + 0.173331i 0.236993 + 0.00751485i
$$533$$ 64.2658 32.7451i 2.78366 1.41835i
$$534$$ −10.3345 + 6.10982i −0.447216 + 0.264398i
$$535$$ 4.06738 + 5.59827i 0.175848 + 0.242034i
$$536$$ −13.4199 + 4.82505i −0.579653 + 0.208410i
$$537$$ −5.45873 + 1.77365i −0.235562 + 0.0765386i
$$538$$ −14.0801 + 15.9662i −0.607035 + 0.688350i
$$539$$ 16.1491 + 19.5578i 0.695589 + 0.842416i
$$540$$ −3.90246 30.9615i −0.167935 1.33237i
$$541$$ 24.2779 + 12.3702i 1.04379 + 0.531838i 0.889855 0.456243i $$-0.150805\pi$$
0.153935 + 0.988081i $$0.450805\pi$$
$$542$$ −2.11449 1.34232i −0.0908253 0.0576575i
$$543$$ −23.3593 + 16.9716i −1.00245 + 0.728319i
$$544$$ 0.0191294 27.0737i 0.000820164 1.16077i
$$545$$ 0.383240 1.17949i 0.0164162 0.0505239i
$$546$$ −29.9648 + 24.7819i −1.28237 + 1.06057i
$$547$$ −0.537952 + 0.0852032i −0.0230012 + 0.00364303i −0.167924 0.985800i $$-0.553706\pi$$
0.144923 + 0.989443i $$0.453706\pi$$
$$548$$ −3.18000 + 1.49530i −0.135843 + 0.0638759i
$$549$$ 7.87049 + 7.87049i 0.335904 + 0.335904i
$$550$$ −10.1307 + 9.49298i −0.431975 + 0.404782i
$$551$$ 0.358501i 0.0152726i
$$552$$ 6.46568 22.2199i 0.275198 0.945740i
$$553$$ 8.49566 11.6933i 0.361272 0.497248i
$$554$$ −38.4627 3.64128i −1.63412 0.154703i
$$555$$ −2.29137 + 1.16751i −0.0972633 + 0.0495581i
$$556$$ −3.55592 + 2.41513i −0.150805 + 0.102424i
$$557$$ 5.83958 36.8697i 0.247431 1.56222i −0.480765 0.876849i $$-0.659641\pi$$
0.728196 0.685369i $$-0.240359\pi$$
$$558$$ 0.237511 0.374140i 0.0100546 0.0158386i
$$559$$ −13.9799 43.0256i −0.591286 1.81979i
$$560$$ 22.0071 37.1640i 0.929969 1.57046i
$$561$$ 14.7273 + 13.0082i 0.621785 + 0.549206i
$$562$$ 0.365892 + 5.82882i 0.0154342 + 0.245874i
$$563$$ 16.7094 + 8.51389i 0.704219 + 0.358818i 0.769147 0.639072i $$-0.220682\pi$$
−0.0649273 + 0.997890i $$0.520682\pi$$
$$564$$ −15.4938 + 4.49662i −0.652407 + 0.189342i
$$565$$ 17.9254 + 2.83910i 0.754126 + 0.119442i
$$566$$ 6.05597 3.58034i 0.254552 0.150493i
$$567$$ −8.89319 2.88957i −0.373479 0.121351i
$$568$$ −8.29069 7.79209i −0.347870 0.326949i
$$569$$ −12.1936 + 16.7830i −0.511181 + 0.703580i −0.984118 0.177516i $$-0.943194\pi$$
0.472937 + 0.881096i $$0.343194\pi$$
$$570$$ 3.23858 + 1.40200i 0.135649 + 0.0587234i
$$571$$ −31.5475 31.5475i −1.32022 1.32022i −0.913593 0.406630i $$-0.866704\pi$$
−0.406630 0.913593i $$-0.633296\pi$$
$$572$$ 10.7851 36.9554i 0.450949 1.54518i
$$573$$ 16.3531 16.3531i 0.683162 0.683162i
$$574$$ 24.7532 + 62.5454i 1.03318 + 2.61059i
$$575$$ −15.8272 11.4991i −0.660038 0.479546i
$$576$$ −9.90784 6.29949i −0.412827 0.262479i
$$577$$ −11.7917 + 36.2911i −0.490895 + 1.51082i 0.332363 + 0.943151i $$0.392154\pi$$
−0.823258 + 0.567667i $$0.807846\pi$$
$$578$$ −2.07819 + 8.08928i −0.0864415 + 0.336470i
$$579$$ −0.802345 + 5.06581i −0.0333443 + 0.210528i
$$580$$ −2.48064 1.36466i −0.103003 0.0566642i
$$581$$ −10.6157 + 20.8344i −0.440412 + 0.864358i
$$582$$ −1.27745 + 1.44857i −0.0529520 + 0.0600451i
$$583$$ −12.3580 20.9407i −0.511817 0.867274i
$$584$$ −6.13935 32.2579i −0.254048 1.33484i
$$585$$ 22.8546 7.42592i 0.944923 0.307024i
$$586$$ 0.559228 + 2.50350i 0.0231015 + 0.103419i
$$587$$ 41.3056 + 6.54216i 1.70486 + 0.270024i 0.931448 0.363874i $$-0.118546\pi$$
0.773416 + 0.633898i $$0.218546\pi$$
$$588$$ −10.6376 15.6623i −0.438689 0.645903i
$$589$$ 0.0692600 + 0.135930i 0.00285381 + 0.00560092i
$$590$$ −11.4697 13.8684i −0.472199 0.570955i
$$591$$ −10.4233 7.57298i −0.428758 0.311511i
$$592$$ −0.644131 + 2.87404i −0.0264736 + 0.118122i
$$593$$ −47.4422 −1.94822 −0.974109 0.226078i $$-0.927410\pi$$
−0.974109 + 0.226078i $$0.927410\pi$$
$$594$$ 24.9178 7.21037i 1.02239 0.295845i
$$595$$ −36.5419 + 36.5419i −1.49807 + 1.49807i
$$596$$ −9.24433 + 25.6544i −0.378663 + 1.05084i
$$597$$ 0.243813 + 1.53937i 0.00997858 + 0.0630023i
$$598$$ 54.0058 + 5.11275i 2.20846 + 0.209076i
$$599$$ 27.3396 + 8.88318i 1.11707 + 0.362957i 0.808647 0.588294i $$-0.200200\pi$$
0.308419 + 0.951251i $$0.400200\pi$$
$$600$$ 8.19159 6.34848i 0.334420 0.259176i
$$601$$ −8.94423 12.3107i −0.364843 0.502163i 0.586647 0.809843i $$-0.300448\pi$$
−0.951490 + 0.307679i $$0.900448\pi$$
$$602$$ 41.1757 9.19775i 1.67820 0.374872i
$$603$$ 3.35941 6.59322i 0.136806 0.268497i
$$604$$ −3.69810 29.3401i −0.150473 1.19383i
$$605$$ −24.4868 19.0670i −0.995531 0.775182i
$$606$$ 0.282117 0.0177093i 0.0114602 0.000719390i
$$607$$ 9.10510 + 28.0226i 0.369565 + 1.13740i 0.947073 + 0.321018i $$0.104025\pi$$
−0.577508 + 0.816385i $$0.695975\pi$$
$$608$$ 3.60257 1.83240i 0.146103 0.0743134i
$$609$$ −1.92314 + 1.39724i −0.0779296 + 0.0566192i
$$610$$ −7.52960 + 29.3087i −0.304865 + 1.18667i
$$611$$ −17.1693 33.6966i −0.694595 1.36322i
$$612$$ 9.61361 + 10.2433i 0.388607 + 0.414059i
$$613$$ −3.99659 25.2335i −0.161421 1.01917i −0.926790 0.375579i $$-0.877444\pi$$
0.765370 0.643591i $$-0.222556\pi$$
$$614$$ −25.8057 11.1715i −1.04143 0.450844i
$$615$$ 43.4047i 1.75025i
$$616$$ 33.3631 + 13.2616i 1.34424 + 0.534327i
$$617$$ 39.5434i 1.59196i 0.605326 + 0.795978i $$0.293043\pi$$
−0.605326 + 0.795978i $$0.706957\pi$$
$$618$$ 2.99416 6.91642i 0.120443 0.278219i
$$619$$ 5.56309 + 35.1239i 0.223599 + 1.41175i 0.802646 + 0.596456i $$0.203425\pi$$
−0.579046 + 0.815295i $$0.696575\pi$$
$$620$$ 1.20421 + 0.0381845i 0.0483623 + 0.00153353i
$$621$$ 16.5946 + 32.5688i 0.665920 + 1.30694i
$$622$$ −21.4416 5.50850i −0.859730 0.220871i
$$623$$ 21.2333 15.4269i 0.850693 0.618065i
$$624$$ −10.5940 + 26.7132i −0.424099 + 1.06939i
$$625$$ 9.59141 + 29.5193i 0.383656 + 1.18077i
$$626$$ −1.29191 20.5808i −0.0516352 0.822572i
$$627$$ −0.732164 + 2.84062i −0.0292398 + 0.113444i
$$628$$ −5.90186 + 7.60420i −0.235510 + 0.303440i
$$629$$ 1.59991 3.13999i 0.0637924 0.125200i
$$630$$ 4.88572 + 21.8720i 0.194652 + 0.871400i
$$631$$ −22.0081 30.2915i −0.876127 1.20588i −0.977479 0.211034i $$-0.932317\pi$$
0.101352 0.994851i $$-0.467683\pi$$
$$632$$ 1.34328 10.5970i 0.0534326 0.421525i
$$633$$ −11.8543 3.85169i −0.471165 0.153091i
$$634$$ 2.62897 27.7697i 0.104410 1.10288i
$$635$$ −2.28043 14.3981i −0.0904963 0.571371i
$$636$$ 7.72362 + 16.4256i 0.306261 + 0.651316i
$$637$$ 31.3832 31.3832i 1.24345 1.24345i
$$638$$ 0.799566 2.21344i 0.0316551 0.0876310i
$$639$$ 5.90366 0.233545
$$640$$ 1.03418 31.9030i 0.0408797 1.26108i
$$641$$ 5.03998 + 3.66176i 0.199067 + 0.144631i 0.682853 0.730555i $$-0.260739\pi$$
−0.483786 + 0.875186i $$0.660739\pi$$
$$642$$ 3.30880 2.73649i 0.130588 0.108001i
$$643$$ −4.18877 8.22092i −0.165189 0.324201i 0.793543 0.608515i $$-0.208234\pi$$
−0.958731 + 0.284313i $$0.908234\pi$$
$$644$$ −9.49380 + 49.6919i −0.374108 + 1.95814i
$$645$$ 26.8893 + 4.25884i 1.05876 + 0.167692i
$$646$$ −4.71969 + 1.05428i −0.185694 + 0.0414799i
$$647$$ −45.4383 + 14.7638i −1.78636 + 0.580425i −0.999334 0.0364889i $$-0.988383\pi$$
−0.787031 + 0.616914i $$0.788383\pi$$
$$648$$ −6.78876 + 1.29204i −0.266688 + 0.0507562i
$$649$$ 9.90346 11.2122i 0.388745 0.440119i
$$650$$ 18.2210 + 16.0685i 0.714685 + 0.630259i
$$651$$ 0.459247 0.901322i 0.0179993 0.0353256i
$$652$$ −12.8220 + 3.72119i −0.502146 + 0.145733i
$$653$$ 0.0758583 0.478950i 0.00296856 0.0187428i −0.986160 0.165799i $$-0.946980\pi$$
0.989128 + 0.147056i $$0.0469798\pi$$
$$654$$ −0.745340 0.191483i −0.0291451 0.00748758i
$$655$$ 5.36670 16.5170i 0.209694 0.645373i
$$656$$ 38.2855 + 31.7090i 1.49480 + 1.23803i
$$657$$ 13.7844 + 10.0149i 0.537780 + 0.390720i
$$658$$ 32.7945 12.9789i 1.27846 0.505971i
$$659$$ −30.1404 + 30.1404i −1.17410 + 1.17410i −0.192879 + 0.981222i $$0.561783\pi$$
−0.981222 + 0.192879i $$0.938217\pi$$
$$660$$ 16.8686 + 15.8792i 0.656610 + 0.618097i
$$661$$ 11.5512 + 11.5512i 0.449290 + 0.449290i 0.895118 0.445828i $$-0.147091\pi$$
−0.445828 + 0.895118i $$0.647091\pi$$
$$662$$ −17.5877 + 40.6269i −0.683564 + 1.57901i
$$663$$ 20.2105 27.8173i 0.784909 1.08033i
$$664$$ 0.535483 + 17.2726i 0.0207808 + 0.670307i
$$665$$ −7.33738 2.38406i −0.284531 0.0924499i
$$666$$ −0.777770 1.31556i −0.0301380 0.0509770i
$$667$$ 3.27545 + 0.518780i 0.126826 + 0.0200873i
$$668$$ −20.1927 + 36.7058i −0.781279 + 1.42019i
$$669$$ 5.70901 + 2.90889i 0.220723 + 0.112464i
$$670$$ 20.0780 1.26035i 0.775682 0.0486917i
$$671$$ −25.0398 2.39045i −0.966652 0.0922822i
$$672$$ −23.8706 12.1839i −0.920828 0.470005i
$$673$$ 4.08576 + 12.5747i 0.157495 + 0.484719i 0.998405 0.0564556i $$-0.0179799\pi$$
−0.840910 + 0.541174i $$0.817980\pi$$
$$674$$ 39.6736 + 25.1855i 1.52817 + 0.970109i
$$675$$ −2.56080 + 16.1683i −0.0985653 + 0.622317i
$$676$$ −40.6298 7.76245i −1.56268 0.298556i
$$677$$ −18.1527 + 9.24928i −0.697666 + 0.355479i −0.766584 0.642144i $$-0.778045\pi$$
0.0689183 + 0.997622i $$0.478045\pi$$
$$678$$ 1.06138 11.2113i 0.0407619 0.430566i
$$679$$ 2.48180 3.41590i 0.0952427 0.131090i
$$680$$ −10.6708 + 36.6710i −0.409205 + 1.40627i
$$681$$ 19.5430i 0.748889i
$$682$$ 0.124456 + 0.993727i 0.00476567 + 0.0380518i
$$683$$ 0.798121 + 0.798121i 0.0305393 + 0.0305393i 0.722212 0.691672i $$-0.243126\pi$$
−0.691672 + 0.722212i $$0.743126\pi$$
$$684$$ −0.710962 + 1.97302i −0.0271843 + 0.0754404i
$$685$$ 4.89608 0.775463i 0.187070 0.0296289i
$$686$$ 2.23298 + 2.69999i 0.0852556 + 0.103086i
$$687$$ −5.45330 + 16.7835i −0.208056 + 0.640332i
$$688$$ 23.4003 20.6067i 0.892129 0.785622i
$$689$$ −34.4224 + 25.0094i −1.31139 + 0.952781i
$$690$$ −17.4959 + 27.5605i −0.666058 + 1.04921i
$$691$$ −9.26643 4.72148i −0.352512 0.179614i 0.268763 0.963206i $$-0.413385\pi$$
−0.621275 + 0.783593i $$0.713385\pi$$
$$692$$ −15.9825 + 20.5925i −0.607564 + 0.782810i
$$693$$ −17.3271 + 6.84166i −0.658202 + 0.259893i
$$694$$ −4.69906 4.14396i −0.178374 0.157302i
$$695$$ 5.76703 1.87382i 0.218756 0.0710781i
$$696$$ −0.748677 + 1.58927i −0.0283785 + 0.0602411i
$$697$$ −34.9614 48.1202i −1.32426 1.82268i
$$698$$ −16.3704 27.6897i −0.619627 1.04807i
$$699$$ 14.1773 7.22367i 0.536233 0.273224i
$$700$$ −16.5203 + 15.5048i −0.624408 + 0.586026i
$$701$$ −5.76411 + 0.912945i −0.217707 + 0.0344814i −0.264335 0.964431i $$-0.585153\pi$$
0.0466279 + 0.998912i $$0.485153\pi$$
$$702$$ −16.7038 42.2064i −0.630445 1.59298i
$$703$$ 0.526109 0.0198426
$$704$$ 26.3296 3.27867i 0.992336 0.123570i
$$705$$ 22.7585 0.857135
$$706$$ −15.7997 39.9219i −0.594628 1.50248i
$$707$$ −0.610356 + 0.0966709i −0.0229548 + 0.00363568i
$$708$$ −8.14264 + 7.64212i −0.306019 + 0.287208i
$$709$$ 0.673563 0.343197i 0.0252962 0.0128890i −0.441297 0.897361i $$-0.645481\pi$$
0.466593 + 0.884472i $$0.345481\pi$$
$$710$$ 8.16825 + 13.8162i 0.306549 + 0.518513i
$$711$$ 3.25784 + 4.48403i 0.122178 + 0.168164i
$$712$$ 8.26609 17.5470i 0.309785 0.657603i
$$713$$ −1.34216 + 0.436093i −0.0502642 + 0.0163318i
$$714$$ 24.0504 + 21.2093i 0.900063 + 0.793739i
$$715$$ −29.1415 + 45.8255i −1.08983 + 1.71378i
$$716$$ 5.68570 7.32568i 0.212485 0.273774i
$$717$$ −16.0821 8.19426i −0.600598 0.306020i
$$718$$ 3.59657 5.66551i 0.134223 0.211435i
$$719$$ 6.41468 4.66054i 0.239227 0.173809i −0.461712 0.887030i $$-0.652765\pi$$
0.700939 + 0.713221i $$0.252765\pi$$
$$720$$ 10.9460 + 12.4299i 0.407932 + 0.463236i
$$721$$ −5.09148 + 15.6700i −0.189616 + 0.583580i
$$722$$ 16.6646 + 20.1498i 0.620191 + 0.749898i
$$723$$ −8.93613 + 1.41534i −0.332338 + 0.0526372i
$$724$$ 15.8144 43.8873i 0.587739 1.63106i
$$725$$ 1.05017 + 1.05017i 0.0390022 + 0.0390022i
$$726$$ −10.8560 + 15.9055i −0.402902 + 0.590309i
$$727$$ 5.97633i 0.221650i −0.993840 0.110825i $$-0.964651\pi$$
0.993840 0.110825i $$-0.0353493\pi$$
$$728$$ 17.5529 60.3221i 0.650554 2.23568i
$$729$$ 14.1798 19.5168i 0.525178 0.722845i
$$730$$ −4.36581 + 46.1159i −0.161586 + 1.70682i
$$731$$ −33.2409 + 16.9371i −1.22946 + 0.626441i
$$732$$ 18.4431 + 3.52362i 0.681677 + 0.130237i
$$733$$ 2.47193 15.6071i 0.0913026 0.576462i −0.899045 0.437856i $$-0.855738\pi$$
0.990348 0.138606i $$-0.0442621\pi$$
$$734$$ 30.6857 + 19.4798i 1.13263 + 0.719013i
$$735$$ 8.25339 + 25.4013i 0.304431 + 0.936942i
$$736$$ 11.5285 + 35.5666i 0.424947 + 1.31100i
$$737$$ 3.63273 + 16.3232i 0.133813 + 0.601271i
$$738$$ −25.7437 + 1.61600i −0.947638 + 0.0594859i
$$739$$ 30.2796 + 15.4282i 1.11385 + 0.567537i 0.911304 0.411734i $$-0.135077\pi$$
0.202551 + 0.979272i $$0.435077\pi$$
$$740$$ 2.00267 3.64040i 0.0736195 0.133824i
$$741$$ 5.06997 + 0.803005i 0.186250 + 0.0294991i
$$742$$ −20.1942 34.1575i −0.741352 1.25396i
$$743$$ −36.0583 11.7161i −1.32285 0.429820i −0.439378 0.898302i $$-0.644801\pi$$
−0.883473 + 0.468482i $$0.844801\pi$$
$$744$$ −0.0231657 0.747233i −0.000849294 0.0273949i
$$745$$ 22.6107 31.1210i 0.828393 1.14019i
$$746$$ −0.490863 + 1.13388i −0.0179718 + 0.0415142i
$$747$$ −6.34042 6.34042i −0.231984 0.231984i
$$748$$ −31.4915 4.01709i −1.15144 0.146879i
$$749$$ −6.63751 + 6.63751i −0.242529 + 0.242529i
$$750$$ 9.36912 3.70797i 0.342112 0.135396i
$$751$$ −14.7714 10.7320i −0.539016 0.391618i 0.284704 0.958616i $$-0.408105\pi$$
−0.823719 + 0.566998i $$0.808105\pi$$
$$752$$ 16.6261 20.0743i 0.606290 0.732036i
$$753$$ −3.50932 + 10.8006i −0.127887 + 0.393595i
$$754$$ −3.98866 1.02471i −0.145258 0.0373179i
$$755$$ −6.52593 + 41.2031i −0.237503 + 1.49953i
$$756$$ 40.6545 11.7988i 1.47859 0.429117i
$$757$$ 0.177304 0.347978i 0.00644421 0.0126475i −0.887762 0.460303i $$-0.847741\pi$$
0.894206 + 0.447655i $$0.147741\pi$$
$$758$$ −24.7001 21.7822i −0.897146 0.791166i
$$759$$ −24.8939 10.8001i −0.903593 0.392017i
$$760$$ −5.60111 + 1.06601i −0.203173 + 0.0386682i
$$761$$ −10.8973 + 3.54074i −0.395026 + 0.128352i −0.499793 0.866145i $$-0.666591\pi$$
0.104766 + 0.994497i $$0.466591\pi$$
$$762$$ −8.82787 + 1.97195i −0.319800 + 0.0714363i
$$763$$ 1.66163 + 0.263176i 0.0601549 + 0.00952760i
$$764$$ −7.01183 + 36.7009i −0.253679 + 1.32779i
$$765$$ −8.99675 17.6571i −0.325278 0.638394i
$$766$$ 8.95974 7.41001i 0.323729 0.267735i
$$767$$ −21.1780 15.3867i