Properties

Label 176.2.w.a.141.16
Level $176$
Weight $2$
Character 176.141
Analytic conductor $1.405$
Analytic rank $0$
Dimension $176$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,2,Mod(5,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 5, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 176.w (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40536707557\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 141.16
Character \(\chi\) \(=\) 176.141
Dual form 176.2.w.a.5.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.760498 - 1.19233i) q^{2} +(-1.17460 - 0.186039i) q^{3} +(-0.843285 - 1.81352i) q^{4} +(2.66815 + 1.35949i) q^{5} +(-1.11510 + 1.25903i) q^{6} +(2.54995 - 3.50970i) q^{7} +(-2.80363 - 0.373710i) q^{8} +(-1.50808 - 0.490006i) q^{9} +O(q^{10})\) \(q+(0.760498 - 1.19233i) q^{2} +(-1.17460 - 0.186039i) q^{3} +(-0.843285 - 1.81352i) q^{4} +(2.66815 + 1.35949i) q^{5} +(-1.11510 + 1.25903i) q^{6} +(2.54995 - 3.50970i) q^{7} +(-2.80363 - 0.373710i) q^{8} +(-1.50808 - 0.490006i) q^{9} +(3.65008 - 2.14742i) q^{10} +(-3.22922 + 0.756392i) q^{11} +(0.653140 + 2.28706i) q^{12} +(2.26954 - 1.15639i) q^{13} +(-2.24548 - 5.70949i) q^{14} +(-2.88110 - 2.09324i) q^{15} +(-2.57774 + 3.05864i) q^{16} +(1.09864 + 3.38125i) q^{17} +(-1.73114 + 1.42548i) q^{18} +(2.57180 + 0.407334i) q^{19} +(0.215457 - 5.98519i) q^{20} +(-3.64812 + 3.64812i) q^{21} +(-1.55395 + 4.42552i) q^{22} -3.11859i q^{23} +(3.22363 + 0.960546i) q^{24} +(2.33188 + 3.20956i) q^{25} +(0.347188 - 3.58546i) q^{26} +(4.85912 + 2.47585i) q^{27} +(-8.51526 - 1.66471i) q^{28} +(1.65447 + 10.4459i) q^{29} +(-4.68690 + 1.84331i) q^{30} +(-1.86623 + 5.74368i) q^{31} +(1.68653 + 5.39959i) q^{32} +(3.93378 - 0.287700i) q^{33} +(4.86707 + 1.26150i) q^{34} +(11.5750 - 5.89778i) q^{35} +(0.383107 + 3.14816i) q^{36} +(2.41053 - 0.381790i) q^{37} +(2.44153 - 2.75665i) q^{38} +(-2.88094 + 0.936075i) q^{39} +(-6.97245 - 4.80862i) q^{40} +(-3.10975 - 4.28020i) q^{41} +(1.57536 + 7.12414i) q^{42} +(-3.57458 + 3.57458i) q^{43} +(4.09489 + 5.21842i) q^{44} +(-3.35764 - 3.35764i) q^{45} +(-3.71838 - 2.37168i) q^{46} +(-2.79285 + 2.02912i) q^{47} +(3.59685 - 3.11313i) q^{48} +(-3.65265 - 11.2417i) q^{49} +(5.60024 - 0.339501i) q^{50} +(-0.661417 - 4.17602i) q^{51} +(-4.01100 - 3.14070i) q^{52} +(-0.557159 - 1.09349i) q^{53} +(6.64737 - 3.91078i) q^{54} +(-9.64436 - 2.37193i) q^{55} +(-8.46071 + 8.88696i) q^{56} +(-2.94507 - 0.956912i) q^{57} +(13.7132 + 5.97144i) q^{58} +(4.36078 - 0.690679i) q^{59} +(-1.36656 + 6.99015i) q^{60} +(2.26959 - 4.45432i) q^{61} +(5.42907 + 6.59322i) q^{62} +(-5.56531 + 4.04343i) q^{63} +(7.72068 + 2.09549i) q^{64} +7.62756 q^{65} +(2.64860 - 4.90914i) q^{66} +(-2.50704 - 2.50704i) q^{67} +(5.20552 - 4.84376i) q^{68} +(-0.580180 + 3.66311i) q^{69} +(1.77072 - 18.2865i) q^{70} +(-8.59341 + 2.79217i) q^{71} +(4.04499 + 1.93738i) q^{72} +(-4.91342 + 6.76274i) q^{73} +(1.37798 - 3.16448i) q^{74} +(-2.14194 - 4.20379i) q^{75} +(-1.43005 - 5.00752i) q^{76} +(-5.57963 + 13.2624i) q^{77} +(-1.07484 + 4.14691i) q^{78} +(4.22272 - 12.9962i) q^{79} +(-11.0360 + 4.65649i) q^{80} +(-1.39838 - 1.01598i) q^{81} +(-7.46835 + 0.452750i) q^{82} +(-6.86992 + 13.4830i) q^{83} +(9.69236 + 3.53955i) q^{84} +(-1.66546 + 10.5153i) q^{85} +(1.54361 + 6.98054i) q^{86} -12.5776i q^{87} +(9.33621 - 0.913851i) q^{88} -13.8320i q^{89} +(-6.55688 + 1.44992i) q^{90} +(1.72863 - 10.9141i) q^{91} +(-5.65564 + 2.62986i) q^{92} +(3.26064 - 6.39936i) q^{93} +(0.295421 + 4.87313i) q^{94} +(6.30819 + 4.58317i) q^{95} +(-0.976468 - 6.65615i) q^{96} +(2.80072 - 8.61973i) q^{97} +(-16.1816 - 4.19414i) q^{98} +(5.24058 + 0.441636i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8} - 16 q^{10} - 12 q^{11} - 6 q^{13} - 12 q^{15} + 14 q^{16} - 12 q^{17} - 44 q^{18} - 6 q^{19} + 2 q^{20} - 28 q^{21} + 50 q^{22} - 38 q^{24} - 68 q^{26} - 18 q^{27} - 46 q^{28} - 22 q^{29} + 26 q^{30} - 12 q^{31} - 16 q^{32} - 16 q^{33} + 12 q^{34} - 26 q^{35} - 22 q^{36} + 18 q^{37} - 34 q^{38} + 14 q^{40} - 10 q^{42} - 40 q^{43} + 2 q^{44} - 24 q^{45} + 38 q^{46} - 12 q^{47} - 26 q^{48} + 8 q^{49} - 62 q^{50} + 6 q^{51} + 74 q^{52} - 30 q^{53} - 52 q^{54} - 96 q^{56} - 26 q^{58} + 10 q^{59} + 118 q^{60} - 6 q^{61} - 42 q^{62} - 28 q^{63} - 106 q^{64} - 32 q^{65} + 6 q^{66} + 24 q^{67} + 116 q^{68} + 12 q^{69} + 52 q^{70} - 98 q^{72} + 96 q^{74} - 46 q^{75} + 112 q^{76} - 14 q^{77} + 44 q^{78} - 52 q^{79} - 28 q^{80} + 66 q^{82} + 54 q^{83} + 120 q^{84} + 14 q^{85} + 86 q^{86} + 142 q^{88} + 228 q^{90} - 122 q^{91} + 146 q^{92} + 6 q^{93} + 56 q^{94} + 52 q^{95} + 86 q^{96} - 12 q^{97} + 140 q^{98} + 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.760498 1.19233i 0.537753 0.843102i
\(3\) −1.17460 0.186039i −0.678158 0.107410i −0.192152 0.981365i \(-0.561547\pi\)
−0.486006 + 0.873955i \(0.661547\pi\)
\(4\) −0.843285 1.81352i −0.421643 0.906762i
\(5\) 2.66815 + 1.35949i 1.19323 + 0.607983i 0.933806 0.357780i \(-0.116466\pi\)
0.259427 + 0.965763i \(0.416466\pi\)
\(6\) −1.11510 + 1.25903i −0.455239 + 0.513997i
\(7\) 2.54995 3.50970i 0.963789 1.32654i 0.0186665 0.999826i \(-0.494058\pi\)
0.945123 0.326716i \(-0.105942\pi\)
\(8\) −2.80363 0.373710i −0.991233 0.132126i
\(9\) −1.50808 0.490006i −0.502695 0.163335i
\(10\) 3.65008 2.14742i 1.15426 0.679073i
\(11\) −3.22922 + 0.756392i −0.973647 + 0.228061i
\(12\) 0.653140 + 2.28706i 0.188545 + 0.660217i
\(13\) 2.26954 1.15639i 0.629456 0.320724i −0.109997 0.993932i \(-0.535084\pi\)
0.739453 + 0.673208i \(0.235084\pi\)
\(14\) −2.24548 5.70949i −0.600130 1.52592i
\(15\) −2.88110 2.09324i −0.743898 0.540473i
\(16\) −2.57774 + 3.05864i −0.644435 + 0.764659i
\(17\) 1.09864 + 3.38125i 0.266458 + 0.820074i 0.991354 + 0.131215i \(0.0418879\pi\)
−0.724896 + 0.688859i \(0.758112\pi\)
\(18\) −1.73114 + 1.42548i −0.408034 + 0.335989i
\(19\) 2.57180 + 0.407334i 0.590012 + 0.0934487i 0.444300 0.895878i \(-0.353453\pi\)
0.145712 + 0.989327i \(0.453453\pi\)
\(20\) 0.215457 5.98519i 0.0481776 1.33833i
\(21\) −3.64812 + 3.64812i −0.796085 + 0.796085i
\(22\) −1.55395 + 4.42552i −0.331303 + 0.943524i
\(23\) 3.11859i 0.650271i −0.945667 0.325136i \(-0.894590\pi\)
0.945667 0.325136i \(-0.105410\pi\)
\(24\) 3.22363 + 0.960546i 0.658021 + 0.196071i
\(25\) 2.33188 + 3.20956i 0.466377 + 0.641913i
\(26\) 0.347188 3.58546i 0.0680891 0.703167i
\(27\) 4.85912 + 2.47585i 0.935138 + 0.476477i
\(28\) −8.51526 1.66471i −1.60923 0.314601i
\(29\) 1.65447 + 10.4459i 0.307228 + 1.93976i 0.340323 + 0.940308i \(0.389463\pi\)
−0.0330954 + 0.999452i \(0.510537\pi\)
\(30\) −4.68690 + 1.84331i −0.855708 + 0.336540i
\(31\) −1.86623 + 5.74368i −0.335186 + 1.03160i 0.631445 + 0.775421i \(0.282462\pi\)
−0.966631 + 0.256175i \(0.917538\pi\)
\(32\) 1.68653 + 5.39959i 0.298139 + 0.954523i
\(33\) 3.93378 0.287700i 0.684783 0.0500821i
\(34\) 4.86707 + 1.26150i 0.834695 + 0.216346i
\(35\) 11.5750 5.89778i 1.95654 0.996906i
\(36\) 0.383107 + 3.14816i 0.0638512 + 0.524694i
\(37\) 2.41053 0.381790i 0.396288 0.0627659i 0.0448898 0.998992i \(-0.485706\pi\)
0.351398 + 0.936226i \(0.385706\pi\)
\(38\) 2.44153 2.75665i 0.396068 0.447188i
\(39\) −2.88094 + 0.936075i −0.461320 + 0.149892i
\(40\) −6.97245 4.80862i −1.10244 0.760310i
\(41\) −3.10975 4.28020i −0.485661 0.668455i 0.493920 0.869508i \(-0.335564\pi\)
−0.979580 + 0.201053i \(0.935564\pi\)
\(42\) 1.57536 + 7.12414i 0.243084 + 1.09928i
\(43\) −3.57458 + 3.57458i −0.545119 + 0.545119i −0.925025 0.379906i \(-0.875956\pi\)
0.379906 + 0.925025i \(0.375956\pi\)
\(44\) 4.09489 + 5.21842i 0.617328 + 0.786706i
\(45\) −3.35764 3.35764i −0.500527 0.500527i
\(46\) −3.71838 2.37168i −0.548245 0.349686i
\(47\) −2.79285 + 2.02912i −0.407379 + 0.295978i −0.772540 0.634967i \(-0.781014\pi\)
0.365161 + 0.930944i \(0.381014\pi\)
\(48\) 3.59685 3.11313i 0.519161 0.449341i
\(49\) −3.65265 11.2417i −0.521807 1.60596i
\(50\) 5.60024 0.339501i 0.791994 0.0480127i
\(51\) −0.661417 4.17602i −0.0926169 0.584760i
\(52\) −4.01100 3.14070i −0.556226 0.435536i
\(53\) −0.557159 1.09349i −0.0765317 0.150202i 0.849570 0.527476i \(-0.176861\pi\)
−0.926102 + 0.377274i \(0.876861\pi\)
\(54\) 6.64737 3.91078i 0.904592 0.532190i
\(55\) −9.64436 2.37193i −1.30044 0.319831i
\(56\) −8.46071 + 8.88696i −1.13061 + 1.18757i
\(57\) −2.94507 0.956912i −0.390084 0.126746i
\(58\) 13.7132 + 5.97144i 1.80063 + 0.784088i
\(59\) 4.36078 0.690679i 0.567725 0.0899188i 0.134028 0.990978i \(-0.457209\pi\)
0.433697 + 0.901059i \(0.357209\pi\)
\(60\) −1.36656 + 6.99015i −0.176422 + 0.902425i
\(61\) 2.26959 4.45432i 0.290591 0.570317i −0.698847 0.715271i \(-0.746303\pi\)
0.989438 + 0.144954i \(0.0463033\pi\)
\(62\) 5.42907 + 6.59322i 0.689493 + 0.837340i
\(63\) −5.56531 + 4.04343i −0.701163 + 0.509425i
\(64\) 7.72068 + 2.09549i 0.965085 + 0.261936i
\(65\) 7.62756 0.946083
\(66\) 2.64860 4.90914i 0.326020 0.604274i
\(67\) −2.50704 2.50704i −0.306284 0.306284i 0.537182 0.843466i \(-0.319489\pi\)
−0.843466 + 0.537182i \(0.819489\pi\)
\(68\) 5.20552 4.84376i 0.631262 0.587392i
\(69\) −0.580180 + 3.66311i −0.0698455 + 0.440987i
\(70\) 1.77072 18.2865i 0.211641 2.18565i
\(71\) −8.59341 + 2.79217i −1.01985 + 0.331369i −0.770770 0.637114i \(-0.780128\pi\)
−0.249080 + 0.968483i \(0.580128\pi\)
\(72\) 4.04499 + 1.93738i 0.476707 + 0.228323i
\(73\) −4.91342 + 6.76274i −0.575072 + 0.791518i −0.993144 0.116895i \(-0.962706\pi\)
0.418072 + 0.908414i \(0.362706\pi\)
\(74\) 1.37798 3.16448i 0.160187 0.367864i
\(75\) −2.14194 4.20379i −0.247330 0.485412i
\(76\) −1.43005 5.00752i −0.164039 0.574403i
\(77\) −5.57963 + 13.2624i −0.635858 + 1.51139i
\(78\) −1.07484 + 4.14691i −0.121702 + 0.469545i
\(79\) 4.22272 12.9962i 0.475093 1.46219i −0.370740 0.928737i \(-0.620896\pi\)
0.845833 0.533449i \(-0.179104\pi\)
\(80\) −11.0360 + 4.65649i −1.23386 + 0.520611i
\(81\) −1.39838 1.01598i −0.155376 0.112887i
\(82\) −7.46835 + 0.452750i −0.824741 + 0.0499979i
\(83\) −6.86992 + 13.4830i −0.754071 + 1.47995i 0.119282 + 0.992860i \(0.461941\pi\)
−0.873353 + 0.487088i \(0.838059\pi\)
\(84\) 9.69236 + 3.53955i 1.05752 + 0.386196i
\(85\) −1.66546 + 10.5153i −0.180644 + 1.14054i
\(86\) 1.54361 + 6.98054i 0.166451 + 0.752730i
\(87\) 12.5776i 1.34846i
\(88\) 9.33621 0.913851i 0.995244 0.0974168i
\(89\) 13.8320i 1.46619i −0.680127 0.733094i \(-0.738075\pi\)
0.680127 0.733094i \(-0.261925\pi\)
\(90\) −6.55688 + 1.44992i −0.691155 + 0.152835i
\(91\) 1.72863 10.9141i 0.181209 1.14411i
\(92\) −5.65564 + 2.62986i −0.589641 + 0.274182i
\(93\) 3.26064 6.39936i 0.338112 0.663583i
\(94\) 0.295421 + 4.87313i 0.0304704 + 0.502625i
\(95\) 6.30819 + 4.58317i 0.647207 + 0.470223i
\(96\) −0.976468 6.65615i −0.0996603 0.679340i
\(97\) 2.80072 8.61973i 0.284370 0.875201i −0.702217 0.711963i \(-0.747806\pi\)
0.986587 0.163238i \(-0.0521937\pi\)
\(98\) −16.1816 4.19414i −1.63459 0.423672i
\(99\) 5.24058 + 0.441636i 0.526698 + 0.0443861i
\(100\) 3.85418 6.93551i 0.385418 0.693551i
\(101\) 3.44838 + 6.76782i 0.343126 + 0.673423i 0.996498 0.0836137i \(-0.0266462\pi\)
−0.653372 + 0.757037i \(0.726646\pi\)
\(102\) −5.48219 2.38723i −0.542818 0.236371i
\(103\) −3.07396 + 4.23094i −0.302886 + 0.416887i −0.933146 0.359497i \(-0.882948\pi\)
0.630260 + 0.776384i \(0.282948\pi\)
\(104\) −6.79510 + 2.39393i −0.666314 + 0.234744i
\(105\) −14.6933 + 4.77415i −1.43392 + 0.465909i
\(106\) −1.72751 0.167279i −0.167791 0.0162475i
\(107\) 0.444795 2.80832i 0.0429999 0.271491i −0.956816 0.290695i \(-0.906113\pi\)
0.999816 + 0.0192046i \(0.00611338\pi\)
\(108\) 0.392380 10.9000i 0.0377568 1.04885i
\(109\) −12.7331 12.7331i −1.21961 1.21961i −0.967770 0.251836i \(-0.918966\pi\)
−0.251836 0.967770i \(-0.581034\pi\)
\(110\) −10.1626 + 9.69537i −0.968968 + 0.924418i
\(111\) −2.90244 −0.275488
\(112\) 4.16180 + 16.8465i 0.393253 + 1.59184i
\(113\) 7.17110 5.21011i 0.674600 0.490126i −0.196962 0.980411i \(-0.563107\pi\)
0.871562 + 0.490285i \(0.163107\pi\)
\(114\) −3.38067 + 2.78376i −0.316629 + 0.260723i
\(115\) 4.23970 8.32087i 0.395354 0.775925i
\(116\) 17.5488 11.8093i 1.62936 1.09647i
\(117\) −3.98929 + 0.631842i −0.368810 + 0.0584138i
\(118\) 2.49285 5.72473i 0.229485 0.527004i
\(119\) 14.6686 + 4.76613i 1.34467 + 0.436910i
\(120\) 7.29528 + 6.94538i 0.665965 + 0.634023i
\(121\) 9.85574 4.88511i 0.895977 0.444101i
\(122\) −3.58499 6.09360i −0.324569 0.551688i
\(123\) 2.85644 + 5.60607i 0.257556 + 0.505483i
\(124\) 11.9901 1.45910i 1.07674 0.131031i
\(125\) −0.483795 3.05456i −0.0432720 0.273208i
\(126\) 0.588687 + 9.71069i 0.0524444 + 0.865097i
\(127\) 1.02019 + 3.13982i 0.0905273 + 0.278614i 0.986062 0.166377i \(-0.0532068\pi\)
−0.895535 + 0.444991i \(0.853207\pi\)
\(128\) 8.37007 7.61196i 0.739817 0.672808i
\(129\) 4.86373 3.53371i 0.428228 0.311126i
\(130\) 5.80075 9.09455i 0.508759 0.797645i
\(131\) 5.79427 + 5.79427i 0.506247 + 0.506247i 0.913372 0.407125i \(-0.133469\pi\)
−0.407125 + 0.913372i \(0.633469\pi\)
\(132\) −3.83905 6.89139i −0.334146 0.599818i
\(133\) 7.98758 7.98758i 0.692611 0.692611i
\(134\) −4.89581 + 1.08261i −0.422934 + 0.0935234i
\(135\) 9.59897 + 13.2119i 0.826148 + 1.13710i
\(136\) −1.81656 9.89035i −0.155769 0.848090i
\(137\) 13.4631 4.37443i 1.15023 0.373733i 0.329001 0.944330i \(-0.393288\pi\)
0.821230 + 0.570597i \(0.193288\pi\)
\(138\) 3.92640 + 3.47755i 0.334237 + 0.296029i
\(139\) −4.59808 + 0.728264i −0.390004 + 0.0617705i −0.348357 0.937362i \(-0.613260\pi\)
−0.0416466 + 0.999132i \(0.513260\pi\)
\(140\) −20.4568 16.0181i −1.72892 1.35378i
\(141\) 3.65799 1.86384i 0.308058 0.156963i
\(142\) −3.20609 + 12.3696i −0.269049 + 1.03803i
\(143\) −6.45416 + 5.45089i −0.539724 + 0.455826i
\(144\) 5.38620 3.34957i 0.448850 0.279131i
\(145\) −9.78676 + 30.1206i −0.812746 + 2.50138i
\(146\) 4.32675 + 11.0014i 0.358084 + 0.910486i
\(147\) 2.19902 + 13.8841i 0.181372 + 1.14514i
\(148\) −2.72515 4.04959i −0.224006 0.332874i
\(149\) −11.0716 5.64125i −0.907019 0.462149i −0.0627260 0.998031i \(-0.519979\pi\)
−0.844293 + 0.535881i \(0.819979\pi\)
\(150\) −6.64123 0.643085i −0.542254 0.0525076i
\(151\) 4.40572 + 6.06396i 0.358533 + 0.493478i 0.949739 0.313042i \(-0.101348\pi\)
−0.591207 + 0.806520i \(0.701348\pi\)
\(152\) −7.05816 2.10312i −0.572492 0.170586i
\(153\) 5.63755i 0.455769i
\(154\) 11.5698 + 16.7387i 0.932318 + 1.34885i
\(155\) −12.7879 + 12.7879i −1.02715 + 1.02715i
\(156\) 4.12705 + 4.43528i 0.330429 + 0.355107i
\(157\) −10.9215 1.72979i −0.871629 0.138053i −0.295433 0.955364i \(-0.595464\pi\)
−0.576197 + 0.817311i \(0.695464\pi\)
\(158\) −12.2843 14.9184i −0.977289 1.18685i
\(159\) 0.451010 + 1.38807i 0.0357674 + 0.110081i
\(160\) −2.84079 + 16.6997i −0.224584 + 1.32023i
\(161\) −10.9453 7.95224i −0.862612 0.626724i
\(162\) −2.27485 + 0.894673i −0.178729 + 0.0702922i
\(163\) −1.04658 + 0.533261i −0.0819748 + 0.0417683i −0.494497 0.869179i \(-0.664648\pi\)
0.412522 + 0.910947i \(0.364648\pi\)
\(164\) −5.13984 + 9.24903i −0.401354 + 0.722228i
\(165\) 10.8870 + 4.58030i 0.847554 + 0.356576i
\(166\) 10.8515 + 18.4450i 0.842243 + 1.43161i
\(167\) −6.10858 1.98480i −0.472696 0.153588i 0.0629747 0.998015i \(-0.479941\pi\)
−0.535671 + 0.844427i \(0.679941\pi\)
\(168\) 11.5913 8.86464i 0.894289 0.683922i
\(169\) −3.82764 + 5.26829i −0.294434 + 0.405253i
\(170\) 11.2711 + 9.98261i 0.864451 + 0.765631i
\(171\) −3.67890 1.87449i −0.281333 0.143346i
\(172\) 9.49699 + 3.46820i 0.724139 + 0.264448i
\(173\) 7.63165 + 1.20873i 0.580224 + 0.0918984i 0.439646 0.898171i \(-0.355104\pi\)
0.140578 + 0.990070i \(0.455104\pi\)
\(174\) −14.9966 9.56527i −1.13689 0.725141i
\(175\) 17.2108 1.30101
\(176\) 6.01056 11.8268i 0.453063 0.891478i
\(177\) −5.25068 −0.394666
\(178\) −16.4923 10.5192i −1.23615 0.788448i
\(179\) 4.50677 + 0.713801i 0.336851 + 0.0533520i 0.322569 0.946546i \(-0.395454\pi\)
0.0142825 + 0.999898i \(0.495454\pi\)
\(180\) −3.25771 + 8.92060i −0.242815 + 0.664902i
\(181\) −15.0442 7.66542i −1.11823 0.569766i −0.205633 0.978629i \(-0.565925\pi\)
−0.912596 + 0.408863i \(0.865925\pi\)
\(182\) −11.6986 10.3613i −0.867156 0.768027i
\(183\) −3.49455 + 4.80983i −0.258324 + 0.355553i
\(184\) −1.16545 + 8.74338i −0.0859180 + 0.644570i
\(185\) 6.95069 + 2.25841i 0.511025 + 0.166042i
\(186\) −5.15042 8.75444i −0.377647 0.641907i
\(187\) −6.10529 10.0878i −0.446463 0.737694i
\(188\) 6.03503 + 3.35377i 0.440150 + 0.244599i
\(189\) 21.0800 10.7408i 1.53334 0.781277i
\(190\) 10.2620 4.03593i 0.744484 0.292797i
\(191\) 3.01085 + 2.18751i 0.217858 + 0.158283i 0.691362 0.722509i \(-0.257011\pi\)
−0.473504 + 0.880792i \(0.657011\pi\)
\(192\) −8.67890 3.89772i −0.626346 0.281294i
\(193\) 4.71086 + 14.4985i 0.339095 + 1.04363i 0.964670 + 0.263463i \(0.0848647\pi\)
−0.625574 + 0.780164i \(0.715135\pi\)
\(194\) −8.14759 9.89466i −0.584963 0.710395i
\(195\) −8.95937 1.41903i −0.641594 0.101618i
\(196\) −17.3069 + 16.1041i −1.23620 + 1.15029i
\(197\) −9.29045 + 9.29045i −0.661917 + 0.661917i −0.955832 0.293915i \(-0.905042\pi\)
0.293915 + 0.955832i \(0.405042\pi\)
\(198\) 4.51202 5.91261i 0.320655 0.420191i
\(199\) 16.1227i 1.14291i −0.820634 0.571455i \(-0.806379\pi\)
0.820634 0.571455i \(-0.193621\pi\)
\(200\) −5.33830 9.86988i −0.377475 0.697906i
\(201\) 2.47837 + 3.41119i 0.174811 + 0.240607i
\(202\) 10.6919 + 1.03532i 0.752282 + 0.0728451i
\(203\) 40.8809 + 20.8299i 2.86928 + 1.46197i
\(204\) −7.01555 + 4.72107i −0.491187 + 0.330541i
\(205\) −2.47838 15.6479i −0.173098 1.09290i
\(206\) 2.70692 + 6.88278i 0.188600 + 0.479546i
\(207\) −1.52813 + 4.70310i −0.106212 + 0.326888i
\(208\) −2.31331 + 9.92256i −0.160399 + 0.688005i
\(209\) −8.61302 + 0.629921i −0.595775 + 0.0435725i
\(210\) −5.48189 + 21.1500i −0.378287 + 1.45949i
\(211\) −4.58393 + 2.33563i −0.315571 + 0.160791i −0.604601 0.796529i \(-0.706667\pi\)
0.289030 + 0.957320i \(0.406667\pi\)
\(212\) −1.51322 + 1.93254i −0.103928 + 0.132728i
\(213\) 10.6133 1.68098i 0.727212 0.115179i
\(214\) −3.01017 2.66606i −0.205771 0.182248i
\(215\) −14.3971 + 4.67791i −0.981877 + 0.319031i
\(216\) −12.6979 8.75726i −0.863985 0.595856i
\(217\) 15.3998 + 21.1960i 1.04541 + 1.43888i
\(218\) −24.8654 + 5.49850i −1.68410 + 0.372405i
\(219\) 7.02945 7.02945i 0.475006 0.475006i
\(220\) 3.83139 + 19.4905i 0.258313 + 1.31405i
\(221\) 6.40343 + 6.40343i 0.430741 + 0.430741i
\(222\) −2.20730 + 3.46066i −0.148144 + 0.232264i
\(223\) 1.23177 0.894936i 0.0824856 0.0599293i −0.545778 0.837930i \(-0.683766\pi\)
0.628264 + 0.778000i \(0.283766\pi\)
\(224\) 23.2515 + 7.84947i 1.55356 + 0.524465i
\(225\) −1.94397 5.98293i −0.129598 0.398862i
\(226\) −0.758544 12.5126i −0.0504576 0.832324i
\(227\) 1.36482 + 8.61712i 0.0905861 + 0.571938i 0.990677 + 0.136235i \(0.0435003\pi\)
−0.900090 + 0.435703i \(0.856500\pi\)
\(228\) 0.748153 + 6.14791i 0.0495477 + 0.407155i
\(229\) 4.74233 + 9.30735i 0.313382 + 0.615047i 0.992946 0.118569i \(-0.0378308\pi\)
−0.679564 + 0.733617i \(0.737831\pi\)
\(230\) −6.69692 11.3831i −0.441582 0.750580i
\(231\) 9.02118 14.5400i 0.593550 0.956661i
\(232\) −0.734781 29.9048i −0.0482407 1.96335i
\(233\) −4.45466 1.44741i −0.291835 0.0948228i 0.159441 0.987207i \(-0.449031\pi\)
−0.451276 + 0.892385i \(0.649031\pi\)
\(234\) −2.28049 + 5.23705i −0.149080 + 0.342357i
\(235\) −10.2103 + 1.61715i −0.666047 + 0.105491i
\(236\) −4.92994 7.32594i −0.320912 0.476878i
\(237\) −7.37782 + 14.4798i −0.479241 + 0.940563i
\(238\) 16.8383 13.8652i 1.09146 0.898746i
\(239\) 7.41950 5.39058i 0.479928 0.348688i −0.321370 0.946954i \(-0.604143\pi\)
0.801298 + 0.598266i \(0.204143\pi\)
\(240\) 13.8292 3.41641i 0.892671 0.220528i
\(241\) −7.11723 −0.458461 −0.229231 0.973372i \(-0.573621\pi\)
−0.229231 + 0.973372i \(0.573621\pi\)
\(242\) 1.67062 15.4664i 0.107392 0.994217i
\(243\) −10.1151 10.1151i −0.648886 0.648886i
\(244\) −9.99193 0.359692i −0.639668 0.0230269i
\(245\) 5.53716 34.9603i 0.353756 2.23353i
\(246\) 8.85659 + 0.857602i 0.564675 + 0.0546787i
\(247\) 6.30784 2.04954i 0.401358 0.130409i
\(248\) 7.37870 15.4057i 0.468548 0.978264i
\(249\) 10.5778 14.5591i 0.670340 0.922644i
\(250\) −4.00996 1.74615i −0.253612 0.110436i
\(251\) −5.94913 11.6758i −0.375506 0.736972i 0.623487 0.781833i \(-0.285715\pi\)
−0.998993 + 0.0448618i \(0.985715\pi\)
\(252\) 12.0260 + 6.68305i 0.757567 + 0.420993i
\(253\) 2.35888 + 10.0706i 0.148301 + 0.633135i
\(254\) 4.51955 + 1.17143i 0.283582 + 0.0735020i
\(255\) 3.91250 12.0414i 0.245010 0.754065i
\(256\) −2.71052 15.7687i −0.169407 0.985546i
\(257\) −22.1556 16.0970i −1.38203 1.00410i −0.996687 0.0813269i \(-0.974084\pi\)
−0.385340 0.922775i \(-0.625916\pi\)
\(258\) −0.514476 8.48654i −0.0320299 0.528349i
\(259\) 4.80674 9.43377i 0.298677 0.586186i
\(260\) −6.43221 13.8328i −0.398909 0.857872i
\(261\) 2.62349 16.5640i 0.162390 1.02529i
\(262\) 11.3152 2.50213i 0.699055 0.154582i
\(263\) 31.0509i 1.91468i 0.288963 + 0.957340i \(0.406689\pi\)
−0.288963 + 0.957340i \(0.593311\pi\)
\(264\) −11.1364 0.663487i −0.685396 0.0408348i
\(265\) 3.67504i 0.225756i
\(266\) −3.44926 15.5983i −0.211488 0.956395i
\(267\) −2.57329 + 16.2471i −0.157483 + 0.994308i
\(268\) −2.43243 + 6.66073i −0.148584 + 0.406869i
\(269\) −3.05039 + 5.98673i −0.185986 + 0.365017i −0.965107 0.261856i \(-0.915666\pi\)
0.779121 + 0.626873i \(0.215666\pi\)
\(270\) 23.0528 1.39752i 1.40295 0.0850505i
\(271\) 12.9781 + 9.42917i 0.788366 + 0.572781i 0.907478 0.420099i \(-0.138005\pi\)
−0.119112 + 0.992881i \(0.538005\pi\)
\(272\) −13.1740 5.35566i −0.798792 0.324735i
\(273\) −4.06091 + 12.4982i −0.245777 + 0.756424i
\(274\) 5.02292 19.3792i 0.303446 1.17074i
\(275\) −9.95786 8.60057i −0.600482 0.518634i
\(276\) 7.13240 2.03688i 0.429320 0.122606i
\(277\) 0.0150784 + 0.0295930i 0.000905972 + 0.00177807i 0.891459 0.453101i \(-0.149682\pi\)
−0.890553 + 0.454879i \(0.849682\pi\)
\(278\) −2.62850 + 6.03625i −0.157647 + 0.362030i
\(279\) 5.62888 7.74749i 0.336992 0.463830i
\(280\) −34.6562 + 12.2095i −2.07110 + 0.729656i
\(281\) −0.370829 + 0.120490i −0.0221218 + 0.00718781i −0.320057 0.947398i \(-0.603702\pi\)
0.297935 + 0.954586i \(0.403702\pi\)
\(282\) 0.559589 5.77896i 0.0333230 0.344132i
\(283\) 2.14270 13.5285i 0.127370 0.804186i −0.838451 0.544977i \(-0.816538\pi\)
0.965821 0.259208i \(-0.0834617\pi\)
\(284\) 12.3104 + 13.2298i 0.730485 + 0.785042i
\(285\) −6.55698 6.55698i −0.388402 0.388402i
\(286\) 1.59087 + 11.8409i 0.0940699 + 0.700164i
\(287\) −22.9519 −1.35481
\(288\) 0.102409 8.96945i 0.00603450 0.528530i
\(289\) 3.52743 2.56282i 0.207496 0.150754i
\(290\) 28.4707 + 34.5756i 1.67186 + 2.03035i
\(291\) −4.89334 + 9.60373i −0.286853 + 0.562980i
\(292\) 16.4078 + 3.20768i 0.960194 + 0.187715i
\(293\) 6.43842 1.01975i 0.376136 0.0595741i 0.0344958 0.999405i \(-0.489017\pi\)
0.341641 + 0.939831i \(0.389017\pi\)
\(294\) 18.2267 + 7.93686i 1.06300 + 0.462887i
\(295\) 12.5742 + 4.08560i 0.732097 + 0.237873i
\(296\) −6.90090 + 0.169560i −0.401107 + 0.00985546i
\(297\) −17.5639 4.31965i −1.01916 0.250652i
\(298\) −15.1461 + 8.91078i −0.877392 + 0.516188i
\(299\) −3.60630 7.07776i −0.208558 0.409318i
\(300\) −5.81741 + 7.42945i −0.335868 + 0.428940i
\(301\) 3.43072 + 21.6607i 0.197743 + 1.24850i
\(302\) 10.5808 0.641433i 0.608854 0.0369103i
\(303\) −2.79140 8.59105i −0.160362 0.493543i
\(304\) −7.87532 + 6.81621i −0.451681 + 0.390937i
\(305\) 12.1112 8.79931i 0.693486 0.503847i
\(306\) −6.72180 4.28735i −0.384260 0.245091i
\(307\) −16.8809 16.8809i −0.963441 0.963441i 0.0359135 0.999355i \(-0.488566\pi\)
−0.999355 + 0.0359135i \(0.988566\pi\)
\(308\) 28.7568 1.06515i 1.63857 0.0606928i
\(309\) 4.39781 4.39781i 0.250182 0.250182i
\(310\) 5.52217 + 24.9725i 0.313638 + 1.41834i
\(311\) −3.88223 5.34344i −0.220141 0.302998i 0.684635 0.728886i \(-0.259962\pi\)
−0.904776 + 0.425888i \(0.859962\pi\)
\(312\) 8.42692 1.54777i 0.477080 0.0876253i
\(313\) −12.2892 + 3.99301i −0.694628 + 0.225698i −0.634988 0.772522i \(-0.718995\pi\)
−0.0596394 + 0.998220i \(0.518995\pi\)
\(314\) −10.3682 + 11.7065i −0.585114 + 0.660634i
\(315\) −20.3461 + 3.22250i −1.14637 + 0.181568i
\(316\) −27.1299 + 3.30150i −1.52617 + 0.185724i
\(317\) −9.64717 + 4.91548i −0.541839 + 0.276081i −0.703415 0.710779i \(-0.748342\pi\)
0.161576 + 0.986860i \(0.448342\pi\)
\(318\) 1.99802 + 0.517871i 0.112043 + 0.0290407i
\(319\) −13.2439 32.4808i −0.741515 1.81858i
\(320\) 17.7511 + 16.0873i 0.992319 + 0.899306i
\(321\) −1.04492 + 3.21592i −0.0583215 + 0.179495i
\(322\) −17.8056 + 7.00273i −0.992265 + 0.390247i
\(323\) 1.44818 + 9.14342i 0.0805787 + 0.508754i
\(324\) −0.663276 + 3.39276i −0.0368487 + 0.188487i
\(325\) 9.00380 + 4.58766i 0.499441 + 0.254478i
\(326\) −0.160104 + 1.65341i −0.00886732 + 0.0915742i
\(327\) 12.5875 + 17.3252i 0.696088 + 0.958083i
\(328\) 7.11902 + 13.1622i 0.393082 + 0.726763i
\(329\) 14.9762i 0.825665i
\(330\) 13.7408 9.49758i 0.756405 0.522825i
\(331\) 1.35496 1.35496i 0.0744753 0.0744753i −0.668888 0.743363i \(-0.733229\pi\)
0.743363 + 0.668888i \(0.233229\pi\)
\(332\) 30.2450 + 1.08877i 1.65991 + 0.0597539i
\(333\) −3.82236 0.605402i −0.209464 0.0331758i
\(334\) −7.01209 + 5.77399i −0.383685 + 0.315939i
\(335\) −3.28086 10.0975i −0.179253 0.551683i
\(336\) −1.75437 20.5622i −0.0957088 1.12176i
\(337\) 8.24065 + 5.98718i 0.448897 + 0.326143i 0.789160 0.614188i \(-0.210516\pi\)
−0.340263 + 0.940330i \(0.610516\pi\)
\(338\) 3.37061 + 8.57032i 0.183337 + 0.466164i
\(339\) −9.39249 + 4.78571i −0.510130 + 0.259924i
\(340\) 20.4742 5.84703i 1.11037 0.317100i
\(341\) 1.68201 19.9592i 0.0910861 1.08085i
\(342\) −5.03280 + 2.96090i −0.272143 + 0.160107i
\(343\) −19.8877 6.46191i −1.07384 0.348911i
\(344\) 11.3577 8.68595i 0.612364 0.468315i
\(345\) −6.52797 + 8.98498i −0.351454 + 0.483735i
\(346\) 7.24506 8.18018i 0.389497 0.439769i
\(347\) 15.2539 + 7.77224i 0.818871 + 0.417235i 0.812655 0.582745i \(-0.198021\pi\)
0.00621576 + 0.999981i \(0.498021\pi\)
\(348\) −22.8098 + 10.6065i −1.22274 + 0.568570i
\(349\) 29.6715 + 4.69951i 1.58828 + 0.251559i 0.887152 0.461476i \(-0.152680\pi\)
0.701128 + 0.713035i \(0.252680\pi\)
\(350\) 13.0888 20.5209i 0.699624 1.09689i
\(351\) 13.8910 0.741446
\(352\) −9.53038 16.1608i −0.507971 0.861374i
\(353\) 23.4351 1.24733 0.623663 0.781694i \(-0.285644\pi\)
0.623663 + 0.781694i \(0.285644\pi\)
\(354\) −3.99313 + 6.26053i −0.212233 + 0.332743i
\(355\) −26.7244 4.23273i −1.41839 0.224650i
\(356\) −25.0847 + 11.6643i −1.32948 + 0.618208i
\(357\) −16.3432 8.32726i −0.864972 0.440725i
\(358\) 4.27847 4.83069i 0.226124 0.255310i
\(359\) 7.61975 10.4877i 0.402155 0.553519i −0.559128 0.829081i \(-0.688864\pi\)
0.961283 + 0.275562i \(0.0888640\pi\)
\(360\) 8.15879 + 10.6684i 0.430006 + 0.562272i
\(361\) −11.6218 3.77616i −0.611675 0.198745i
\(362\) −20.5808 + 12.1081i −1.08170 + 0.636388i
\(363\) −12.4854 + 3.90452i −0.655315 + 0.204934i
\(364\) −21.2507 + 6.06881i −1.11384 + 0.318092i
\(365\) −22.3036 + 11.3643i −1.16742 + 0.594832i
\(366\) 3.07729 + 7.82451i 0.160853 + 0.408994i
\(367\) 11.3138 + 8.21997i 0.590577 + 0.429079i 0.842522 0.538662i \(-0.181070\pi\)
−0.251945 + 0.967742i \(0.581070\pi\)
\(368\) 9.53864 + 8.03892i 0.497236 + 0.419058i
\(369\) 2.59243 + 7.97869i 0.134957 + 0.415354i
\(370\) 7.97875 6.56997i 0.414795 0.341556i
\(371\) −5.25853 0.832870i −0.273009 0.0432404i
\(372\) −14.3550 0.516757i −0.744274 0.0267926i
\(373\) −0.786425 + 0.786425i −0.0407195 + 0.0407195i −0.727173 0.686454i \(-0.759166\pi\)
0.686454 + 0.727173i \(0.259166\pi\)
\(374\) −16.6710 0.392264i −0.862038 0.0202835i
\(375\) 3.67791i 0.189926i
\(376\) 8.58841 4.64519i 0.442913 0.239557i
\(377\) 15.8344 + 21.7942i 0.815515 + 1.12246i
\(378\) 3.22476 33.3026i 0.165864 1.71290i
\(379\) −12.3991 6.31766i −0.636900 0.324517i 0.105554 0.994414i \(-0.466338\pi\)
−0.742454 + 0.669897i \(0.766338\pi\)
\(380\) 2.99208 15.3050i 0.153491 0.785129i
\(381\) −0.614190 3.87785i −0.0314659 0.198668i
\(382\) 4.89798 1.92632i 0.250602 0.0985591i
\(383\) 10.0795 31.0215i 0.515039 1.58513i −0.268173 0.963371i \(-0.586420\pi\)
0.783211 0.621756i \(-0.213580\pi\)
\(384\) −11.2476 + 7.38388i −0.573979 + 0.376807i
\(385\) −32.9173 + 27.8005i −1.67762 + 1.41684i
\(386\) 20.8696 + 5.40922i 1.06223 + 0.275322i
\(387\) 7.14234 3.63921i 0.363066 0.184991i
\(388\) −17.9939 + 2.18972i −0.913501 + 0.111166i
\(389\) −23.7068 + 3.75478i −1.20198 + 0.190375i −0.725132 0.688610i \(-0.758221\pi\)
−0.476849 + 0.878985i \(0.658221\pi\)
\(390\) −8.50553 + 9.60333i −0.430694 + 0.486284i
\(391\) 10.5447 3.42619i 0.533271 0.173270i
\(392\) 6.03954 + 32.8826i 0.305043 + 1.66082i
\(393\) −5.72801 7.88393i −0.288940 0.397692i
\(394\) 4.01188 + 18.1426i 0.202116 + 0.914012i
\(395\) 28.9350 28.9350i 1.45588 1.45588i
\(396\) −3.61838 9.87634i −0.181831 0.496305i
\(397\) 14.8596 + 14.8596i 0.745782 + 0.745782i 0.973684 0.227902i \(-0.0731867\pi\)
−0.227902 + 0.973684i \(0.573187\pi\)
\(398\) −19.2235 12.2613i −0.963589 0.614603i
\(399\) −10.8682 + 7.89624i −0.544093 + 0.395307i
\(400\) −15.8279 1.14103i −0.791394 0.0570516i
\(401\) 10.9775 + 33.7853i 0.548191 + 1.68716i 0.713280 + 0.700880i \(0.247209\pi\)
−0.165088 + 0.986279i \(0.552791\pi\)
\(402\) 5.95205 0.360829i 0.296861 0.0179965i
\(403\) 2.40643 + 15.1936i 0.119873 + 0.756846i
\(404\) 9.36564 11.9609i 0.465958 0.595078i
\(405\) −2.34987 4.61188i −0.116766 0.229166i
\(406\) 55.9258 32.9023i 2.77555 1.63291i
\(407\) −7.49534 + 3.05619i −0.371530 + 0.151490i
\(408\) 0.293747 + 11.9552i 0.0145426 + 0.591871i
\(409\) 20.9864 + 6.81890i 1.03771 + 0.337173i 0.777835 0.628469i \(-0.216318\pi\)
0.259877 + 0.965642i \(0.416318\pi\)
\(410\) −20.5422 8.94514i −1.01451 0.441769i
\(411\) −16.6276 + 2.63356i −0.820181 + 0.129904i
\(412\) 10.2651 + 2.00681i 0.505727 + 0.0988683i
\(413\) 8.69567 17.0662i 0.427886 0.839774i
\(414\) 4.44549 + 5.39873i 0.218484 + 0.265333i
\(415\) −36.6599 + 26.6350i −1.79957 + 1.30746i
\(416\) 10.0717 + 10.3043i 0.493804 + 0.505210i
\(417\) 5.53641 0.271119
\(418\) −5.79912 + 10.7486i −0.283644 + 0.525731i
\(419\) −23.3907 23.3907i −1.14271 1.14271i −0.987953 0.154757i \(-0.950541\pi\)
−0.154757 0.987953i \(-0.549459\pi\)
\(420\) 21.0487 + 22.6207i 1.02707 + 1.10378i
\(421\) −5.85700 + 36.9796i −0.285453 + 1.80228i 0.261597 + 0.965177i \(0.415751\pi\)
−0.547050 + 0.837100i \(0.684249\pi\)
\(422\) −0.701238 + 7.24179i −0.0341357 + 0.352525i
\(423\) 5.20613 1.69157i 0.253131 0.0822472i
\(424\) 1.15342 + 3.27395i 0.0560151 + 0.158997i
\(425\) −8.29045 + 11.4108i −0.402146 + 0.553507i
\(426\) 6.06712 13.9329i 0.293953 0.675052i
\(427\) −9.84600 19.3239i −0.476481 0.935147i
\(428\) −5.46805 + 1.56157i −0.264308 + 0.0754814i
\(429\) 8.59516 5.20191i 0.414978 0.251151i
\(430\) −5.37139 + 20.7236i −0.259032 + 0.999382i
\(431\) −1.39574 + 4.29566i −0.0672306 + 0.206914i −0.979028 0.203726i \(-0.934695\pi\)
0.911797 + 0.410640i \(0.134695\pi\)
\(432\) −20.0983 + 8.48020i −0.966978 + 0.408004i
\(433\) 4.00781 + 2.91185i 0.192603 + 0.139934i 0.679908 0.733298i \(-0.262020\pi\)
−0.487304 + 0.873232i \(0.662020\pi\)
\(434\) 36.9841 2.24207i 1.77529 0.107623i
\(435\) 17.0992 33.5590i 0.819843 1.60903i
\(436\) −12.3541 + 33.8293i −0.591654 + 1.62013i
\(437\) 1.27031 8.02040i 0.0607670 0.383668i
\(438\) −3.03552 13.7273i −0.145043 0.655915i
\(439\) 25.1866i 1.20209i 0.799215 + 0.601045i \(0.205249\pi\)
−0.799215 + 0.601045i \(0.794751\pi\)
\(440\) 26.1528 + 10.2542i 1.24679 + 0.488850i
\(441\) 18.7432i 0.892535i
\(442\) 12.5048 2.76518i 0.594792 0.131526i
\(443\) −1.20085 + 7.58186i −0.0570540 + 0.360225i 0.942600 + 0.333924i \(0.108373\pi\)
−0.999654 + 0.0263011i \(0.991627\pi\)
\(444\) 2.44759 + 5.26365i 0.116157 + 0.249802i
\(445\) 18.8045 36.9058i 0.891417 1.74950i
\(446\) −0.130294 2.14927i −0.00616962 0.101771i
\(447\) 11.9552 + 8.68599i 0.565463 + 0.410833i
\(448\) 27.0419 21.7539i 1.27761 1.02777i
\(449\) 10.0525 30.9386i 0.474409 1.46008i −0.372344 0.928095i \(-0.621446\pi\)
0.846753 0.531986i \(-0.178554\pi\)
\(450\) −8.61200 2.23216i −0.405973 0.105225i
\(451\) 13.2796 + 11.4695i 0.625310 + 0.540079i
\(452\) −15.4959 8.61136i −0.728868 0.405044i
\(453\) −4.04685 7.94239i −0.190137 0.373166i
\(454\) 11.3124 + 4.92600i 0.530916 + 0.231188i
\(455\) 19.4499 26.7705i 0.911824 1.25502i
\(456\) 7.89928 + 3.78343i 0.369918 + 0.177175i
\(457\) 29.6678 9.63964i 1.38780 0.450923i 0.482574 0.875855i \(-0.339702\pi\)
0.905225 + 0.424932i \(0.139702\pi\)
\(458\) 14.7039 + 1.42381i 0.687070 + 0.0665305i
\(459\) −3.03306 + 19.1500i −0.141571 + 0.893844i
\(460\) −18.6654 0.671921i −0.870278 0.0313285i
\(461\) 0.972741 + 0.972741i 0.0453051 + 0.0453051i 0.729396 0.684091i \(-0.239801\pi\)
−0.684091 + 0.729396i \(0.739801\pi\)
\(462\) −10.4758 21.8138i −0.487380 1.01487i
\(463\) 4.02067 0.186856 0.0934281 0.995626i \(-0.470217\pi\)
0.0934281 + 0.995626i \(0.470217\pi\)
\(464\) −36.2151 21.8665i −1.68124 1.01512i
\(465\) 17.3997 12.6416i 0.806893 0.586242i
\(466\) −5.11355 + 4.21066i −0.236880 + 0.195055i
\(467\) 3.72642 7.31351i 0.172438 0.338429i −0.788572 0.614943i \(-0.789179\pi\)
0.961010 + 0.276514i \(0.0891792\pi\)
\(468\) 4.50997 + 6.70185i 0.208474 + 0.309793i
\(469\) −15.1918 + 2.40614i −0.701491 + 0.111105i
\(470\) −5.83674 + 13.4039i −0.269229 + 0.618274i
\(471\) 12.5066 + 4.06365i 0.576274 + 0.187243i
\(472\) −12.4841 + 0.306743i −0.574628 + 0.0141190i
\(473\) 8.83934 14.2469i 0.406433 0.655074i
\(474\) 11.6538 + 19.8086i 0.535278 + 0.909840i
\(475\) 4.68978 + 9.20422i 0.215182 + 0.422319i
\(476\) −3.72636 30.6211i −0.170797 1.40352i
\(477\) 0.304428 + 1.92208i 0.0139388 + 0.0880060i
\(478\) −0.784819 12.9460i −0.0358968 0.592136i
\(479\) −5.33830 16.4296i −0.243913 0.750688i −0.995813 0.0914109i \(-0.970862\pi\)
0.751900 0.659277i \(-0.229138\pi\)
\(480\) 6.44361 19.0871i 0.294109 0.871203i
\(481\) 5.02928 3.65399i 0.229316 0.166608i
\(482\) −5.41264 + 8.48606i −0.246539 + 0.386530i
\(483\) 11.3770 + 11.3770i 0.517671 + 0.517671i
\(484\) −17.1705 13.7541i −0.780476 0.625186i
\(485\) 19.1912 19.1912i 0.871426 0.871426i
\(486\) −19.7531 + 4.36800i −0.896017 + 0.198137i
\(487\) −23.5605 32.4282i −1.06763 1.46946i −0.872455 0.488694i \(-0.837473\pi\)
−0.195172 0.980769i \(-0.562527\pi\)
\(488\) −8.02771 + 11.6401i −0.363398 + 0.526923i
\(489\) 1.32853 0.431666i 0.0600782 0.0195206i
\(490\) −37.4731 33.1893i −1.69286 1.49934i
\(491\) 5.71642 0.905392i 0.257978 0.0408598i −0.0261055 0.999659i \(-0.508311\pi\)
0.284084 + 0.958799i \(0.408311\pi\)
\(492\) 7.75796 9.90774i 0.349756 0.446675i
\(493\) −33.5027 + 17.0705i −1.50888 + 0.768815i
\(494\) 2.35338 9.07968i 0.105883 0.408514i
\(495\) 13.3822 + 8.30286i 0.601487 + 0.373186i
\(496\) −12.7572 20.5138i −0.572814 0.921099i
\(497\) −12.1131 + 37.2802i −0.543345 + 1.67224i
\(498\) −9.31479 23.6843i −0.417406 1.06132i
\(499\) 2.83844 + 17.9212i 0.127066 + 0.802262i 0.966097 + 0.258179i \(0.0831225\pi\)
−0.839031 + 0.544083i \(0.816878\pi\)
\(500\) −5.13155 + 3.45324i −0.229490 + 0.154434i
\(501\) 6.80592 + 3.46779i 0.304066 + 0.154929i
\(502\) −18.4457 1.78614i −0.823272 0.0797192i
\(503\) 19.4874 + 26.8221i 0.868899 + 1.19594i 0.979373 + 0.202059i \(0.0647631\pi\)
−0.110474 + 0.993879i \(0.535237\pi\)
\(504\) 17.1141 9.25648i 0.762324 0.412316i
\(505\) 22.7456i 1.01217i
\(506\) 13.8014 + 4.84614i 0.613547 + 0.215437i
\(507\) 5.47607 5.47607i 0.243201 0.243201i
\(508\) 4.83383 4.49791i 0.214467 0.199562i
\(509\) −21.9528 3.47698i −0.973041 0.154115i −0.350381 0.936607i \(-0.613948\pi\)
−0.622660 + 0.782493i \(0.713948\pi\)
\(510\) −11.3819 13.8225i −0.503998 0.612070i
\(511\) 11.2062 + 34.4892i 0.495734 + 1.52571i
\(512\) −20.8628 8.76027i −0.922015 0.387153i
\(513\) 11.4882 + 8.34667i 0.507217 + 0.368514i
\(514\) −36.0421 + 14.1750i −1.58975 + 0.625231i
\(515\) −13.9537 + 7.10977i −0.614874 + 0.313294i
\(516\) −10.5100 5.84057i −0.462676 0.257117i
\(517\) 7.48391 8.66497i 0.329142 0.381085i
\(518\) −7.59261 12.9056i −0.333600 0.567038i
\(519\) −8.73930 2.83957i −0.383613 0.124643i
\(520\) −21.3849 2.85050i −0.937789 0.125003i
\(521\) 16.0685 22.1164i 0.703975 0.968938i −0.295931 0.955209i \(-0.595630\pi\)
0.999906 0.0137287i \(-0.00437012\pi\)
\(522\) −17.7546 15.7250i −0.777098 0.688264i
\(523\) 0.743629 + 0.378898i 0.0325166 + 0.0165680i 0.470173 0.882574i \(-0.344191\pi\)
−0.437657 + 0.899142i \(0.644191\pi\)
\(524\) 5.62182 15.3943i 0.245590 0.672501i
\(525\) −20.2159 3.20188i −0.882293 0.139741i
\(526\) 37.0228 + 23.6141i 1.61427 + 1.02963i
\(527\) −21.4711 −0.935297
\(528\) −9.26028 + 12.7736i −0.403002 + 0.555900i
\(529\) 13.2744 0.577147
\(530\) −4.38184 2.79486i −0.190335 0.121401i
\(531\) −6.91486 1.09521i −0.300079 0.0475279i
\(532\) −21.2215 7.74986i −0.920067 0.335999i
\(533\) −12.0073 6.11800i −0.520092 0.265000i
\(534\) 17.4149 + 15.4241i 0.753616 + 0.667466i
\(535\) 5.00467 6.88833i 0.216371 0.297809i
\(536\) 6.09191 + 7.96572i 0.263130 + 0.344067i
\(537\) −5.16087 1.67687i −0.222708 0.0723622i
\(538\) 4.81832 + 8.18996i 0.207733 + 0.353094i
\(539\) 20.2983 + 33.5391i 0.874311 + 1.44463i
\(540\) 15.8653 28.5493i 0.682736 1.22857i
\(541\) 10.2817 5.23879i 0.442045 0.225233i −0.218779 0.975775i \(-0.570207\pi\)
0.660823 + 0.750542i \(0.270207\pi\)
\(542\) 21.1125 8.30332i 0.906860 0.356658i
\(543\) 16.2450 + 11.8027i 0.697138 + 0.506500i
\(544\) −16.4045 + 11.6348i −0.703338 + 0.498836i
\(545\) −16.6632 51.2842i −0.713775 2.19677i
\(546\) 11.8136 + 14.3468i 0.505576 + 0.613985i
\(547\) 2.57289 + 0.407506i 0.110009 + 0.0174237i 0.211196 0.977444i \(-0.432264\pi\)
−0.101187 + 0.994867i \(0.532264\pi\)
\(548\) −19.2864 20.7268i −0.823873 0.885404i
\(549\) −5.60538 + 5.60538i −0.239232 + 0.239232i
\(550\) −17.8276 + 5.33230i −0.760173 + 0.227370i
\(551\) 27.5388i 1.17319i
\(552\) 2.99555 10.0532i 0.127499 0.427892i
\(553\) −34.8450 47.9600i −1.48176 2.03947i
\(554\) 0.0467516 + 0.00452706i 0.00198629 + 0.000192336i
\(555\) −7.74415 3.94584i −0.328721 0.167492i
\(556\) 5.19821 + 7.72459i 0.220453 + 0.327596i
\(557\) −1.67570 10.5800i −0.0710018 0.448288i −0.997420 0.0717908i \(-0.977129\pi\)
0.926418 0.376497i \(-0.122871\pi\)
\(558\) −4.95678 12.6034i −0.209837 0.533545i
\(559\) −3.97905 + 12.2463i −0.168296 + 0.517961i
\(560\) −11.7983 + 50.6068i −0.498568 + 2.13853i
\(561\) 5.29457 + 12.9850i 0.223537 + 0.548228i
\(562\) −0.138352 + 0.533781i −0.00583601 + 0.0225162i
\(563\) 25.1574 12.8183i 1.06026 0.540228i 0.165237 0.986254i \(-0.447161\pi\)
0.895020 + 0.446026i \(0.147161\pi\)
\(564\) −6.46484 5.06210i −0.272219 0.213153i
\(565\) 26.2167 4.15231i 1.10294 0.174689i
\(566\) −14.5009 12.8432i −0.609517 0.539840i
\(567\) −7.13159 + 2.31719i −0.299499 + 0.0973130i
\(568\) 25.1362 4.61676i 1.05469 0.193715i
\(569\) −17.5016 24.0889i −0.733706 1.00986i −0.998956 0.0456803i \(-0.985454\pi\)
0.265250 0.964180i \(-0.414546\pi\)
\(570\) −12.8046 + 2.83149i −0.536327 + 0.118598i
\(571\) 22.4613 22.4613i 0.939976 0.939976i −0.0583221 0.998298i \(-0.518575\pi\)
0.998298 + 0.0583221i \(0.0185750\pi\)
\(572\) 15.3280 + 7.10811i 0.640897 + 0.297205i
\(573\) −3.12960 3.12960i −0.130741 0.130741i
\(574\) −17.4549 + 27.3661i −0.728552 + 1.14224i
\(575\) 10.0093 7.27220i 0.417417 0.303272i
\(576\) −10.6166 6.94336i −0.442360 0.289307i
\(577\) −7.94471 24.4513i −0.330743 1.01792i −0.968781 0.247917i \(-0.920254\pi\)
0.638038 0.770005i \(-0.279746\pi\)
\(578\) −0.373124 6.15487i −0.0155199 0.256009i
\(579\) −2.83610 17.9064i −0.117864 0.744167i
\(580\) 62.8774 7.65169i 2.61084 0.317719i
\(581\) 29.8033 + 58.4922i 1.23645 + 2.42666i
\(582\) 7.72940 + 13.1381i 0.320394 + 0.544591i
\(583\) 2.62629 + 3.10968i 0.108770 + 0.128790i
\(584\) 16.3027 17.1240i 0.674611 0.708597i
\(585\) −11.5030 3.73755i −0.475591 0.154529i
\(586\) 3.68053 8.45221i 0.152041 0.349158i
\(587\) 13.4583 2.13159i 0.555485 0.0879801i 0.127620 0.991823i \(-0.459266\pi\)
0.427864 + 0.903843i \(0.359266\pi\)
\(588\) 23.3247 15.6962i 0.961895 0.647301i
\(589\) −7.13918 + 14.0114i −0.294165 + 0.577331i
\(590\) 14.4340 11.8854i 0.594239 0.489316i
\(591\) 12.6410 9.18421i 0.519981 0.377788i
\(592\) −5.04595 + 8.35708i −0.207387 + 0.343474i
\(593\) −27.0923 −1.11255 −0.556273 0.830999i \(-0.687769\pi\)
−0.556273 + 0.830999i \(0.687769\pi\)
\(594\) −18.5077 + 17.6568i −0.759382 + 0.724467i
\(595\) 32.6586 + 32.6586i 1.33887 + 1.33887i
\(596\) −0.894045 + 24.8358i −0.0366215 + 1.01731i
\(597\) −2.99946 + 18.9378i −0.122760 + 0.775073i
\(598\) −11.1816 1.08274i −0.457249 0.0442764i
\(599\) −34.7547 + 11.2925i −1.42004 + 0.461398i −0.915614 0.402059i \(-0.868295\pi\)
−0.504423 + 0.863457i \(0.668295\pi\)
\(600\) 4.43420 + 12.5863i 0.181026 + 0.513835i
\(601\) −9.00530 + 12.3947i −0.367334 + 0.505592i −0.952174 0.305557i \(-0.901157\pi\)
0.584840 + 0.811149i \(0.301157\pi\)
\(602\) 28.4357 + 12.3824i 1.15895 + 0.504669i
\(603\) 2.55236 + 5.00930i 0.103940 + 0.203994i
\(604\) 7.28185 13.1035i 0.296294 0.533175i
\(605\) 32.9379 + 0.364570i 1.33911 + 0.0148219i
\(606\) −12.3662 3.20521i −0.502342 0.130203i
\(607\) 6.06579 18.6686i 0.246203 0.757735i −0.749233 0.662306i \(-0.769578\pi\)
0.995436 0.0954285i \(-0.0304221\pi\)
\(608\) 2.13798 + 14.5737i 0.0867066 + 0.591040i
\(609\) −44.1437 32.0723i −1.78879 1.29963i
\(610\) −1.28110 21.1324i −0.0518702 0.855625i
\(611\) −3.99202 + 7.83478i −0.161500 + 0.316961i
\(612\) −10.2238 + 4.75406i −0.413274 + 0.192172i
\(613\) −4.07183 + 25.7085i −0.164460 + 1.03836i 0.757997 + 0.652258i \(0.226178\pi\)
−0.922457 + 0.386100i \(0.873822\pi\)
\(614\) −32.9654 + 7.28964i −1.33037 + 0.294186i
\(615\) 18.8411i 0.759748i
\(616\) 20.5995 35.0976i 0.829977 1.41412i
\(617\) 23.6587i 0.952463i 0.879320 + 0.476232i \(0.157998\pi\)
−0.879320 + 0.476232i \(0.842002\pi\)
\(618\) −1.89910 8.58814i −0.0763929 0.345466i
\(619\) −3.82297 + 24.1373i −0.153658 + 0.970160i 0.783534 + 0.621348i \(0.213415\pi\)
−0.937193 + 0.348812i \(0.886585\pi\)
\(620\) 33.9749 + 12.4073i 1.36447 + 0.498289i
\(621\) 7.72115 15.1536i 0.309839 0.608094i
\(622\) −9.32355 + 0.565218i −0.373840 + 0.0226632i
\(623\) −48.5461 35.2708i −1.94496 1.41310i
\(624\) 4.56321 11.2247i 0.182674 0.449348i
\(625\) 8.99153 27.6731i 0.359661 1.10692i
\(626\) −4.58496 + 17.6894i −0.183252 + 0.707012i
\(627\) 10.2341 + 0.862452i 0.408710 + 0.0344430i
\(628\) 6.07291 + 21.2651i 0.242335 + 0.848569i
\(629\) 3.93922 + 7.73115i 0.157067 + 0.308261i
\(630\) −11.6309 + 26.7099i −0.463386 + 1.06415i
\(631\) 26.5648 36.5634i 1.05753 1.45556i 0.175435 0.984491i \(-0.443867\pi\)
0.882094 0.471073i \(-0.156133\pi\)
\(632\) −16.6957 + 34.8584i −0.664121 + 1.38659i
\(633\) 5.81883 1.89065i 0.231278 0.0751466i
\(634\) −1.47580 + 15.2408i −0.0586114 + 0.605289i
\(635\) −1.54654 + 9.76446i −0.0613725 + 0.387491i
\(636\) 2.13696 1.98845i 0.0847361 0.0788474i
\(637\) −21.2896 21.2896i −0.843524 0.843524i
\(638\) −48.7997 8.91055i −1.93200 0.352772i
\(639\) 14.3278 0.566798
\(640\) 32.6810 8.93082i 1.29183 0.353022i
\(641\) −6.40403 + 4.65280i −0.252944 + 0.183775i −0.707031 0.707183i \(-0.749966\pi\)
0.454087 + 0.890958i \(0.349966\pi\)
\(642\) 3.03977 + 3.69158i 0.119970 + 0.145695i
\(643\) −11.9576 + 23.4681i −0.471562 + 0.925492i 0.525638 + 0.850708i \(0.323827\pi\)
−0.997200 + 0.0747839i \(0.976173\pi\)
\(644\) −5.19155 + 26.5556i −0.204576 + 1.04644i
\(645\) 17.7812 2.81627i 0.700135 0.110890i
\(646\) 12.0033 + 5.22686i 0.472263 + 0.205648i
\(647\) −25.8491 8.39888i −1.01623 0.330194i −0.246899 0.969041i \(-0.579412\pi\)
−0.769334 + 0.638847i \(0.779412\pi\)
\(648\) 3.54086 + 3.37103i 0.139098 + 0.132427i
\(649\) −13.5595 + 5.52881i −0.532257 + 0.217025i
\(650\) 12.3174 7.24656i 0.483127 0.284233i
\(651\) −14.1454 27.7619i −0.554401 1.08807i
\(652\) 1.84965 + 1.44831i 0.0724380 + 0.0567204i
\(653\) 7.93884 + 50.1239i 0.310671 + 1.96150i 0.272208 + 0.962238i \(0.412246\pi\)
0.0384627 + 0.999260i \(0.487754\pi\)
\(654\) 30.2300 1.83262i 1.18209 0.0716610i
\(655\) 7.58272 + 23.3372i 0.296282 + 0.911861i
\(656\) 21.1077 + 1.52165i 0.824117 + 0.0594105i
\(657\) 10.7236 7.79117i 0.418369 0.303963i
\(658\) 17.8565 + 11.3894i 0.696120 + 0.444004i
\(659\) −11.6417 11.6417i −0.453495 0.453495i 0.443018 0.896513i \(-0.353908\pi\)
−0.896513 + 0.443018i \(0.853908\pi\)
\(660\) −0.874382 23.6064i −0.0340353 0.918878i
\(661\) −23.9116 + 23.9116i −0.930054 + 0.930054i −0.997709 0.0676550i \(-0.978448\pi\)
0.0676550 + 0.997709i \(0.478448\pi\)
\(662\) −0.585110 2.64600i −0.0227410 0.102840i
\(663\) −6.33021 8.71279i −0.245845 0.338377i
\(664\) 24.2994 35.2339i 0.943001 1.36734i
\(665\) 32.1711 10.4530i 1.24754 0.405351i
\(666\) −3.62873 + 4.09709i −0.140610 + 0.158759i
\(667\) 32.5766 5.15963i 1.26137 0.199782i
\(668\) 1.55180 + 12.7518i 0.0600409 + 0.493382i
\(669\) −1.61334 + 0.822038i −0.0623753 + 0.0317818i
\(670\) −14.5346 3.76724i −0.561519 0.145541i
\(671\) −3.95980 + 16.1007i −0.152866 + 0.621560i
\(672\) −25.8510 13.5457i −0.997225 0.522537i
\(673\) 2.82234 8.68626i 0.108793 0.334831i −0.881809 0.471607i \(-0.843674\pi\)
0.990602 + 0.136776i \(0.0436742\pi\)
\(674\) 13.4057 5.27230i 0.516367 0.203082i
\(675\) 3.38452 + 21.3690i 0.130270 + 0.822495i
\(676\) 12.7820 + 2.49884i 0.491614 + 0.0961093i
\(677\) −8.85602 4.51237i −0.340364 0.173424i 0.275450 0.961315i \(-0.411173\pi\)
−0.615815 + 0.787891i \(0.711173\pi\)
\(678\) −1.43684 + 14.8384i −0.0551814 + 0.569867i
\(679\) −23.1110 31.8095i −0.886918 1.22074i
\(680\) 8.59898 28.8585i 0.329756 1.10667i
\(681\) 10.3756i 0.397595i
\(682\) −22.5187 17.1845i −0.862287 0.658027i
\(683\) −23.6803 + 23.6803i −0.906103 + 0.906103i −0.995955 0.0898521i \(-0.971361\pi\)
0.0898521 + 0.995955i \(0.471361\pi\)
\(684\) −0.297076 + 8.25251i −0.0113590 + 0.315542i
\(685\) 41.8686 + 6.63133i 1.59972 + 0.253370i
\(686\) −22.8293 + 18.7984i −0.871626 + 0.717726i
\(687\) −3.83884 11.8147i −0.146461 0.450760i
\(688\) −1.71901 20.1477i −0.0655366 0.768124i
\(689\) −2.52899 1.83742i −0.0963467 0.0700000i
\(690\) 5.74852 + 14.6165i 0.218843 + 0.556442i
\(691\) 11.7397 5.98166i 0.446598 0.227553i −0.216203 0.976348i \(-0.569367\pi\)
0.662801 + 0.748795i \(0.269367\pi\)
\(692\) −4.24359 14.8595i −0.161317 0.564873i
\(693\) 14.9132 17.2667i 0.566505 0.655908i
\(694\) 20.8676 12.2768i 0.792123 0.466022i
\(695\) −13.2584 4.30792i −0.502921 0.163409i
\(696\) −4.70039 + 35.2630i −0.178168 + 1.33664i
\(697\) 11.0559 15.2172i 0.418774 0.576393i
\(698\) 28.1685 31.8042i 1.06619 1.20381i
\(699\) 4.96319 + 2.52887i 0.187725 + 0.0956508i
\(700\) −14.5136 31.2122i −0.548563 1.17971i
\(701\) −39.6799 6.28468i −1.49869 0.237369i −0.647434 0.762121i \(-0.724158\pi\)
−0.851255 + 0.524752i \(0.824158\pi\)
\(702\) 10.5641 16.5626i 0.398715 0.625115i
\(703\) 6.35491 0.239680
\(704\) −26.5168 0.926937i −0.999390 0.0349353i
\(705\) 12.2939 0.463016
\(706\) 17.8224 27.9423i 0.670753 1.05162i
\(707\) 32.5462 + 5.15481i 1.22403 + 0.193867i
\(708\) 4.42782 + 9.52224i 0.166408 + 0.357868i
\(709\) 17.7458 + 9.04196i 0.666459 + 0.339578i 0.754275 0.656559i \(-0.227989\pi\)
−0.0878158 + 0.996137i \(0.527989\pi\)
\(710\) −25.3707 + 28.6453i −0.952144 + 1.07504i
\(711\) −12.7364 + 17.5302i −0.477653 + 0.657434i
\(712\) −5.16915 + 38.7798i −0.193722 + 1.45333i
\(713\) 17.9122 + 5.82002i 0.670817 + 0.217962i
\(714\) −22.3578 + 13.1535i −0.836718 + 0.492258i
\(715\) −24.6311 + 5.76943i −0.921151 + 0.215764i
\(716\) −2.50599 8.77507i −0.0936534 0.327940i
\(717\) −9.71784 + 4.95149i −0.362919 + 0.184917i
\(718\) −6.70995 17.0611i −0.250413 0.636715i
\(719\) 5.64405 + 4.10065i 0.210488 + 0.152928i 0.688034 0.725678i \(-0.258474\pi\)
−0.477547 + 0.878606i \(0.658474\pi\)
\(720\) 18.9249 1.61468i 0.705290 0.0601755i
\(721\) 7.01090 + 21.5773i 0.261100 + 0.803582i
\(722\) −13.3408 + 10.9852i −0.496493 + 0.408829i
\(723\) 8.35993 + 1.32408i 0.310909 + 0.0492432i
\(724\) −1.21484 + 33.7472i −0.0451492 + 1.25421i
\(725\) −29.6688 + 29.6688i −1.10187 + 1.10187i
\(726\) −4.83967 + 17.8561i −0.179617 + 0.662701i
\(727\) 14.8174i 0.549548i 0.961509 + 0.274774i \(0.0886030\pi\)
−0.961509 + 0.274774i \(0.911397\pi\)
\(728\) −8.92515 + 29.9531i −0.330788 + 1.11014i
\(729\) 13.0474 + 17.9582i 0.483238 + 0.665119i
\(730\) −3.41195 + 35.2357i −0.126282 + 1.30413i
\(731\) −16.0137 8.15940i −0.592289 0.301786i
\(732\) 11.6697 + 2.28139i 0.431323 + 0.0843224i
\(733\) −0.864699 5.45949i −0.0319384 0.201651i 0.966559 0.256443i \(-0.0825505\pi\)
−0.998498 + 0.0547918i \(0.982551\pi\)
\(734\) 18.4050 7.23850i 0.679342 0.267178i
\(735\) −13.0080 + 40.0344i −0.479805 + 1.47669i
\(736\) 16.8391 5.25959i 0.620699 0.193871i
\(737\) 9.99210 + 6.19949i 0.368064 + 0.228361i
\(738\) 11.4848 + 2.97675i 0.422760 + 0.109576i
\(739\) 45.4115 23.1383i 1.67049 0.851157i 0.677160 0.735835i \(-0.263210\pi\)
0.993328 0.115321i \(-0.0367897\pi\)
\(740\) −1.76572 14.5097i −0.0649092 0.533388i
\(741\) −7.79051 + 1.23390i −0.286192 + 0.0453283i
\(742\) −4.99216 + 5.63649i −0.183268 + 0.206922i
\(743\) −25.6600 + 8.33744i −0.941374 + 0.305871i −0.739206 0.673480i \(-0.764799\pi\)
−0.202169 + 0.979351i \(0.564799\pi\)
\(744\) −11.5331 + 16.7229i −0.422825 + 0.613091i
\(745\) −21.8714 30.1034i −0.801307 1.10290i
\(746\) 0.339601 + 1.53575i 0.0124337 + 0.0562278i
\(747\) 16.9672 16.9672i 0.620796 0.620796i
\(748\) −13.1460 + 19.5790i −0.480665 + 0.715879i
\(749\) −8.72217 8.72217i −0.318701 0.318701i
\(750\) 4.38527 + 2.79704i 0.160127 + 0.102134i
\(751\) 11.7760 8.55574i 0.429711 0.312203i −0.351822 0.936067i \(-0.614438\pi\)
0.781533 + 0.623863i \(0.214438\pi\)
\(752\) 0.992884 13.7729i 0.0362068 0.502244i
\(753\) 4.81571 + 14.8212i 0.175494 + 0.540116i
\(754\) 38.0279 2.30535i 1.38489 0.0839558i
\(755\) 3.51124 + 22.1691i 0.127787 + 0.806815i
\(756\) −37.2551 29.1715i −1.35495 1.06096i
\(757\) −11.0496 21.6860i −0.401604 0.788191i 0.598311 0.801264i \(-0.295839\pi\)
−0.999915 + 0.0130726i \(0.995839\pi\)
\(758\) −16.9622 + 9.97922i −0.616096 + 0.362462i
\(759\) −0.897219 12.2678i −0.0325670 0.445294i
\(760\) −15.9731 15.2069i −0.579404 0.551614i
\(761\) −35.0181 11.3781i −1.26941 0.412455i −0.404569 0.914508i \(-0.632578\pi\)
−0.864837 + 0.502053i \(0.832578\pi\)
\(762\) −5.09075 2.21678i −0.184418 0.0803054i
\(763\) −77.1578 + 12.2206i −2.79330 + 0.442415i
\(764\) 1.42810 7.30495i 0.0516668 0.264284i
\(765\) 7.66420 15.0418i 0.277100 0.543839i
\(766\) −29.3224 35.6099i −1.05946 1.28664i
\(767\) 9.09826 6.61027i