Properties

Label 176.2.w.a.141.11
Level $176$
Weight $2$
Character 176.141
Analytic conductor $1.405$
Analytic rank $0$
Dimension $176$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,2,Mod(5,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 5, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 176.w (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40536707557\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 141.11
Character \(\chi\) \(=\) 176.141
Dual form 176.2.w.a.5.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.287066 - 1.38477i) q^{2} +(-0.925602 - 0.146601i) q^{3} +(-1.83519 + 0.795041i) q^{4} +(-1.96526 - 1.00135i) q^{5} +(0.0626996 + 1.32383i) q^{6} +(0.432076 - 0.594702i) q^{7} +(1.62777 + 2.31309i) q^{8} +(-2.01792 - 0.655663i) q^{9} +O(q^{10})\) \(q+(-0.287066 - 1.38477i) q^{2} +(-0.925602 - 0.146601i) q^{3} +(-1.83519 + 0.795041i) q^{4} +(-1.96526 - 1.00135i) q^{5} +(0.0626996 + 1.32383i) q^{6} +(0.432076 - 0.594702i) q^{7} +(1.62777 + 2.31309i) q^{8} +(-2.01792 - 0.655663i) q^{9} +(-0.822483 + 3.00889i) q^{10} +(-1.45785 + 2.97904i) q^{11} +(1.81521 - 0.466851i) q^{12} +(-5.43526 + 2.76940i) q^{13} +(-0.947561 - 0.427609i) q^{14} +(1.67225 + 1.21496i) q^{15} +(2.73582 - 2.91810i) q^{16} +(-1.02771 - 3.16297i) q^{17} +(-0.328667 + 2.98258i) q^{18} +(2.56890 + 0.406874i) q^{19} +(4.40273 + 0.275203i) q^{20} +(-0.487114 + 0.487114i) q^{21} +(4.54379 + 1.16362i) q^{22} -8.39814i q^{23} +(-1.16757 - 2.37963i) q^{24} +(-0.0793790 - 0.109256i) q^{25} +(5.39527 + 6.73160i) q^{26} +(4.27666 + 2.17907i) q^{27} +(-0.320128 + 1.43491i) q^{28} +(-1.17207 - 7.40013i) q^{29} +(1.20240 - 2.66446i) q^{30} +(-1.36897 + 4.21326i) q^{31} +(-4.82626 - 2.95080i) q^{32} +(1.78612 - 2.54368i) q^{33} +(-4.08497 + 2.33113i) q^{34} +(-1.44465 + 0.736085i) q^{35} +(4.22454 - 0.401067i) q^{36} +(-5.69966 + 0.902738i) q^{37} +(-0.174015 - 3.67414i) q^{38} +(5.43688 - 1.76655i) q^{39} +(-0.882781 - 6.17578i) q^{40} +(0.420520 + 0.578796i) q^{41} +(0.814376 + 0.534709i) q^{42} +(-0.0267252 + 0.0267252i) q^{43} +(0.306980 - 6.62614i) q^{44} +(3.30920 + 3.30920i) q^{45} +(-11.6295 + 2.41082i) q^{46} +(4.68618 - 3.40471i) q^{47} +(-2.96008 + 2.29992i) q^{48} +(1.99614 + 6.14348i) q^{49} +(-0.128507 + 0.141285i) q^{50} +(0.487558 + 3.07832i) q^{51} +(7.77293 - 9.40363i) q^{52} +(-2.13215 - 4.18458i) q^{53} +(1.78983 - 6.54774i) q^{54} +(5.84812 - 4.39476i) q^{55} +(2.07892 + 0.0313923i) q^{56} +(-2.31813 - 0.753206i) q^{57} +(-9.91103 + 3.74737i) q^{58} +(-10.3333 + 1.63664i) q^{59} +(-4.03483 - 0.900173i) q^{60} +(3.34828 - 6.57137i) q^{61} +(6.22740 + 0.686232i) q^{62} +(-1.26182 + 0.916766i) q^{63} +(-2.70074 + 7.53034i) q^{64} +13.4548 q^{65} +(-4.03515 - 1.74317i) q^{66} +(7.12513 + 7.12513i) q^{67} +(4.40074 + 4.98757i) q^{68} +(-1.23118 + 7.77334i) q^{69} +(1.43402 + 1.78920i) q^{70} +(-7.44352 + 2.41855i) q^{71} +(-1.76811 - 5.73490i) q^{72} +(-0.395318 + 0.544108i) q^{73} +(2.88626 + 7.63359i) q^{74} +(0.0574563 + 0.112764i) q^{75} +(-5.03789 + 1.29569i) q^{76} +(1.14173 + 2.15416i) q^{77} +(-4.00701 - 7.02173i) q^{78} +(-1.81458 + 5.58470i) q^{79} +(-8.29864 + 2.99531i) q^{80} +(1.51061 + 1.09752i) q^{81} +(0.680784 - 0.748476i) q^{82} +(4.16650 - 8.17722i) q^{83} +(0.506670 - 1.28122i) q^{84} +(-1.14752 + 7.24517i) q^{85} +(0.0446802 + 0.0293364i) q^{86} +7.02140i q^{87} +(-9.26382 + 1.47704i) q^{88} +16.1858i q^{89} +(3.63253 - 5.53244i) q^{90} +(-0.701477 + 4.42895i) q^{91} +(6.67687 + 15.4122i) q^{92} +(1.88479 - 3.69911i) q^{93} +(-6.05999 - 5.51192i) q^{94} +(-4.64113 - 3.37198i) q^{95} +(4.03460 + 3.43880i) q^{96} +(1.32271 - 4.07088i) q^{97} +(7.93430 - 4.52778i) q^{98} +(4.89508 - 5.05560i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 176 q - 6 q^{2} - 6 q^{3} - 10 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{8} - 16 q^{10} - 12 q^{11} - 6 q^{13} - 12 q^{15} + 14 q^{16} - 12 q^{17} - 44 q^{18} - 6 q^{19} + 2 q^{20} - 28 q^{21} + 50 q^{22} - 38 q^{24} - 68 q^{26} - 18 q^{27} - 46 q^{28} - 22 q^{29} + 26 q^{30} - 12 q^{31} - 16 q^{32} - 16 q^{33} + 12 q^{34} - 26 q^{35} - 22 q^{36} + 18 q^{37} - 34 q^{38} + 14 q^{40} - 10 q^{42} - 40 q^{43} + 2 q^{44} - 24 q^{45} + 38 q^{46} - 12 q^{47} - 26 q^{48} + 8 q^{49} - 62 q^{50} + 6 q^{51} + 74 q^{52} - 30 q^{53} - 52 q^{54} - 96 q^{56} - 26 q^{58} + 10 q^{59} + 118 q^{60} - 6 q^{61} - 42 q^{62} - 28 q^{63} - 106 q^{64} - 32 q^{65} + 6 q^{66} + 24 q^{67} + 116 q^{68} + 12 q^{69} + 52 q^{70} - 98 q^{72} + 96 q^{74} - 46 q^{75} + 112 q^{76} - 14 q^{77} + 44 q^{78} - 52 q^{79} - 28 q^{80} + 66 q^{82} + 54 q^{83} + 120 q^{84} + 14 q^{85} + 86 q^{86} + 142 q^{88} + 228 q^{90} - 122 q^{91} + 146 q^{92} + 6 q^{93} + 56 q^{94} + 52 q^{95} + 86 q^{96} - 12 q^{97} + 140 q^{98} + 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.287066 1.38477i −0.202986 0.979182i
\(3\) −0.925602 0.146601i −0.534397 0.0846401i −0.116597 0.993179i \(-0.537199\pi\)
−0.417800 + 0.908539i \(0.637199\pi\)
\(4\) −1.83519 + 0.795041i −0.917593 + 0.397520i
\(5\) −1.96526 1.00135i −0.878891 0.447817i −0.0445124 0.999009i \(-0.514173\pi\)
−0.834379 + 0.551191i \(0.814173\pi\)
\(6\) 0.0626996 + 1.32383i 0.0255970 + 0.540452i
\(7\) 0.432076 0.594702i 0.163309 0.224776i −0.719518 0.694474i \(-0.755637\pi\)
0.882827 + 0.469698i \(0.155637\pi\)
\(8\) 1.62777 + 2.31309i 0.575503 + 0.817799i
\(9\) −2.01792 0.655663i −0.672641 0.218554i
\(10\) −0.822483 + 3.00889i −0.260092 + 0.951495i
\(11\) −1.45785 + 2.97904i −0.439560 + 0.898213i
\(12\) 1.81521 0.466851i 0.524005 0.134768i
\(13\) −5.43526 + 2.76940i −1.50747 + 0.768094i −0.995841 0.0911120i \(-0.970958\pi\)
−0.511629 + 0.859206i \(0.670958\pi\)
\(14\) −0.947561 0.427609i −0.253246 0.114283i
\(15\) 1.67225 + 1.21496i 0.431773 + 0.313702i
\(16\) 2.73582 2.91810i 0.683955 0.729524i
\(17\) −1.02771 3.16297i −0.249257 0.767134i −0.994907 0.100796i \(-0.967861\pi\)
0.745650 0.666337i \(-0.232139\pi\)
\(18\) −0.328667 + 2.98258i −0.0774676 + 0.703001i
\(19\) 2.56890 + 0.406874i 0.589346 + 0.0933432i 0.443983 0.896035i \(-0.353565\pi\)
0.145363 + 0.989378i \(0.453565\pi\)
\(20\) 4.40273 + 0.275203i 0.984481 + 0.0615372i
\(21\) −0.487114 + 0.487114i −0.106297 + 0.106297i
\(22\) 4.54379 + 1.16362i 0.968739 + 0.248084i
\(23\) 8.39814i 1.75113i −0.483097 0.875567i \(-0.660488\pi\)
0.483097 0.875567i \(-0.339512\pi\)
\(24\) −1.16757 2.37963i −0.238328 0.485740i
\(25\) −0.0793790 0.109256i −0.0158758 0.0218512i
\(26\) 5.39527 + 6.73160i 1.05810 + 1.32017i
\(27\) 4.27666 + 2.17907i 0.823045 + 0.419362i
\(28\) −0.320128 + 1.43491i −0.0604986 + 0.271172i
\(29\) −1.17207 7.40013i −0.217647 1.37417i −0.818360 0.574705i \(-0.805117\pi\)
0.600713 0.799464i \(-0.294883\pi\)
\(30\) 1.20240 2.66446i 0.219527 0.486461i
\(31\) −1.36897 + 4.21326i −0.245875 + 0.756725i 0.749617 + 0.661872i \(0.230238\pi\)
−0.995491 + 0.0948524i \(0.969762\pi\)
\(32\) −4.82626 2.95080i −0.853170 0.521633i
\(33\) 1.78612 2.54368i 0.310924 0.442798i
\(34\) −4.08497 + 2.33113i −0.700567 + 0.399785i
\(35\) −1.44465 + 0.736085i −0.244190 + 0.124421i
\(36\) 4.22454 0.401067i 0.704091 0.0668445i
\(37\) −5.69966 + 0.902738i −0.937019 + 0.148409i −0.606224 0.795294i \(-0.707317\pi\)
−0.330794 + 0.943703i \(0.607317\pi\)
\(38\) −0.174015 3.67414i −0.0282290 0.596024i
\(39\) 5.43688 1.76655i 0.870598 0.282875i
\(40\) −0.882781 6.17578i −0.139580 0.976477i
\(41\) 0.420520 + 0.578796i 0.0656742 + 0.0903927i 0.840591 0.541671i \(-0.182208\pi\)
−0.774916 + 0.632064i \(0.782208\pi\)
\(42\) 0.814376 + 0.534709i 0.125661 + 0.0825073i
\(43\) −0.0267252 + 0.0267252i −0.00407555 + 0.00407555i −0.709142 0.705066i \(-0.750917\pi\)
0.705066 + 0.709142i \(0.250917\pi\)
\(44\) 0.306980 6.62614i 0.0462789 0.998929i
\(45\) 3.30920 + 3.30920i 0.493306 + 0.493306i
\(46\) −11.6295 + 2.41082i −1.71468 + 0.355456i
\(47\) 4.68618 3.40471i 0.683550 0.496628i −0.190983 0.981593i \(-0.561168\pi\)
0.874534 + 0.484965i \(0.161168\pi\)
\(48\) −2.96008 + 2.29992i −0.427250 + 0.331965i
\(49\) 1.99614 + 6.14348i 0.285163 + 0.877640i
\(50\) −0.128507 + 0.141285i −0.0181737 + 0.0199808i
\(51\) 0.487558 + 3.07832i 0.0682717 + 0.431051i
\(52\) 7.77293 9.40363i 1.07791 1.30405i
\(53\) −2.13215 4.18458i −0.292873 0.574796i 0.696947 0.717123i \(-0.254541\pi\)
−0.989820 + 0.142327i \(0.954541\pi\)
\(54\) 1.78983 6.54774i 0.243565 0.891035i
\(55\) 5.84812 4.39476i 0.788561 0.592589i
\(56\) 2.07892 + 0.0313923i 0.277807 + 0.00419497i
\(57\) −2.31813 0.753206i −0.307044 0.0997646i
\(58\) −9.91103 + 3.74737i −1.30138 + 0.492053i
\(59\) −10.3333 + 1.63664i −1.34528 + 0.213072i −0.787193 0.616707i \(-0.788466\pi\)
−0.558092 + 0.829779i \(0.688466\pi\)
\(60\) −4.03483 0.900173i −0.520895 0.116212i
\(61\) 3.34828 6.57137i 0.428704 0.841378i −0.571087 0.820890i \(-0.693478\pi\)
0.999790 0.0204883i \(-0.00652207\pi\)
\(62\) 6.22740 + 0.686232i 0.790880 + 0.0871515i
\(63\) −1.26182 + 0.916766i −0.158974 + 0.115502i
\(64\) −2.70074 + 7.53034i −0.337592 + 0.941293i
\(65\) 13.4548 1.66887
\(66\) −4.03515 1.74317i −0.496693 0.214569i
\(67\) 7.12513 + 7.12513i 0.870474 + 0.870474i 0.992524 0.122050i \(-0.0389469\pi\)
−0.122050 + 0.992524i \(0.538947\pi\)
\(68\) 4.40074 + 4.98757i 0.533668 + 0.604832i
\(69\) −1.23118 + 7.77334i −0.148216 + 0.935800i
\(70\) 1.43402 + 1.78920i 0.171398 + 0.213851i
\(71\) −7.44352 + 2.41855i −0.883383 + 0.287028i −0.715361 0.698755i \(-0.753738\pi\)
−0.168022 + 0.985783i \(0.553738\pi\)
\(72\) −1.76811 5.73490i −0.208373 0.675864i
\(73\) −0.395318 + 0.544108i −0.0462685 + 0.0636831i −0.831524 0.555488i \(-0.812531\pi\)
0.785256 + 0.619171i \(0.212531\pi\)
\(74\) 2.88626 + 7.63359i 0.335521 + 0.887387i
\(75\) 0.0574563 + 0.112764i 0.00663449 + 0.0130209i
\(76\) −5.03789 + 1.29569i −0.577886 + 0.148626i
\(77\) 1.14173 + 2.15416i 0.130113 + 0.245489i
\(78\) −4.00701 7.02173i −0.453705 0.795054i
\(79\) −1.81458 + 5.58470i −0.204156 + 0.628328i 0.795591 + 0.605834i \(0.207161\pi\)
−0.999747 + 0.0224938i \(0.992839\pi\)
\(80\) −8.29864 + 2.99531i −0.927816 + 0.334885i
\(81\) 1.51061 + 1.09752i 0.167845 + 0.121947i
\(82\) 0.680784 0.748476i 0.0751800 0.0826554i
\(83\) 4.16650 8.17722i 0.457333 0.897567i −0.541065 0.840981i \(-0.681979\pi\)
0.998398 0.0565858i \(-0.0180215\pi\)
\(84\) 0.506670 1.28122i 0.0552822 0.139793i
\(85\) −1.14752 + 7.24517i −0.124466 + 0.785849i
\(86\) 0.0446802 + 0.0293364i 0.00481798 + 0.00316343i
\(87\) 7.02140i 0.752773i
\(88\) −9.26382 + 1.47704i −0.987526 + 0.157453i
\(89\) 16.1858i 1.71569i 0.513905 + 0.857847i \(0.328198\pi\)
−0.513905 + 0.857847i \(0.671802\pi\)
\(90\) 3.63253 5.53244i 0.382902 0.583170i
\(91\) −0.701477 + 4.42895i −0.0735348 + 0.464280i
\(92\) 6.67687 + 15.4122i 0.696111 + 1.60683i
\(93\) 1.88479 3.69911i 0.195444 0.383580i
\(94\) −6.05999 5.51192i −0.625040 0.568511i
\(95\) −4.64113 3.37198i −0.476170 0.345958i
\(96\) 4.03460 + 3.43880i 0.411780 + 0.350971i
\(97\) 1.32271 4.07088i 0.134301 0.413335i −0.861180 0.508300i \(-0.830274\pi\)
0.995481 + 0.0949653i \(0.0302740\pi\)
\(98\) 7.93430 4.52778i 0.801485 0.457375i
\(99\) 4.89508 5.05560i 0.491974 0.508107i
\(100\) 0.232538 + 0.137395i 0.0232538 + 0.0137395i
\(101\) 0.398218 + 0.781547i 0.0396242 + 0.0777668i 0.909970 0.414675i \(-0.136105\pi\)
−0.870346 + 0.492441i \(0.836105\pi\)
\(102\) 4.12281 1.55883i 0.408219 0.154348i
\(103\) −0.0196990 + 0.0271134i −0.00194100 + 0.00267156i −0.809986 0.586449i \(-0.800526\pi\)
0.808045 + 0.589120i \(0.200526\pi\)
\(104\) −15.2532 8.06428i −1.49570 0.790767i
\(105\) 1.44508 0.469535i 0.141025 0.0458219i
\(106\) −5.18262 + 4.15379i −0.503380 + 0.403452i
\(107\) 0.132779 0.838337i 0.0128363 0.0810451i −0.980439 0.196825i \(-0.936937\pi\)
0.993275 + 0.115780i \(0.0369368\pi\)
\(108\) −9.58093 0.598877i −0.921925 0.0576270i
\(109\) −13.6066 13.6066i −1.30328 1.30328i −0.926171 0.377104i \(-0.876920\pi\)
−0.377104 0.926171i \(-0.623080\pi\)
\(110\) −7.76454 6.83673i −0.740320 0.651857i
\(111\) 5.40796 0.513301
\(112\) −0.553314 2.88784i −0.0522833 0.272875i
\(113\) 0.379760 0.275912i 0.0357248 0.0259556i −0.569780 0.821798i \(-0.692971\pi\)
0.605504 + 0.795842i \(0.292971\pi\)
\(114\) −0.377563 + 3.42630i −0.0353620 + 0.320902i
\(115\) −8.40948 + 16.5045i −0.784188 + 1.53906i
\(116\) 8.03436 + 12.6488i 0.745972 + 1.17441i
\(117\) 12.7837 2.02474i 1.18186 0.187188i
\(118\) 5.23271 + 13.8395i 0.481710 + 1.27403i
\(119\) −2.32508 0.755463i −0.213139 0.0692532i
\(120\) −0.0882723 + 5.84573i −0.00805812 + 0.533640i
\(121\) −6.74932 8.68600i −0.613575 0.789637i
\(122\) −10.0610 2.75019i −0.910883 0.248991i
\(123\) −0.304382 0.597383i −0.0274452 0.0538642i
\(124\) −0.837396 8.82052i −0.0752004 0.792106i
\(125\) 1.77181 + 11.1867i 0.158475 + 1.00057i
\(126\) 1.63174 + 1.48416i 0.145367 + 0.132220i
\(127\) −2.72565 8.38870i −0.241863 0.744376i −0.996137 0.0878167i \(-0.972011\pi\)
0.754274 0.656560i \(-0.227989\pi\)
\(128\) 11.2031 + 1.57820i 0.990223 + 0.139495i
\(129\) 0.0286548 0.0208189i 0.00252292 0.00183301i
\(130\) −3.86242 18.6319i −0.338757 1.63413i
\(131\) 3.75420 + 3.75420i 0.328006 + 0.328006i 0.851828 0.523822i \(-0.175494\pi\)
−0.523822 + 0.851828i \(0.675494\pi\)
\(132\) −1.25554 + 6.08817i −0.109281 + 0.529907i
\(133\) 1.35193 1.35193i 0.117227 0.117227i
\(134\) 7.82131 11.9121i 0.675658 1.02905i
\(135\) −6.22275 8.56488i −0.535569 0.737147i
\(136\) 5.64335 7.52578i 0.483913 0.645330i
\(137\) 12.3001 3.99655i 1.05087 0.341449i 0.267861 0.963458i \(-0.413683\pi\)
0.783010 + 0.622009i \(0.213683\pi\)
\(138\) 11.1177 0.526560i 0.946404 0.0448238i
\(139\) −6.72027 + 1.06439i −0.570006 + 0.0902801i −0.434783 0.900535i \(-0.643175\pi\)
−0.135223 + 0.990815i \(0.543175\pi\)
\(140\) 2.06598 2.49941i 0.174607 0.211238i
\(141\) −4.83667 + 2.46441i −0.407321 + 0.207541i
\(142\) 5.48591 + 9.61329i 0.460367 + 0.806730i
\(143\) −0.326336 20.2292i −0.0272896 1.69165i
\(144\) −7.43396 + 4.09472i −0.619497 + 0.341226i
\(145\) −5.10671 + 15.7168i −0.424089 + 1.30521i
\(146\) 0.866948 + 0.391230i 0.0717491 + 0.0323785i
\(147\) −0.946989 5.97905i −0.0781064 0.493144i
\(148\) 9.74223 6.18816i 0.800807 0.508663i
\(149\) −6.61987 3.37299i −0.542321 0.276326i 0.161296 0.986906i \(-0.448433\pi\)
−0.703617 + 0.710580i \(0.748433\pi\)
\(150\) 0.139659 0.111935i 0.0114031 0.00913943i
\(151\) −5.35334 7.36824i −0.435649 0.599619i 0.533590 0.845744i \(-0.320843\pi\)
−0.969238 + 0.246125i \(0.920843\pi\)
\(152\) 3.24044 + 6.60438i 0.262834 + 0.535686i
\(153\) 7.05647i 0.570481i
\(154\) 2.65527 2.19943i 0.213968 0.177235i
\(155\) 6.90934 6.90934i 0.554972 0.554972i
\(156\) −8.57322 + 7.56449i −0.686407 + 0.605644i
\(157\) −1.54437 0.244605i −0.123254 0.0195216i 0.0945024 0.995525i \(-0.469874\pi\)
−0.217757 + 0.976003i \(0.569874\pi\)
\(158\) 8.25444 + 0.909604i 0.656688 + 0.0723642i
\(159\) 1.36006 + 4.18583i 0.107860 + 0.331958i
\(160\) 6.53007 + 10.6319i 0.516247 + 0.840523i
\(161\) −4.99439 3.62864i −0.393613 0.285977i
\(162\) 1.08617 2.40691i 0.0853377 0.189104i
\(163\) 1.66359 0.847642i 0.130303 0.0663925i −0.387624 0.921818i \(-0.626704\pi\)
0.517926 + 0.855425i \(0.326704\pi\)
\(164\) −1.23190 0.727868i −0.0961951 0.0568370i
\(165\) −6.05731 + 3.21046i −0.471561 + 0.249934i
\(166\) −12.5196 3.42226i −0.971713 0.265619i
\(167\) 0.188132 + 0.0611278i 0.0145581 + 0.00473021i 0.316287 0.948664i \(-0.397564\pi\)
−0.301729 + 0.953394i \(0.597564\pi\)
\(168\) −1.91965 0.333828i −0.148104 0.0257554i
\(169\) 14.2313 19.5876i 1.09471 1.50674i
\(170\) 10.3623 0.490782i 0.794753 0.0376413i
\(171\) −4.91707 2.50537i −0.376018 0.191591i
\(172\) 0.0277981 0.0702933i 0.00211958 0.00535981i
\(173\) −6.98029 1.10557i −0.530702 0.0840549i −0.114668 0.993404i \(-0.536580\pi\)
−0.416034 + 0.909349i \(0.636580\pi\)
\(174\) 9.72304 2.01560i 0.737102 0.152802i
\(175\) −0.0992724 −0.00750429
\(176\) 4.70469 + 12.4043i 0.354629 + 0.935007i
\(177\) 9.80448 0.736950
\(178\) 22.4137 4.64639i 1.67998 0.348262i
\(179\) −24.1683 3.82788i −1.80642 0.286109i −0.839908 0.542728i \(-0.817391\pi\)
−0.966513 + 0.256619i \(0.917391\pi\)
\(180\) −8.70394 3.44205i −0.648753 0.256555i
\(181\) 10.6143 + 5.40824i 0.788953 + 0.401991i 0.801549 0.597929i \(-0.204010\pi\)
−0.0125962 + 0.999921i \(0.504010\pi\)
\(182\) 6.33446 0.300014i 0.469541 0.0222385i
\(183\) −4.06255 + 5.59161i −0.300312 + 0.413344i
\(184\) 19.4256 13.6702i 1.43208 1.00778i
\(185\) 12.1053 + 3.93324i 0.889998 + 0.289178i
\(186\) −5.66349 1.54812i −0.415267 0.113514i
\(187\) 10.9209 + 1.54956i 0.798613 + 0.113315i
\(188\) −5.89314 + 9.97399i −0.429801 + 0.727428i
\(189\) 3.14374 1.60182i 0.228674 0.116515i
\(190\) −3.33711 + 7.39489i −0.242100 + 0.536482i
\(191\) 2.12495 + 1.54386i 0.153756 + 0.111710i 0.662003 0.749501i \(-0.269706\pi\)
−0.508247 + 0.861211i \(0.669706\pi\)
\(192\) 3.60376 6.57417i 0.260079 0.474450i
\(193\) −0.755130 2.32405i −0.0543554 0.167289i 0.920193 0.391464i \(-0.128031\pi\)
−0.974549 + 0.224175i \(0.928031\pi\)
\(194\) −6.01694 0.663040i −0.431991 0.0476035i
\(195\) −12.4538 1.97249i −0.891837 0.141253i
\(196\) −8.54761 9.68743i −0.610543 0.691959i
\(197\) 12.3077 12.3077i 0.876888 0.876888i −0.116323 0.993211i \(-0.537111\pi\)
0.993211 + 0.116323i \(0.0371108\pi\)
\(198\) −8.40607 5.32728i −0.597393 0.378593i
\(199\) 11.2797i 0.799598i 0.916603 + 0.399799i \(0.130920\pi\)
−0.916603 + 0.399799i \(0.869080\pi\)
\(200\) 0.123507 0.361454i 0.00873329 0.0255586i
\(201\) −5.55049 7.63959i −0.391501 0.538855i
\(202\) 0.967949 0.775796i 0.0681047 0.0545848i
\(203\) −4.90729 2.50039i −0.344424 0.175493i
\(204\) −3.34215 5.26166i −0.233997 0.368390i
\(205\) −0.246854 1.55857i −0.0172410 0.108855i
\(206\) 0.0432007 + 0.0194953i 0.00300994 + 0.00135830i
\(207\) −5.50635 + 16.9468i −0.382718 + 1.17788i
\(208\) −6.78851 + 23.4372i −0.470699 + 1.62508i
\(209\) −4.95717 + 7.05968i −0.342895 + 0.488328i
\(210\) −1.06503 1.86632i −0.0734941 0.128788i
\(211\) 22.7301 11.5816i 1.56480 0.797307i 0.565186 0.824963i \(-0.308804\pi\)
0.999618 + 0.0276558i \(0.00880424\pi\)
\(212\) 7.23980 + 5.98434i 0.497232 + 0.411006i
\(213\) 7.24429 1.14738i 0.496371 0.0786174i
\(214\) −1.19902 + 0.0567883i −0.0819634 + 0.00388197i
\(215\) 0.0792832 0.0257607i 0.00540707 0.00175686i
\(216\) 1.92105 + 13.4393i 0.130711 + 0.914430i
\(217\) 1.91414 + 2.63458i 0.129940 + 0.178847i
\(218\) −14.9360 + 22.7480i −1.01160 + 1.54069i
\(219\) 0.445674 0.445674i 0.0301158 0.0301158i
\(220\) −7.23839 + 12.7147i −0.488012 + 0.857225i
\(221\) 14.3454 + 14.3454i 0.964978 + 0.964978i
\(222\) −1.55244 7.48879i −0.104193 0.502615i
\(223\) 1.95157 1.41790i 0.130687 0.0949497i −0.520521 0.853849i \(-0.674262\pi\)
0.651208 + 0.758899i \(0.274262\pi\)
\(224\) −3.84016 + 1.59521i −0.256581 + 0.106585i
\(225\) 0.0885457 + 0.272516i 0.00590305 + 0.0181677i
\(226\) −0.491091 0.446677i −0.0326669 0.0297125i
\(227\) 0.480428 + 3.03330i 0.0318871 + 0.201327i 0.998489 0.0549562i \(-0.0175019\pi\)
−0.966602 + 0.256284i \(0.917502\pi\)
\(228\) 4.85303 0.460734i 0.321400 0.0305128i
\(229\) 6.73753 + 13.2231i 0.445229 + 0.873810i 0.999149 + 0.0412408i \(0.0131311\pi\)
−0.553921 + 0.832569i \(0.686869\pi\)
\(230\) 25.2691 + 6.90733i 1.66620 + 0.455456i
\(231\) −0.740990 2.16127i −0.0487536 0.142201i
\(232\) 15.2093 14.7568i 0.998539 0.968831i
\(233\) −26.8296 8.71746i −1.75766 0.571100i −0.760711 0.649091i \(-0.775150\pi\)
−0.996954 + 0.0779909i \(0.975150\pi\)
\(234\) −6.47358 17.1213i −0.423191 1.11926i
\(235\) −12.6189 + 1.99863i −0.823165 + 0.130377i
\(236\) 17.6624 11.2189i 1.14972 0.730291i
\(237\) 2.49830 4.90319i 0.162282 0.318497i
\(238\) −0.378695 + 3.43657i −0.0245471 + 0.222760i
\(239\) −14.6675 + 10.6566i −0.948762 + 0.689316i −0.950514 0.310683i \(-0.899442\pi\)
0.00175209 + 0.999998i \(0.499442\pi\)
\(240\) 8.12035 1.55587i 0.524166 0.100431i
\(241\) −23.7447 −1.52953 −0.764764 0.644311i \(-0.777144\pi\)
−0.764764 + 0.644311i \(0.777144\pi\)
\(242\) −10.0906 + 11.8397i −0.648651 + 0.761086i
\(243\) −11.4193 11.4193i −0.732546 0.732546i
\(244\) −0.920213 + 14.7217i −0.0589106 + 0.942461i
\(245\) 2.22885 14.0724i 0.142396 0.899051i
\(246\) −0.739862 + 0.592988i −0.0471719 + 0.0378075i
\(247\) −15.0894 + 4.90285i −0.960118 + 0.311961i
\(248\) −11.9740 + 3.69167i −0.760351 + 0.234421i
\(249\) −5.05531 + 6.95804i −0.320367 + 0.440948i
\(250\) 14.9825 5.66488i 0.947574 0.358278i
\(251\) −10.6136 20.8304i −0.669924 1.31480i −0.936392 0.350957i \(-0.885856\pi\)
0.266467 0.963844i \(-0.414144\pi\)
\(252\) 1.58681 2.68564i 0.0999596 0.169179i
\(253\) 25.0184 + 12.2433i 1.57289 + 0.769728i
\(254\) −10.8340 + 6.18251i −0.679785 + 0.387925i
\(255\) 2.12430 6.53791i 0.133029 0.409420i
\(256\) −1.03057 15.9668i −0.0644108 0.997923i
\(257\) −20.7023 15.0411i −1.29137 0.938236i −0.291539 0.956559i \(-0.594167\pi\)
−0.999832 + 0.0183231i \(0.994167\pi\)
\(258\) −0.0370553 0.0337040i −0.00230696 0.00209832i
\(259\) −1.92583 + 3.77965i −0.119665 + 0.234856i
\(260\) −24.6922 + 10.6972i −1.53134 + 0.663409i
\(261\) −2.48685 + 15.7014i −0.153932 + 0.971890i
\(262\) 4.12101 6.27642i 0.254597 0.387758i
\(263\) 13.8344i 0.853067i 0.904472 + 0.426534i \(0.140265\pi\)
−0.904472 + 0.426534i \(0.859735\pi\)
\(264\) 8.79114 0.00906686i 0.541058 0.000558027i
\(265\) 10.3588i 0.636337i
\(266\) −2.26021 1.48402i −0.138582 0.0909912i
\(267\) 2.37286 14.9816i 0.145216 0.916861i
\(268\) −18.7407 7.41118i −1.14477 0.452710i
\(269\) −3.90636 + 7.66667i −0.238175 + 0.467445i −0.978894 0.204371i \(-0.934485\pi\)
0.740718 + 0.671816i \(0.234485\pi\)
\(270\) −10.0741 + 11.0758i −0.613088 + 0.674050i
\(271\) 9.50751 + 6.90761i 0.577540 + 0.419607i 0.837836 0.545921i \(-0.183820\pi\)
−0.260296 + 0.965529i \(0.583820\pi\)
\(272\) −12.0415 5.65436i −0.730123 0.342846i
\(273\) 1.29858 3.99661i 0.0785935 0.241886i
\(274\) −9.06526 15.8856i −0.547652 0.959684i
\(275\) 0.441200 0.0771939i 0.0266054 0.00465496i
\(276\) −3.92068 15.2444i −0.235997 0.917603i
\(277\) −12.0085 23.5681i −0.721523 1.41607i −0.901668 0.432428i \(-0.857657\pi\)
0.180146 0.983640i \(-0.442343\pi\)
\(278\) 3.40309 + 9.00049i 0.204104 + 0.539814i
\(279\) 5.52496 7.60446i 0.330771 0.455267i
\(280\) −4.05418 2.14342i −0.242284 0.128094i
\(281\) 11.1922 3.63658i 0.667673 0.216940i 0.0444825 0.999010i \(-0.485836\pi\)
0.623191 + 0.782070i \(0.285836\pi\)
\(282\) 4.80109 + 5.99024i 0.285901 + 0.356714i
\(283\) 3.63109 22.9258i 0.215846 1.36280i −0.607076 0.794644i \(-0.707658\pi\)
0.822922 0.568154i \(-0.192342\pi\)
\(284\) 11.7374 10.3564i 0.696487 0.614538i
\(285\) 3.80151 + 3.80151i 0.225182 + 0.225182i
\(286\) −27.9192 + 6.25902i −1.65090 + 0.370103i
\(287\) 0.525908 0.0310434
\(288\) 7.80428 + 9.11889i 0.459872 + 0.537336i
\(289\) 4.80509 3.49110i 0.282652 0.205359i
\(290\) 23.2302 + 2.55987i 1.36412 + 0.150320i
\(291\) −1.82110 + 3.57410i −0.106755 + 0.209518i
\(292\) 0.292894 1.31283i 0.0171403 0.0768278i
\(293\) −12.8387 + 2.03345i −0.750043 + 0.118795i −0.519741 0.854324i \(-0.673972\pi\)
−0.230302 + 0.973119i \(0.573972\pi\)
\(294\) −8.00778 + 3.02774i −0.467023 + 0.176582i
\(295\) 21.9465 + 7.13086i 1.27778 + 0.415175i
\(296\) −11.3658 11.7144i −0.660626 0.680884i
\(297\) −12.7263 + 9.56358i −0.738454 + 0.554935i
\(298\) −2.77049 + 10.1353i −0.160490 + 0.587121i
\(299\) 23.2578 + 45.6461i 1.34504 + 2.63978i
\(300\) −0.195095 0.161264i −0.0112638 0.00931056i
\(301\) 0.00434620 + 0.0274408i 0.000250511 + 0.00158166i
\(302\) −8.66657 + 9.52832i −0.498705 + 0.548293i
\(303\) −0.254016 0.781780i −0.0145928 0.0449121i
\(304\) 8.21534 6.38316i 0.471182 0.366099i
\(305\) −13.1605 + 9.56166i −0.753568 + 0.547499i
\(306\) 9.77160 2.02567i 0.558605 0.115800i
\(307\) 9.33986 + 9.33986i 0.533054 + 0.533054i 0.921480 0.388426i \(-0.126981\pi\)
−0.388426 + 0.921480i \(0.626981\pi\)
\(308\) −3.80794 3.04556i −0.216978 0.173537i
\(309\) 0.0222083 0.0222083i 0.00126339 0.00126339i
\(310\) −11.5513 7.58443i −0.656070 0.430767i
\(311\) 19.4285 + 26.7410i 1.10169 + 1.51634i 0.833128 + 0.553080i \(0.186547\pi\)
0.268559 + 0.963263i \(0.413453\pi\)
\(312\) 12.9362 + 9.70045i 0.732367 + 0.549180i
\(313\) −0.573136 + 0.186223i −0.0323955 + 0.0105260i −0.325170 0.945656i \(-0.605422\pi\)
0.292774 + 0.956182i \(0.405422\pi\)
\(314\) 0.104615 + 2.20882i 0.00590375 + 0.124651i
\(315\) 3.39781 0.538160i 0.191445 0.0303219i
\(316\) −1.10997 11.6916i −0.0624409 0.657706i
\(317\) −9.05801 + 4.61529i −0.508749 + 0.259220i −0.689470 0.724314i \(-0.742157\pi\)
0.180722 + 0.983534i \(0.442157\pi\)
\(318\) 5.40599 3.08498i 0.303153 0.172997i
\(319\) 23.7540 + 7.29669i 1.32997 + 0.408536i
\(320\) 12.8482 12.0947i 0.718234 0.676114i
\(321\) −0.245802 + 0.756501i −0.0137193 + 0.0422237i
\(322\) −3.59112 + 7.95775i −0.200125 + 0.443468i
\(323\) −1.35316 8.54351i −0.0752917 0.475373i
\(324\) −3.64482 0.813160i −0.202490 0.0451756i
\(325\) 0.734019 + 0.374001i 0.0407160 + 0.0207459i
\(326\) −1.65135 2.06037i −0.0914599 0.114113i
\(327\) 10.5995 + 14.5890i 0.586156 + 0.806775i
\(328\) −0.654296 + 1.91484i −0.0361274 + 0.105730i
\(329\) 4.25798i 0.234750i
\(330\) 6.18460 + 7.46638i 0.340451 + 0.411011i
\(331\) 12.0259 12.0259i 0.661005 0.661005i −0.294612 0.955617i \(-0.595190\pi\)
0.955617 + 0.294612i \(0.0951903\pi\)
\(332\) −1.14509 + 18.3193i −0.0628448 + 1.00540i
\(333\) 12.0934 + 1.91540i 0.662713 + 0.104963i
\(334\) 0.0306418 0.278068i 0.00167665 0.0152152i
\(335\) −6.86799 21.1375i −0.375238 1.15487i
\(336\) 0.0887892 + 2.75410i 0.00484385 + 0.150249i
\(337\) −10.5193 7.64271i −0.573022 0.416325i 0.263180 0.964747i \(-0.415229\pi\)
−0.836202 + 0.548422i \(0.815229\pi\)
\(338\) −31.2097 14.0841i −1.69758 0.766074i
\(339\) −0.391956 + 0.199711i −0.0212881 + 0.0108468i
\(340\) −3.65429 14.2086i −0.198181 0.770567i
\(341\) −10.5557 10.2205i −0.571624 0.553474i
\(342\) −2.05785 + 7.52822i −0.111276 + 0.407080i
\(343\) 9.40982 + 3.05744i 0.508083 + 0.165086i
\(344\) −0.105320 0.0183152i −0.00567848 0.000987491i
\(345\) 10.2034 14.0438i 0.549333 0.756093i
\(346\) 0.472840 + 9.98348i 0.0254200 + 0.536715i
\(347\) 19.5889 + 9.98104i 1.05159 + 0.535810i 0.892310 0.451424i \(-0.149084\pi\)
0.159277 + 0.987234i \(0.449084\pi\)
\(348\) −5.58230 12.8856i −0.299243 0.690740i
\(349\) 2.96039 + 0.468880i 0.158466 + 0.0250986i 0.235163 0.971956i \(-0.424437\pi\)
−0.0766972 + 0.997054i \(0.524437\pi\)
\(350\) 0.0284977 + 0.137470i 0.00152327 + 0.00734806i
\(351\) −29.2795 −1.56282
\(352\) 15.8265 10.0758i 0.843557 0.537040i
\(353\) 14.3733 0.765016 0.382508 0.923952i \(-0.375060\pi\)
0.382508 + 0.923952i \(0.375060\pi\)
\(354\) −2.81453 13.5770i −0.149590 0.721608i
\(355\) 17.0503 + 2.70050i 0.904934 + 0.143327i
\(356\) −12.8684 29.7040i −0.682023 1.57431i
\(357\) 2.04134 + 1.04012i 0.108039 + 0.0550488i
\(358\) 1.63714 + 34.5664i 0.0865255 + 1.82689i
\(359\) 4.02898 5.54542i 0.212642 0.292676i −0.689351 0.724427i \(-0.742104\pi\)
0.901993 + 0.431751i \(0.142104\pi\)
\(360\) −2.26785 + 13.0411i −0.119526 + 0.687324i
\(361\) −11.6364 3.78089i −0.612441 0.198994i
\(362\) 4.44219 16.2509i 0.233476 0.854127i
\(363\) 4.97381 + 9.02924i 0.261057 + 0.473912i
\(364\) −2.23386 8.68566i −0.117086 0.455252i
\(365\) 1.32175 0.673463i 0.0691833 0.0352507i
\(366\) 8.90933 + 4.02054i 0.465698 + 0.210157i
\(367\) 24.6588 + 17.9156i 1.28718 + 0.935189i 0.999744 0.0226117i \(-0.00719814\pi\)
0.287433 + 0.957801i \(0.407198\pi\)
\(368\) −24.5066 22.9758i −1.27749 1.19770i
\(369\) −0.469082 1.44368i −0.0244194 0.0751552i
\(370\) 1.97164 17.8922i 0.102501 0.930169i
\(371\) −3.40983 0.540064i −0.177029 0.0280387i
\(372\) −0.518000 + 8.28705i −0.0268571 + 0.429664i
\(373\) 11.2225 11.2225i 0.581077 0.581077i −0.354122 0.935199i \(-0.615220\pi\)
0.935199 + 0.354122i \(0.115220\pi\)
\(374\) −0.989215 15.5677i −0.0511511 0.804988i
\(375\) 10.6142i 0.548116i
\(376\) 15.5034 + 5.29746i 0.799528 + 0.273196i
\(377\) 26.8644 + 36.9757i 1.38359 + 1.90435i
\(378\) −3.12061 3.89354i −0.160507 0.200262i
\(379\) 20.7071 + 10.5508i 1.06365 + 0.541959i 0.896076 0.443900i \(-0.146405\pi\)
0.167578 + 0.985859i \(0.446405\pi\)
\(380\) 11.1982 + 2.49832i 0.574456 + 0.128161i
\(381\) 1.29308 + 8.16418i 0.0662464 + 0.418263i
\(382\) 1.52790 3.38576i 0.0781742 0.173230i
\(383\) 1.14919 3.53683i 0.0587207 0.180724i −0.917394 0.397981i \(-0.869711\pi\)
0.976114 + 0.217257i \(0.0697110\pi\)
\(384\) −10.1382 3.10317i −0.517365 0.158358i
\(385\) −0.0867374 5.37676i −0.00442055 0.274025i
\(386\) −3.00151 + 1.71284i −0.152773 + 0.0871811i
\(387\) 0.0714520 0.0364066i 0.00363211 0.00185065i
\(388\) 0.809097 + 8.52243i 0.0410757 + 0.432661i
\(389\) −2.46094 + 0.389775i −0.124775 + 0.0197624i −0.218509 0.975835i \(-0.570119\pi\)
0.0937348 + 0.995597i \(0.470119\pi\)
\(390\) 0.843613 + 17.8120i 0.0427180 + 0.901943i
\(391\) −26.5631 + 8.63087i −1.34335 + 0.436482i
\(392\) −10.9612 + 14.6174i −0.553622 + 0.738291i
\(393\) −2.92453 4.02527i −0.147523 0.203048i
\(394\) −20.5765 13.5103i −1.03663 0.680637i
\(395\) 9.15837 9.15837i 0.460807 0.460807i
\(396\) −4.96398 + 13.1698i −0.249449 + 0.661806i
\(397\) −1.55594 1.55594i −0.0780904 0.0780904i 0.666983 0.745073i \(-0.267585\pi\)
−0.745073 + 0.666983i \(0.767585\pi\)
\(398\) 15.6198 3.23802i 0.782952 0.162307i
\(399\) −1.44954 + 1.05315i −0.0725679 + 0.0527236i
\(400\) −0.535986 0.0672687i −0.0267993 0.00336344i
\(401\) −1.55256 4.77830i −0.0775313 0.238617i 0.904778 0.425884i \(-0.140037\pi\)
−0.982309 + 0.187267i \(0.940037\pi\)
\(402\) −8.98573 + 9.87922i −0.448168 + 0.492731i
\(403\) −4.22751 26.6914i −0.210587 1.32959i
\(404\) −1.35217 1.11768i −0.0672728 0.0556069i
\(405\) −1.86973 3.66956i −0.0929078 0.182342i
\(406\) −2.05376 + 7.51326i −0.101926 + 0.372877i
\(407\) 5.61999 18.2956i 0.278573 0.906878i
\(408\) −6.32678 + 6.13855i −0.313222 + 0.303904i
\(409\) −18.6464 6.05859i −0.922006 0.299578i −0.190717 0.981645i \(-0.561081\pi\)
−0.731290 + 0.682067i \(0.761081\pi\)
\(410\) −2.08740 + 0.789249i −0.103090 + 0.0389782i
\(411\) −11.9709 + 1.89601i −0.590482 + 0.0935231i
\(412\) 0.0145951 0.0654196i 0.000719051 0.00322299i
\(413\) −3.49147 + 6.85240i −0.171804 + 0.337185i
\(414\) 25.0481 + 2.76020i 1.23105 + 0.135656i
\(415\) −16.3765 + 11.8982i −0.803892 + 0.584062i
\(416\) 34.4039 + 2.67252i 1.68679 + 0.131031i
\(417\) 6.37633 0.312250
\(418\) 11.1991 + 4.83796i 0.547765 + 0.236632i
\(419\) −18.2599 18.2599i −0.892054 0.892054i 0.102662 0.994716i \(-0.467264\pi\)
−0.994716 + 0.102662i \(0.967264\pi\)
\(420\) −2.27869 + 2.01058i −0.111189 + 0.0981063i
\(421\) −0.609729 + 3.84968i −0.0297164 + 0.187622i −0.998081 0.0619163i \(-0.980279\pi\)
0.968365 + 0.249538i \(0.0802788\pi\)
\(422\) −22.5628 28.1513i −1.09834 1.37039i
\(423\) −11.6887 + 3.79789i −0.568324 + 0.184660i
\(424\) 6.20864 11.7434i 0.301518 0.570308i
\(425\) −0.263994 + 0.363357i −0.0128056 + 0.0176254i
\(426\) −3.66845 9.70232i −0.177737 0.470079i
\(427\) −2.46130 4.83056i −0.119110 0.233767i
\(428\) 0.422837 + 1.64407i 0.0204386 + 0.0794691i
\(429\) −2.66357 + 18.7721i −0.128598 + 0.906323i
\(430\) −0.0584321 0.102394i −0.00281785 0.00493788i
\(431\) 7.50338 23.0930i 0.361425 1.11235i −0.590765 0.806844i \(-0.701174\pi\)
0.952190 0.305508i \(-0.0988262\pi\)
\(432\) 18.0589 6.51818i 0.868860 0.313606i
\(433\) −14.3249 10.4077i −0.688412 0.500161i 0.187726 0.982222i \(-0.439888\pi\)
−0.876138 + 0.482061i \(0.839888\pi\)
\(434\) 3.09881 3.40694i 0.148748 0.163538i
\(435\) 7.03088 13.7989i 0.337105 0.661606i
\(436\) 35.7884 + 14.1528i 1.71395 + 0.677798i
\(437\) 3.41698 21.5740i 0.163456 1.03202i
\(438\) −0.745094 0.489219i −0.0356020 0.0233758i
\(439\) 34.8072i 1.66126i 0.556828 + 0.830628i \(0.312018\pi\)
−0.556828 + 0.830628i \(0.687982\pi\)
\(440\) 19.6849 + 6.37356i 0.938439 + 0.303848i
\(441\) 13.7059i 0.652660i
\(442\) 15.7471 23.9832i 0.749012 1.14077i
\(443\) −3.35342 + 21.1726i −0.159326 + 1.00594i 0.770366 + 0.637602i \(0.220074\pi\)
−0.929691 + 0.368340i \(0.879926\pi\)
\(444\) −9.92462 + 4.29955i −0.471002 + 0.204048i
\(445\) 16.2077 31.8094i 0.768318 1.50791i
\(446\) −2.52370 2.29545i −0.119501 0.108693i
\(447\) 5.63288 + 4.09253i 0.266426 + 0.193570i
\(448\) 3.31138 + 4.85981i 0.156448 + 0.229605i
\(449\) −0.175602 + 0.540446i −0.00828716 + 0.0255052i −0.955115 0.296237i \(-0.904268\pi\)
0.946827 + 0.321742i \(0.104268\pi\)
\(450\) 0.351954 0.200845i 0.0165912 0.00946794i
\(451\) −2.33731 + 0.408944i −0.110060 + 0.0192564i
\(452\) −0.477570 + 0.808275i −0.0224630 + 0.0380181i
\(453\) 3.87487 + 7.60486i 0.182057 + 0.357308i
\(454\) 4.06252 1.53604i 0.190663 0.0720899i
\(455\) 5.81352 8.00162i 0.272542 0.375122i
\(456\) −2.03115 6.58808i −0.0951173 0.308515i
\(457\) −33.2957 + 10.8184i −1.55751 + 0.506065i −0.956140 0.292909i \(-0.905377\pi\)
−0.601366 + 0.798973i \(0.705377\pi\)
\(458\) 16.3769 13.1259i 0.765244 0.613331i
\(459\) 2.49716 15.7664i 0.116557 0.735914i
\(460\) 2.31119 36.9748i 0.107760 1.72396i
\(461\) −26.1945 26.1945i −1.22000 1.22000i −0.967632 0.252366i \(-0.918791\pi\)
−0.252366 0.967632i \(-0.581209\pi\)
\(462\) −2.78016 + 1.64653i −0.129345 + 0.0766035i
\(463\) −8.02419 −0.372916 −0.186458 0.982463i \(-0.559701\pi\)
−0.186458 + 0.982463i \(0.559701\pi\)
\(464\) −24.8009 16.8252i −1.15135 0.781092i
\(465\) −7.40822 + 5.38238i −0.343548 + 0.249602i
\(466\) −4.36985 + 39.6553i −0.202429 + 1.83700i
\(467\) −15.3315 + 30.0899i −0.709459 + 1.39239i 0.201331 + 0.979523i \(0.435473\pi\)
−0.910790 + 0.412869i \(0.864527\pi\)
\(468\) −21.8508 + 13.8794i −1.01005 + 0.641574i
\(469\) 7.31593 1.15873i 0.337818 0.0535052i
\(470\) 6.39010 + 16.9005i 0.294753 + 0.779564i
\(471\) 1.39362 + 0.452813i 0.0642145 + 0.0208645i
\(472\) −20.6059 21.2378i −0.948466 0.977549i
\(473\) −0.0406539 0.118577i −0.00186927 0.00545216i
\(474\) −7.50698 2.05204i −0.344807 0.0942533i
\(475\) −0.159463 0.312964i −0.00731668 0.0143598i
\(476\) 4.86757 0.462114i 0.223105 0.0211810i
\(477\) 1.55884 + 9.84212i 0.0713743 + 0.450640i
\(478\) 18.9674 + 17.2520i 0.867551 + 0.789088i
\(479\) −0.640069 1.96993i −0.0292455 0.0900084i 0.935368 0.353675i \(-0.115068\pi\)
−0.964614 + 0.263667i \(0.915068\pi\)
\(480\) −4.48560 10.7982i −0.204739 0.492868i
\(481\) 28.4791 20.6913i 1.29854 0.943441i
\(482\) 6.81627 + 32.8809i 0.310473 + 1.49769i
\(483\) 4.09086 + 4.09086i 0.186140 + 0.186140i
\(484\) 19.2920 + 10.5745i 0.876909 + 0.480657i
\(485\) −6.67584 + 6.67584i −0.303134 + 0.303134i
\(486\) −12.5350 + 19.0912i −0.568599 + 0.865992i
\(487\) −14.8996 20.5075i −0.675164 0.929284i 0.324699 0.945817i \(-0.394737\pi\)
−0.999863 + 0.0165334i \(0.994737\pi\)
\(488\) 20.6504 2.95181i 0.934799 0.133622i
\(489\) −1.66409 + 0.540695i −0.0752527 + 0.0244511i
\(490\) −20.1269 + 0.953252i −0.909239 + 0.0430636i
\(491\) 22.4074 3.54898i 1.01123 0.160163i 0.371233 0.928540i \(-0.378935\pi\)
0.639998 + 0.768377i \(0.278935\pi\)
\(492\) 1.03354 + 0.854314i 0.0465957 + 0.0385154i
\(493\) −22.2019 + 11.3124i −0.999922 + 0.509486i
\(494\) 11.1210 + 19.4880i 0.500357 + 0.876806i
\(495\) −14.6825 + 5.03389i −0.659931 + 0.226257i
\(496\) 8.54945 + 15.5215i 0.383882 + 0.696937i
\(497\) −1.77785 + 5.47167i −0.0797476 + 0.245438i
\(498\) 11.0865 + 5.00304i 0.496798 + 0.224192i
\(499\) 3.64716 + 23.0273i 0.163269 + 1.03084i 0.924172 + 0.381976i \(0.124756\pi\)
−0.760903 + 0.648866i \(0.775244\pi\)
\(500\) −12.1455 19.1211i −0.543164 0.855122i
\(501\) −0.165174 0.0841603i −0.00737943 0.00376001i
\(502\) −25.7985 + 20.6771i −1.15144 + 0.922864i
\(503\) −19.6782 27.0847i −0.877407 1.20765i −0.977132 0.212632i \(-0.931796\pi\)
0.0997254 0.995015i \(-0.468204\pi\)
\(504\) −4.17451 1.42642i −0.185948 0.0635376i
\(505\) 1.93470i 0.0860930i
\(506\) 9.77222 38.1594i 0.434428 1.69639i
\(507\) −16.0440 + 16.0440i −0.712541 + 0.712541i
\(508\) 11.6714 + 13.2278i 0.517836 + 0.586890i
\(509\) −4.37975 0.693684i −0.194129 0.0307470i 0.0586128 0.998281i \(-0.481332\pi\)
−0.252742 + 0.967534i \(0.581332\pi\)
\(510\) −9.66333 1.06486i −0.427899 0.0471526i
\(511\) 0.152775 + 0.470193i 0.00675836 + 0.0208001i
\(512\) −21.8145 + 6.01062i −0.964074 + 0.265634i
\(513\) 10.0997 + 7.33787i 0.445913 + 0.323975i
\(514\) −14.8855 + 32.9857i −0.656573 + 1.45494i
\(515\) 0.0658637 0.0335592i 0.00290230 0.00147880i
\(516\) −0.0360350 + 0.0609884i −0.00158635 + 0.00268486i
\(517\) 3.31099 + 18.9239i 0.145617 + 0.832272i
\(518\) 5.78680 + 1.58183i 0.254257 + 0.0695015i
\(519\) 6.29889 + 2.04663i 0.276491 + 0.0898373i
\(520\) 21.9014 + 31.1222i 0.960439 + 1.36480i
\(521\) 7.22560 9.94518i 0.316559 0.435706i −0.620854 0.783927i \(-0.713214\pi\)
0.937413 + 0.348220i \(0.113214\pi\)
\(522\) 22.4567 1.06360i 0.982903 0.0465525i
\(523\) −10.8491 5.52788i −0.474397 0.241717i 0.200409 0.979712i \(-0.435773\pi\)
−0.674806 + 0.737995i \(0.735773\pi\)
\(524\) −9.87441 3.90492i −0.431365 0.170587i
\(525\) 0.0918867 + 0.0145534i 0.00401027 + 0.000635164i
\(526\) 19.1575 3.97139i 0.835308 0.173161i
\(527\) 14.7333 0.641795
\(528\) −2.53619 12.1711i −0.110374 0.529680i
\(529\) −47.5288 −2.06647
\(530\) 14.3446 2.97366i 0.623089 0.129167i
\(531\) 21.9249 + 3.47257i 0.951461 + 0.150697i
\(532\) −1.40620 + 3.55588i −0.0609666 + 0.154167i
\(533\) −3.88855 1.98132i −0.168432 0.0858204i
\(534\) −21.4273 + 1.01484i −0.927250 + 0.0439166i
\(535\) −1.10042 + 1.51459i −0.0475751 + 0.0654815i
\(536\) −4.88298 + 28.0791i −0.210912 + 1.21283i
\(537\) 21.8090 + 7.08618i 0.941129 + 0.305791i
\(538\) 11.7380 + 3.20859i 0.506060 + 0.138332i
\(539\) −21.2117 3.00973i −0.913654 0.129638i
\(540\) 18.2293 + 10.7708i 0.784466 + 0.463502i
\(541\) 18.1658 9.25592i 0.781007 0.397943i −0.0175621 0.999846i \(-0.505590\pi\)
0.798569 + 0.601903i \(0.205590\pi\)
\(542\) 6.83618 15.1487i 0.293639 0.650691i
\(543\) −9.03174 6.56194i −0.387589 0.281600i
\(544\) −4.37330 + 18.2979i −0.187504 + 0.784516i
\(545\) 13.1155 + 40.3655i 0.561808 + 1.72907i
\(546\) −5.90717 0.650944i −0.252804 0.0278578i
\(547\) −16.7349 2.65055i −0.715532 0.113329i −0.211955 0.977279i \(-0.567983\pi\)
−0.503577 + 0.863950i \(0.667983\pi\)
\(548\) −19.3956 + 17.1135i −0.828539 + 0.731053i
\(549\) −11.0652 + 11.0652i −0.472250 + 0.472250i
\(550\) −0.233549 0.588802i −0.00995857 0.0251066i
\(551\) 19.4871i 0.830177i
\(552\) −19.9845 + 9.80538i −0.850595 + 0.417345i
\(553\) 2.53720 + 3.49215i 0.107893 + 0.148501i
\(554\) −29.1892 + 23.3947i −1.24013 + 0.993944i
\(555\) −10.6281 5.41526i −0.451136 0.229865i
\(556\) 11.4867 7.29624i 0.487145 0.309429i
\(557\) −2.75422 17.3895i −0.116700 0.736816i −0.974758 0.223263i \(-0.928329\pi\)
0.858058 0.513553i \(-0.171671\pi\)
\(558\) −12.1165 5.46783i −0.512931 0.231472i
\(559\) 0.0712455 0.219271i 0.00301336 0.00927418i
\(560\) −1.80433 + 6.22942i −0.0762469 + 0.263241i
\(561\) −9.88121 3.03529i −0.417185 0.128150i
\(562\) −8.24874 14.4548i −0.347952 0.609737i
\(563\) −15.5962 + 7.94666i −0.657302 + 0.334912i −0.750629 0.660724i \(-0.770250\pi\)
0.0933277 + 0.995635i \(0.470250\pi\)
\(564\) 6.91690 8.36800i 0.291254 0.352356i
\(565\) −1.02261 + 0.161966i −0.0430216 + 0.00681396i
\(566\) −32.7894 + 1.55298i −1.37824 + 0.0652765i
\(567\) 1.30539 0.424148i 0.0548214 0.0178126i
\(568\) −17.7106 13.2807i −0.743121 0.557244i
\(569\) 26.6209 + 36.6406i 1.11601 + 1.53605i 0.812256 + 0.583301i \(0.198239\pi\)
0.303751 + 0.952751i \(0.401761\pi\)
\(570\) 4.17294 6.35550i 0.174785 0.266203i
\(571\) 17.4677 17.4677i 0.730999 0.730999i −0.239818 0.970818i \(-0.577088\pi\)
0.970818 + 0.239818i \(0.0770879\pi\)
\(572\) 16.6819 + 36.8650i 0.697507 + 1.54140i
\(573\) −1.74052 1.74052i −0.0727114 0.0727114i
\(574\) −0.150970 0.728262i −0.00630137 0.0303971i
\(575\) −0.917546 + 0.666636i −0.0382643 + 0.0278006i
\(576\) 10.3872 13.4249i 0.432802 0.559370i
\(577\) 9.74064 + 29.9786i 0.405508 + 1.24803i 0.920470 + 0.390813i \(0.127806\pi\)
−0.514962 + 0.857213i \(0.672194\pi\)
\(578\) −6.21375 5.65177i −0.258458 0.235083i
\(579\) 0.358242 + 2.26185i 0.0148880 + 0.0939992i
\(580\) −3.12376 32.9034i −0.129707 1.36624i
\(581\) −3.06276 6.01101i −0.127065 0.249379i
\(582\) 5.47209 + 1.49580i 0.226825 + 0.0620029i
\(583\) 15.5744 0.251244i 0.645025 0.0104055i
\(584\) −1.90206 0.0287216i −0.0787076 0.00118851i
\(585\) −27.1508 8.82184i −1.12255 0.364738i
\(586\) 6.50140 + 17.1949i 0.268570 + 0.710315i
\(587\) −24.0790 + 3.81373i −0.993845 + 0.157410i −0.632116 0.774874i \(-0.717813\pi\)
−0.361729 + 0.932283i \(0.617813\pi\)
\(588\) 6.49149 + 10.2198i 0.267705 + 0.421457i
\(589\) −5.23102 + 10.2665i −0.215540 + 0.423022i
\(590\) 3.57452 32.4380i 0.147161 1.33545i
\(591\) −13.1964 + 9.58772i −0.542826 + 0.394386i
\(592\) −12.9590 + 19.1019i −0.532611 + 0.785083i
\(593\) 38.7616 1.59175 0.795874 0.605462i \(-0.207012\pi\)
0.795874 + 0.605462i \(0.207012\pi\)
\(594\) 16.8966 + 14.8776i 0.693278 + 0.610436i
\(595\) 3.81290 + 3.81290i 0.156314 + 0.156314i
\(596\) 14.8304 + 0.927004i 0.607475 + 0.0379716i
\(597\) 1.65362 10.4405i 0.0676781 0.427302i
\(598\) 56.5329 45.3102i 2.31180 1.85287i
\(599\) −13.0481 + 4.23958i −0.533130 + 0.173225i −0.563196 0.826323i \(-0.690428\pi\)
0.0300656 + 0.999548i \(0.490428\pi\)
\(600\) −0.167308 + 0.316456i −0.00683033 + 0.0129193i
\(601\) 14.5814 20.0696i 0.594789 0.818657i −0.400429 0.916328i \(-0.631139\pi\)
0.995219 + 0.0976702i \(0.0311390\pi\)
\(602\) 0.0367516 0.0138958i 0.00149789 0.000566351i
\(603\) −9.70628 19.0497i −0.395270 0.775762i
\(604\) 15.6824 + 9.26597i 0.638109 + 0.377027i
\(605\) 4.56644 + 23.8287i 0.185652 + 0.968774i
\(606\) −1.00967 + 0.576176i −0.0410150 + 0.0234056i
\(607\) 4.89026 15.0507i 0.198490 0.610888i −0.801429 0.598091i \(-0.795926\pi\)
0.999918 0.0127975i \(-0.00407368\pi\)
\(608\) −11.1976 9.54399i −0.454121 0.387060i
\(609\) 4.17564 + 3.03378i 0.169206 + 0.122935i
\(610\) 17.0186 + 15.4795i 0.689065 + 0.626745i
\(611\) −16.0416 + 31.4834i −0.648974 + 1.27368i
\(612\) −5.61018 12.9499i −0.226778 0.523470i
\(613\) −1.15229 + 7.27529i −0.0465406 + 0.293846i −0.999970 0.00777100i \(-0.997526\pi\)
0.953429 + 0.301617i \(0.0975264\pi\)
\(614\) 10.2524 15.6147i 0.413754 0.630159i
\(615\) 1.47881i 0.0596312i
\(616\) −3.12428 + 6.14741i −0.125881 + 0.247686i
\(617\) 31.7288i 1.27735i −0.769475 0.638677i \(-0.779482\pi\)
0.769475 0.638677i \(-0.220518\pi\)
\(618\) −0.0371287 0.0243782i −0.00149353 0.000980634i
\(619\) 4.61444 29.1344i 0.185470 1.17101i −0.702697 0.711490i \(-0.748021\pi\)
0.888167 0.459522i \(-0.151979\pi\)
\(620\) −7.18672 + 18.1731i −0.288626 + 0.729851i
\(621\) 18.3001 35.9160i 0.734359 1.44126i
\(622\) 31.4529 34.5804i 1.26115 1.38655i
\(623\) 9.62574 + 6.99351i 0.385647 + 0.280189i
\(624\) 9.71937 20.6983i 0.389086 0.828596i
\(625\) 7.51113 23.1169i 0.300445 0.924675i
\(626\) 0.422404 + 0.740204i 0.0168827 + 0.0295845i
\(627\) 5.62332 5.80773i 0.224574 0.231938i
\(628\) 3.02869 0.778945i 0.120858 0.0310833i
\(629\) 8.71295 + 17.1001i 0.347408 + 0.681827i
\(630\) −1.72062 4.55070i −0.0685513 0.181304i
\(631\) −7.13134 + 9.81544i −0.283894 + 0.390747i −0.927019 0.375015i \(-0.877638\pi\)
0.643125 + 0.765761i \(0.277638\pi\)
\(632\) −15.8716 + 4.89333i −0.631339 + 0.194646i
\(633\) −22.7369 + 7.38766i −0.903710 + 0.293633i
\(634\) 8.99136 + 11.2184i 0.357093 + 0.445539i
\(635\) −3.04341 + 19.2153i −0.120774 + 0.762536i
\(636\) −5.82386 6.60047i −0.230931 0.261726i
\(637\) −27.8633 27.8633i −1.10398 1.10398i
\(638\) 3.28530 34.9884i 0.130066 1.38521i
\(639\) 16.6062 0.656931
\(640\) −20.4367 14.3198i −0.807830 0.566040i
\(641\) 16.0173 11.6372i 0.632644 0.459643i −0.224671 0.974435i \(-0.572131\pi\)
0.857315 + 0.514792i \(0.172131\pi\)
\(642\) 1.11814 + 0.123214i 0.0441295 + 0.00486288i
\(643\) 19.8073 38.8739i 0.781122 1.53304i −0.0636871 0.997970i \(-0.520286\pi\)
0.844809 0.535068i \(-0.179714\pi\)
\(644\) 12.0506 + 2.68848i 0.474858 + 0.105941i
\(645\) −0.0771612 + 0.0122211i −0.00303822 + 0.000481207i
\(646\) −11.4424 + 4.32636i −0.450194 + 0.170218i
\(647\) 3.34277 + 1.08613i 0.131418 + 0.0427003i 0.373987 0.927434i \(-0.377990\pi\)
−0.242570 + 0.970134i \(0.577990\pi\)
\(648\) −0.0797397 + 5.28067i −0.00313247 + 0.207444i
\(649\) 10.1889 33.1693i 0.399948 1.30201i
\(650\) 0.307195 1.12381i 0.0120492 0.0440795i
\(651\) −1.38550 2.71919i −0.0543019 0.106573i
\(652\) −2.37909 + 2.87820i −0.0931724 + 0.112719i
\(653\) 1.87034 + 11.8088i 0.0731919 + 0.462115i 0.996877 + 0.0789640i \(0.0251612\pi\)
−0.923686 + 0.383151i \(0.874839\pi\)
\(654\) 17.1597 18.8660i 0.670998 0.737718i
\(655\) −3.61872 11.1373i −0.141395 0.435169i
\(656\) 2.83945 + 0.356364i 0.110862 + 0.0139137i
\(657\) 1.15447 0.838773i 0.0450403 0.0327237i
\(658\) −5.89633 + 1.22232i −0.229863 + 0.0476509i
\(659\) −0.938277 0.938277i −0.0365501 0.0365501i 0.688596 0.725146i \(-0.258228\pi\)
−0.725146 + 0.688596i \(0.758228\pi\)
\(660\) 8.56385 10.7076i 0.333347 0.416793i
\(661\) −18.2588 + 18.2588i −0.710187 + 0.710187i −0.966574 0.256387i \(-0.917468\pi\)
0.256387 + 0.966574i \(0.417468\pi\)
\(662\) −20.1054 13.2009i −0.781419 0.513069i
\(663\) −11.1751 15.3812i −0.434005 0.597357i
\(664\) 25.6967 3.67315i 0.997226 0.142546i
\(665\) −4.01065 + 1.30314i −0.155526 + 0.0505335i
\(666\) −0.819196 17.2964i −0.0317432 0.670222i
\(667\) −62.1474 + 9.84317i −2.40636 + 0.381129i
\(668\) −0.393856 + 0.0373917i −0.0152388 + 0.00144673i
\(669\) −2.01425 + 1.02631i −0.0778752 + 0.0396794i
\(670\) −27.2991 + 15.5785i −1.05465 + 0.601848i
\(671\) 14.6951 + 19.5548i 0.567296 + 0.754903i
\(672\) 3.78832 0.913561i 0.146138 0.0352414i
\(673\) 3.25318 10.0123i 0.125401 0.385944i −0.868573 0.495561i \(-0.834962\pi\)
0.993974 + 0.109617i \(0.0349625\pi\)
\(674\) −7.56368 + 16.7608i −0.291342 + 0.645601i
\(675\) −0.101401 0.640223i −0.00390294 0.0246422i
\(676\) −10.5440 + 47.2614i −0.405540 + 1.81775i
\(677\) 26.9565 + 13.7350i 1.03602 + 0.527879i 0.887393 0.461014i \(-0.152514\pi\)
0.148628 + 0.988893i \(0.452514\pi\)
\(678\) 0.389072 + 0.485439i 0.0149422 + 0.0186432i
\(679\) −1.84945 2.54555i −0.0709753 0.0976891i
\(680\) −18.6266 + 9.13914i −0.714297 + 0.350470i
\(681\) 2.87806i 0.110288i
\(682\) −11.1229 + 17.5512i −0.425920 + 0.672071i
\(683\) −8.19014 + 8.19014i −0.313387 + 0.313387i −0.846220 0.532833i \(-0.821127\pi\)
0.532833 + 0.846220i \(0.321127\pi\)
\(684\) 11.0156 + 0.688555i 0.421192 + 0.0263275i
\(685\) −28.1749 4.46247i −1.07651 0.170502i
\(686\) 1.53262 13.9081i 0.0585156 0.531015i
\(687\) −4.29775 13.2271i −0.163969 0.504645i
\(688\) 0.00487135 + 0.151102i 0.000185719 + 0.00576071i
\(689\) 23.1776 + 16.8395i 0.882995 + 0.641533i
\(690\) −22.3765 10.0979i −0.851859 0.384421i
\(691\) 31.6376 16.1202i 1.20355 0.613239i 0.266974 0.963704i \(-0.413976\pi\)
0.936576 + 0.350464i \(0.113976\pi\)
\(692\) 13.6891 3.52069i 0.520382 0.133837i
\(693\) −0.891530 5.09552i −0.0338664 0.193563i
\(694\) 8.19816 29.9914i 0.311198 1.13846i
\(695\) 14.2729 + 4.63755i 0.541402 + 0.175912i
\(696\) −16.2411 + 11.4292i −0.615618 + 0.433223i
\(697\) 1.39854 1.92493i 0.0529736 0.0729119i
\(698\) −0.200535 4.23407i −0.00759036 0.160262i
\(699\) 23.5555 + 12.0021i 0.890952 + 0.453963i
\(700\) 0.182183 0.0789256i 0.00688589 0.00298311i
\(701\) 7.42985 + 1.17677i 0.280621 + 0.0444461i 0.295159 0.955448i \(-0.404628\pi\)
−0.0145372 + 0.999894i \(0.504628\pi\)
\(702\) 8.40514 + 40.5454i 0.317232 + 1.53029i
\(703\) −15.0092 −0.566081
\(704\) −18.4959 19.0237i −0.697090 0.716984i
\(705\) 11.9731 0.450932
\(706\) −4.12609 19.9038i −0.155288 0.749090i
\(707\) 0.636848 + 0.100867i 0.0239511 + 0.00379349i
\(708\) −17.9930 + 7.79496i −0.676220 + 0.292952i
\(709\) 16.5544 + 8.43491i 0.621715 + 0.316780i 0.736322 0.676631i \(-0.236561\pi\)
−0.114607 + 0.993411i \(0.536561\pi\)
\(710\) −1.15497 24.3859i −0.0433453 0.915188i
\(711\) 7.32336 10.0797i 0.274648 0.378020i
\(712\) −37.4392 + 26.3468i −1.40309 + 0.987387i
\(713\) 35.3836 + 11.4968i 1.32513 + 0.430560i
\(714\) 0.854324 3.12538i 0.0319723 0.116964i
\(715\) −19.6152 + 40.0825i −0.733567 + 1.49900i
\(716\) 47.3966 12.1899i 1.77129 0.455557i
\(717\) 15.1385 7.71346i 0.565359 0.288065i
\(718\) −8.83573 3.98733i −0.329746 0.148806i
\(719\) 3.58621 + 2.60554i 0.133743 + 0.0971702i 0.652645 0.757663i \(-0.273659\pi\)
−0.518902 + 0.854834i \(0.673659\pi\)
\(720\) 18.7099 0.603186i 0.697277 0.0224794i
\(721\) 0.00761290 + 0.0234301i 0.000283519 + 0.000872582i
\(722\) −1.89526 + 17.1991i −0.0705344 + 0.640084i
\(723\) 21.9781 + 3.48099i 0.817374 + 0.129459i
\(724\) −23.7789 1.48636i −0.883738 0.0552400i
\(725\) −0.715470 + 0.715470i −0.0265719 + 0.0265719i
\(726\) 11.0756 9.47957i 0.411055 0.351820i
\(727\) 39.8924i 1.47953i −0.672867 0.739763i \(-0.734938\pi\)
0.672867 0.739763i \(-0.265062\pi\)
\(728\) −11.3864 + 5.58674i −0.422008 + 0.207058i
\(729\) 5.60306 + 7.71195i 0.207521 + 0.285628i
\(730\) −1.31202 1.63699i −0.0485601 0.0605877i
\(731\) 0.111997 + 0.0570652i 0.00414235 + 0.00211063i
\(732\) 3.00997 13.4915i 0.111252 0.498662i
\(733\) 7.23889 + 45.7045i 0.267374 + 1.68814i 0.646598 + 0.762831i \(0.276191\pi\)
−0.379224 + 0.925305i \(0.623809\pi\)
\(734\) 17.7304 39.2897i 0.654441 1.45021i
\(735\) −4.12605 + 12.6987i −0.152192 + 0.468397i
\(736\) −24.7813 + 40.5316i −0.913449 + 1.49401i
\(737\) −31.6134 + 10.8386i −1.16450 + 0.399246i
\(738\) −1.86452 + 1.06400i −0.0686338 + 0.0391665i
\(739\) −1.94934 + 0.993238i −0.0717076 + 0.0365369i −0.489477 0.872016i \(-0.662812\pi\)
0.417769 + 0.908553i \(0.362812\pi\)
\(740\) −25.3425 + 2.40595i −0.931610 + 0.0884446i
\(741\) 14.6856 2.32597i 0.539488 0.0854465i
\(742\) 0.230979 + 4.87687i 0.00847951 + 0.179035i
\(743\) 15.3256 4.97958i 0.562241 0.182683i −0.0140885 0.999901i \(-0.504485\pi\)
0.576329 + 0.817218i \(0.304485\pi\)
\(744\) 11.6244 1.66161i 0.426170 0.0609177i
\(745\) 9.63222 + 13.2576i 0.352897 + 0.485722i
\(746\) −18.7621 12.3190i −0.686930 0.451029i
\(747\) −13.7692 + 13.7692i −0.503788 + 0.503788i
\(748\) −21.2738 + 5.83880i −0.777847 + 0.213488i
\(749\) −0.441190 0.441190i −0.0161207 0.0161207i
\(750\) −14.6983 + 3.04698i −0.536705 + 0.111260i
\(751\) −30.5592 + 22.2026i −1.11512 + 0.810183i −0.983462 0.181112i \(-0.942030\pi\)
−0.131659 + 0.991295i \(0.542030\pi\)
\(752\) 2.88528 22.9894i 0.105215 0.838338i
\(753\) 6.77022 + 20.8366i 0.246720 + 0.759327i
\(754\) 43.4911 47.8156i 1.58385 1.74134i
\(755\) 3.14252 + 19.8411i 0.114368 + 0.722091i
\(756\) −4.49584 + 5.43904i −0.163512 + 0.197816i
\(757\) −1.96146 3.84959i −0.0712906 0.139916i 0.852611 0.522547i \(-0.175018\pi\)
−0.923901 + 0.382631i \(0.875018\pi\)
\(758\) 8.66617 31.7034i 0.314769 1.15152i
\(759\) −21.3622 15.0001i −0.775398 0.544470i
\(760\) 0.244989 16.2241i 0.00888670 0.588512i
\(761\) −2.35416 0.764914i −0.0853384 0.0277281i 0.266037 0.963963i \(-0.414286\pi\)
−0.351375 + 0.936235i \(0.614286\pi\)
\(762\) 10.9343 4.13427i 0.396109 0.149769i
\(763\) −13.9710 + 2.21278i −0.505782 + 0.0801081i
\(764\) −5.12711 1.14386i −0.185492 0.0413834i
\(765\) 7.06599 13.8678i 0.255472 0.501391i
\(766\) −5.22760 0.576058i −0.188881 0.0208138i</