Properties

Label 176.2.e.b.175.1
Level $176$
Weight $2$
Character 176.175
Analytic conductor $1.405$
Analytic rank $0$
Dimension $4$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,2,Mod(175,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.175");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 176.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40536707557\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 175.1
Root \(-1.18614 + 1.26217i\) of defining polynomial
Character \(\chi\) \(=\) 176.175
Dual form 176.2.e.b.175.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.52434i q^{3} -4.37228 q^{5} -3.37228 q^{9} -3.31662i q^{11} +11.0371i q^{15} -9.45254i q^{23} +14.1168 q^{25} +0.939764i q^{27} +0.644810i q^{31} -8.37228 q^{33} +5.11684 q^{37} +14.7446 q^{45} +6.63325i q^{47} -7.00000 q^{49} +6.00000 q^{53} +14.5012i q^{55} +11.3321i q^{59} -6.28339i q^{67} -23.8614 q^{69} -5.69349i q^{71} -35.6357i q^{75} -7.74456 q^{81} -9.86141 q^{89} +1.62772 q^{93} +17.1168 q^{97} +11.1846i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{5} - 2 q^{9} + 22 q^{25} - 22 q^{33} - 14 q^{37} + 36 q^{45} - 28 q^{49} + 24 q^{53} - 38 q^{69} - 8 q^{81} + 18 q^{89} + 18 q^{93} + 34 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 2.52434i − 1.45743i −0.684819 0.728714i \(-0.740119\pi\)
0.684819 0.728714i \(-0.259881\pi\)
\(4\) 0 0
\(5\) −4.37228 −1.95534 −0.977672 0.210138i \(-0.932609\pi\)
−0.977672 + 0.210138i \(0.932609\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −3.37228 −1.12409
\(10\) 0 0
\(11\) − 3.31662i − 1.00000i
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 11.0371i 2.84977i
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 9.45254i − 1.97099i −0.169701 0.985496i \(-0.554280\pi\)
0.169701 0.985496i \(-0.445720\pi\)
\(24\) 0 0
\(25\) 14.1168 2.82337
\(26\) 0 0
\(27\) 0.939764i 0.180858i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0.644810i 0.115811i 0.998322 + 0.0579057i \(0.0184423\pi\)
−0.998322 + 0.0579057i \(0.981558\pi\)
\(32\) 0 0
\(33\) −8.37228 −1.45743
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5.11684 0.841204 0.420602 0.907245i \(-0.361819\pi\)
0.420602 + 0.907245i \(0.361819\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 14.7446 2.19799
\(46\) 0 0
\(47\) 6.63325i 0.967559i 0.875190 + 0.483779i \(0.160736\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 14.5012i 1.95534i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.3321i 1.47531i 0.675178 + 0.737655i \(0.264067\pi\)
−0.675178 + 0.737655i \(0.735933\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 6.28339i − 0.767639i −0.923408 0.383819i \(-0.874609\pi\)
0.923408 0.383819i \(-0.125391\pi\)
\(68\) 0 0
\(69\) −23.8614 −2.87258
\(70\) 0 0
\(71\) − 5.69349i − 0.675692i −0.941201 0.337846i \(-0.890302\pi\)
0.941201 0.337846i \(-0.109698\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) − 35.6357i − 4.11485i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −7.74456 −0.860507
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.86141 −1.04531 −0.522654 0.852545i \(-0.675058\pi\)
−0.522654 + 0.852545i \(0.675058\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.62772 0.168787
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 17.1168 1.73795 0.868976 0.494854i \(-0.164778\pi\)
0.868976 + 0.494854i \(0.164778\pi\)
\(98\) 0 0
\(99\) 11.1846i 1.12409i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) − 19.8997i − 1.96078i −0.197066 0.980390i \(-0.563141\pi\)
0.197066 0.980390i \(-0.436859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) − 12.9166i − 1.22599i
\(112\) 0 0
\(113\) 7.62772 0.717555 0.358778 0.933423i \(-0.383194\pi\)
0.358778 + 0.933423i \(0.383194\pi\)
\(114\) 0 0
\(115\) 41.3292i 3.85396i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −39.8614 −3.56531
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) − 4.10891i − 0.353639i
\(136\) 0 0
\(137\) 18.6060 1.58962 0.794808 0.606861i \(-0.207572\pi\)
0.794808 + 0.606861i \(0.207572\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 16.7446 1.41015
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 17.6704i 1.45743i
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 2.81929i − 0.226451i
\(156\) 0 0
\(157\) −2.88316 −0.230101 −0.115050 0.993360i \(-0.536703\pi\)
−0.115050 + 0.993360i \(0.536703\pi\)
\(158\) 0 0
\(159\) − 15.1460i − 1.20116i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 19.8997i 1.55867i 0.626608 + 0.779334i \(0.284443\pi\)
−0.626608 + 0.779334i \(0.715557\pi\)
\(164\) 0 0
\(165\) 36.6060 2.84977
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 28.6060 2.15016
\(178\) 0 0
\(179\) − 26.4781i − 1.97907i −0.144308 0.989533i \(-0.546095\pi\)
0.144308 0.989533i \(-0.453905\pi\)
\(180\) 0 0
\(181\) 21.1168 1.56960 0.784801 0.619747i \(-0.212765\pi\)
0.784801 + 0.619747i \(0.212765\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −22.3723 −1.64484
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 24.5986i 1.77989i 0.456068 + 0.889945i \(0.349257\pi\)
−0.456068 + 0.889945i \(0.650743\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) − 19.8997i − 1.41066i −0.708881 0.705328i \(-0.750800\pi\)
0.708881 0.705328i \(-0.249200\pi\)
\(200\) 0 0
\(201\) −15.8614 −1.11878
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 31.8766i 2.21558i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) −14.3723 −0.984772
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 15.7908i − 1.05743i −0.848799 0.528716i \(-0.822674\pi\)
0.848799 0.528716i \(-0.177326\pi\)
\(224\) 0 0
\(225\) −47.6060 −3.17373
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −23.3505 −1.54305 −0.771523 0.636201i \(-0.780505\pi\)
−0.771523 + 0.636201i \(0.780505\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) − 29.0024i − 1.89191i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 22.3692i 1.43498i
\(244\) 0 0
\(245\) 30.6060 1.95534
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 15.0911i 0.952543i 0.879298 + 0.476272i \(0.158012\pi\)
−0.879298 + 0.476272i \(0.841988\pi\)
\(252\) 0 0
\(253\) −31.3505 −1.97099
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) −26.2337 −1.61152
\(266\) 0 0
\(267\) 24.8935i 1.52346i
\(268\) 0 0
\(269\) 30.0000 1.82913 0.914566 0.404436i \(-0.132532\pi\)
0.914566 + 0.404436i \(0.132532\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 46.8203i − 2.82337i
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) − 2.17448i − 0.130183i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) − 43.2087i − 2.53294i
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) − 49.5470i − 2.88474i
\(296\) 0 0
\(297\) 3.11684 0.180858
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) −50.2337 −2.85769
\(310\) 0 0
\(311\) 33.1662i 1.88069i 0.340229 + 0.940343i \(0.389495\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 0 0
\(313\) −35.3505 −1.99813 −0.999065 0.0432311i \(-0.986235\pi\)
−0.999065 + 0.0432311i \(0.986235\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.60597 0.371028 0.185514 0.982642i \(-0.440605\pi\)
0.185514 + 0.982642i \(0.440605\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 35.2858i 1.93948i 0.244131 + 0.969742i \(0.421497\pi\)
−0.244131 + 0.969742i \(0.578503\pi\)
\(332\) 0 0
\(333\) −17.2554 −0.945592
\(334\) 0 0
\(335\) 27.4728i 1.50100i
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) − 19.2549i − 1.04578i
\(340\) 0 0
\(341\) 2.13859 0.115811
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 104.329 5.61687
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 36.0951 1.92115 0.960574 0.278024i \(-0.0896796\pi\)
0.960574 + 0.278024i \(0.0896796\pi\)
\(354\) 0 0
\(355\) 24.8935i 1.32121i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 27.7677i 1.45743i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 27.0680i − 1.41294i −0.707744 0.706469i \(-0.750287\pi\)
0.707744 0.706469i \(-0.249713\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 100.624i 5.19618i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 36.5754i − 1.87875i −0.342885 0.939377i \(-0.611404\pi\)
0.342885 0.939377i \(-0.388596\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 32.1167i 1.64109i 0.571585 + 0.820543i \(0.306329\pi\)
−0.571585 + 0.820543i \(0.693671\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 24.0951 1.22167 0.610835 0.791758i \(-0.290834\pi\)
0.610835 + 0.791758i \(0.290834\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 33.8614 1.68259
\(406\) 0 0
\(407\) − 16.9707i − 0.841204i
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) − 46.9678i − 2.31675i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 33.1662i − 1.62028i −0.586238 0.810139i \(-0.699392\pi\)
0.586238 0.810139i \(-0.300608\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 0 0
\(423\) − 22.3692i − 1.08763i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −11.3505 −0.545472 −0.272736 0.962089i \(-0.587929\pi\)
−0.272736 + 0.962089i \(0.587929\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 23.6060 1.12409
\(442\) 0 0
\(443\) 0.0549029i 0.00260851i 0.999999 + 0.00130426i \(0.000415158\pi\)
−0.999999 + 0.00130426i \(0.999585\pi\)
\(444\) 0 0
\(445\) 43.1168 2.04393
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −33.8614 −1.59802 −0.799009 0.601319i \(-0.794642\pi\)
−0.799009 + 0.601319i \(0.794642\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 11.9220i 0.554061i 0.960861 + 0.277031i \(0.0893503\pi\)
−0.960861 + 0.277031i \(0.910650\pi\)
\(464\) 0 0
\(465\) −7.11684 −0.330036
\(466\) 0 0
\(467\) − 18.9600i − 0.877363i −0.898642 0.438682i \(-0.855446\pi\)
0.898642 0.438682i \(-0.144554\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 7.27806i 0.335355i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −20.2337 −0.926437
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −74.8397 −3.39829
\(486\) 0 0
\(487\) 42.2140i 1.91290i 0.291896 + 0.956450i \(0.405714\pi\)
−0.291896 + 0.956450i \(0.594286\pi\)
\(488\) 0 0
\(489\) 50.2337 2.27165
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) − 48.9022i − 2.19799i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 19.8997i 0.890835i 0.895323 + 0.445418i \(0.146945\pi\)
−0.895323 + 0.445418i \(0.853055\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 32.8164i − 1.45743i
\(508\) 0 0
\(509\) 19.6277 0.869983 0.434992 0.900434i \(-0.356751\pi\)
0.434992 + 0.900434i \(0.356751\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 87.0073i 3.83400i
\(516\) 0 0
\(517\) 22.0000 0.967559
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −44.8397 −1.96446 −0.982231 0.187678i \(-0.939904\pi\)
−0.982231 + 0.187678i \(0.939904\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −66.3505 −2.88481
\(530\) 0 0
\(531\) − 38.2149i − 1.65839i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −66.8397 −2.88434
\(538\) 0 0
\(539\) 23.2164i 1.00000i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) − 53.3060i − 2.28758i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 56.4752i 2.39724i
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) −33.3505 −1.40307
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 62.0951 2.59406
\(574\) 0 0
\(575\) − 133.440i − 5.56483i
\(576\) 0 0
\(577\) −14.8832 −0.619594 −0.309797 0.950803i \(-0.600261\pi\)
−0.309797 + 0.950803i \(0.600261\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) − 19.8997i − 0.824163i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 6.63325i − 0.273784i −0.990586 0.136892i \(-0.956289\pi\)
0.990586 0.136892i \(-0.0437113\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −50.2337 −2.05593
\(598\) 0 0
\(599\) 33.1662i 1.35514i 0.735460 + 0.677568i \(0.236966\pi\)
−0.735460 + 0.677568i \(0.763034\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 21.1894i 0.862898i
\(604\) 0 0
\(605\) 48.0951 1.95534
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 42.0000 1.69086 0.845428 0.534089i \(-0.179345\pi\)
0.845428 + 0.534089i \(0.179345\pi\)
\(618\) 0 0
\(619\) 24.0087i 0.964990i 0.875899 + 0.482495i \(0.160269\pi\)
−0.875899 + 0.482495i \(0.839731\pi\)
\(620\) 0 0
\(621\) 8.88316 0.356469
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 103.701 4.14804
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 30.9369i 1.23158i 0.787911 + 0.615789i \(0.211162\pi\)
−0.787911 + 0.615789i \(0.788838\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 19.2000i 0.759542i
\(640\) 0 0
\(641\) 42.6060 1.68283 0.841417 0.540386i \(-0.181722\pi\)
0.841417 + 0.540386i \(0.181722\pi\)
\(642\) 0 0
\(643\) − 50.4319i − 1.98884i −0.105502 0.994419i \(-0.533645\pi\)
0.105502 0.994419i \(-0.466355\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.82462i 0.0717334i 0.999357 + 0.0358667i \(0.0114192\pi\)
−0.999357 + 0.0358667i \(0.988581\pi\)
\(648\) 0 0
\(649\) 37.5842 1.47531
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −28.3723 −1.11029 −0.555147 0.831753i \(-0.687338\pi\)
−0.555147 + 0.831753i \(0.687338\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 49.5842 1.92860 0.964301 0.264807i \(-0.0853084\pi\)
0.964301 + 0.264807i \(0.0853084\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −39.8614 −1.54113
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 13.2665i 0.510628i
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 46.4327i 1.77670i 0.459167 + 0.888350i \(0.348148\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) 0 0
\(685\) −81.3505 −3.10824
\(686\) 0 0
\(687\) 58.9446i 2.24888i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 10.1523i 0.386210i 0.981178 + 0.193105i \(0.0618558\pi\)
−0.981178 + 0.193105i \(0.938144\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −73.2119 −2.75732
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 33.5842 1.26128 0.630641 0.776075i \(-0.282792\pi\)
0.630641 + 0.776075i \(0.282792\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6.09509 0.228263
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 35.8757i 1.33794i 0.743290 + 0.668970i \(0.233264\pi\)
−0.743290 + 0.668970i \(0.766736\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 40.9244i − 1.51780i −0.651206 0.758901i \(-0.725737\pi\)
0.651206 0.758901i \(-0.274263\pi\)
\(728\) 0 0
\(729\) 33.2337 1.23088
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) − 77.2598i − 2.84977i
\(736\) 0 0
\(737\) −20.8397 −0.767639
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 44.7933i 1.63453i 0.576262 + 0.817265i \(0.304511\pi\)
−0.576262 + 0.817265i \(0.695489\pi\)
\(752\) 0 0
\(753\) 38.0951 1.38826
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 0 0
\(759\) 79.1393i 2.87258i
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) − 45.4381i − 1.63641i
\(772\) 0 0
\(773\) 54.0000 1.94225 0.971123 0.238581i \(-0.0766824\pi\)
0.971123 + 0.238581i \(0.0766824\pi\)
\(774\) 0 0
\(775\) 9.10268i 0.326978i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −18.8832 −0.675692
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 12.6060 0.449926
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 66.2227i 2.34868i
\(796\) 0 0
\(797\) −50.3288 −1.78274 −0.891368 0.453279i \(-0.850254\pi\)
−0.891368 + 0.453279i \(0.850254\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 33.2554 1.17502
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 75.7301i − 2.66583i
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 87.0073i − 3.04773i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) − 57.3601i − 1.99945i −0.0235383 0.999723i \(-0.507493\pi\)
0.0235383 0.999723i \(-0.492507\pi\)
\(824\) 0 0
\(825\) −118.190 −4.11485
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 57.5842 1.99998 0.999991 0.00416865i \(-0.00132693\pi\)
0.999991 + 0.00416865i \(0.00132693\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −0.605969 −0.0209454
\(838\) 0 0
\(839\) − 20.7297i − 0.715669i −0.933785 0.357834i \(-0.883515\pi\)
0.933785 0.357834i \(-0.116485\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −56.8397 −1.95534
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 48.3672i − 1.65801i
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 51.7215i 1.76471i 0.470581 + 0.882357i \(0.344044\pi\)
−0.470581 + 0.882357i \(0.655956\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 46.4327i − 1.58059i −0.612727 0.790295i \(-0.709928\pi\)
0.612727 0.790295i \(-0.290072\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 42.9137i − 1.45743i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −57.7228 −1.95362
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 14.1386 0.476341 0.238171 0.971223i \(-0.423452\pi\)
0.238171 + 0.971223i \(0.423452\pi\)
\(882\) 0 0
\(883\) 19.8997i 0.669680i 0.942275 + 0.334840i \(0.108682\pi\)
−0.942275 + 0.334840i \(0.891318\pi\)
\(884\) 0 0
\(885\) −125.073 −4.20429
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 25.6858i 0.860507i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 115.770i 3.86975i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −92.3288 −3.06911
\(906\) 0 0
\(907\) − 59.6992i − 1.98228i −0.132818 0.991140i \(-0.542403\pi\)
0.132818 0.991140i \(-0.457597\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 6.63325i 0.219769i 0.993944 + 0.109885i \(0.0350482\pi\)
−0.993944 + 0.109885i \(0.964952\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 72.2337 2.37503
\(926\) 0 0
\(927\) 67.1076i 2.20410i
\(928\) 0 0
\(929\) −30.0000 −0.984268 −0.492134 0.870519i \(-0.663783\pi\)
−0.492134 + 0.870519i \(0.663783\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 83.7228 2.74096
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 89.2367i 2.91213i
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 37.7553i − 1.22688i −0.789741 0.613441i \(-0.789785\pi\)
0.789741 0.613441i \(-0.210215\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) − 16.6757i − 0.540747i
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) − 107.552i − 3.48030i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 30.5842 0.986588
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 60.5292i − 1.94247i −0.238114 0.971237i \(-0.576529\pi\)
0.238114 0.971237i \(-0.423471\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −62.3288 −1.99407 −0.997037 0.0769208i \(-0.975491\pi\)
−0.997037 + 0.0769208i \(0.975491\pi\)
\(978\) 0 0
\(979\) 32.7066i 1.04531i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 62.4087i 1.99053i 0.0972017 + 0.995265i \(0.469011\pi\)
−0.0972017 + 0.995265i \(0.530989\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 59.6992i 1.89641i 0.317660 + 0.948205i \(0.397103\pi\)
−0.317660 + 0.948205i \(0.602897\pi\)
\(992\) 0 0
\(993\) 89.0733 2.82666
\(994\) 0 0
\(995\) 87.0073i 2.75832i
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 4.80862i 0.152138i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 176.2.e.b.175.1 4
3.2 odd 2 1584.2.o.e.703.4 4
4.3 odd 2 inner 176.2.e.b.175.4 yes 4
8.3 odd 2 704.2.e.c.703.1 4
8.5 even 2 704.2.e.c.703.4 4
11.10 odd 2 CM 176.2.e.b.175.1 4
12.11 even 2 1584.2.o.e.703.3 4
16.3 odd 4 2816.2.g.c.1407.2 8
16.5 even 4 2816.2.g.c.1407.1 8
16.11 odd 4 2816.2.g.c.1407.7 8
16.13 even 4 2816.2.g.c.1407.8 8
33.32 even 2 1584.2.o.e.703.4 4
44.43 even 2 inner 176.2.e.b.175.4 yes 4
88.21 odd 2 704.2.e.c.703.4 4
88.43 even 2 704.2.e.c.703.1 4
132.131 odd 2 1584.2.o.e.703.3 4
176.21 odd 4 2816.2.g.c.1407.1 8
176.43 even 4 2816.2.g.c.1407.7 8
176.109 odd 4 2816.2.g.c.1407.8 8
176.131 even 4 2816.2.g.c.1407.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
176.2.e.b.175.1 4 1.1 even 1 trivial
176.2.e.b.175.1 4 11.10 odd 2 CM
176.2.e.b.175.4 yes 4 4.3 odd 2 inner
176.2.e.b.175.4 yes 4 44.43 even 2 inner
704.2.e.c.703.1 4 8.3 odd 2
704.2.e.c.703.1 4 88.43 even 2
704.2.e.c.703.4 4 8.5 even 2
704.2.e.c.703.4 4 88.21 odd 2
1584.2.o.e.703.3 4 12.11 even 2
1584.2.o.e.703.3 4 132.131 odd 2
1584.2.o.e.703.4 4 3.2 odd 2
1584.2.o.e.703.4 4 33.32 even 2
2816.2.g.c.1407.1 8 16.5 even 4
2816.2.g.c.1407.1 8 176.21 odd 4
2816.2.g.c.1407.2 8 16.3 odd 4
2816.2.g.c.1407.2 8 176.131 even 4
2816.2.g.c.1407.7 8 16.11 odd 4
2816.2.g.c.1407.7 8 176.43 even 4
2816.2.g.c.1407.8 8 16.13 even 4
2816.2.g.c.1407.8 8 176.109 odd 4