Properties

Label 176.2
Level 176
Weight 2
Dimension 491
Nonzero newspaces 8
Newform subspaces 16
Sturm bound 3840
Trace bound 2

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 16 \)
Sturm bound: \(3840\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(176))\).

Total New Old
Modular forms 1100 571 529
Cusp forms 821 491 330
Eisenstein series 279 80 199

Trace form

\( 491q - 16q^{2} - 11q^{3} - 20q^{4} - 21q^{5} - 28q^{6} - 15q^{7} - 28q^{8} - 5q^{9} + O(q^{10}) \) \( 491q - 16q^{2} - 11q^{3} - 20q^{4} - 21q^{5} - 28q^{6} - 15q^{7} - 28q^{8} - 5q^{9} - 20q^{10} - 17q^{11} - 32q^{12} - 21q^{13} - 12q^{14} - 23q^{15} - 4q^{16} - 37q^{17} - 24q^{18} - 27q^{19} - 28q^{20} - 38q^{21} - 20q^{22} - 30q^{23} - 20q^{24} - 5q^{25} - 28q^{26} + q^{27} - 36q^{28} - 37q^{29} - 12q^{30} + 17q^{31} - 36q^{32} - 61q^{33} - 48q^{34} - 37q^{35} - 12q^{36} - 57q^{37} + 4q^{38} - 75q^{39} - 4q^{40} - 45q^{41} - 20q^{42} - 60q^{43} - 16q^{44} - 114q^{45} - 44q^{46} - 77q^{47} - 36q^{48} - 97q^{49} - 8q^{50} - 83q^{51} - 12q^{52} - 25q^{53} - 20q^{54} - 45q^{55} - 24q^{56} - 25q^{57} + 4q^{58} - 3q^{59} - 20q^{60} + 11q^{61} - 52q^{62} - 8q^{63} - 20q^{64} - 58q^{65} - 24q^{66} - 10q^{67} - 20q^{68} - 16q^{69} + 104q^{70} - 5q^{71} + 72q^{72} + 75q^{73} + 80q^{74} + 13q^{75} + 116q^{76} + 51q^{77} + 208q^{78} + 35q^{79} + 184q^{80} + 55q^{81} + 180q^{82} + 39q^{83} + 236q^{84} + 127q^{85} + 140q^{86} + 70q^{87} + 292q^{88} + 70q^{89} + 308q^{90} + 37q^{91} + 188q^{92} + 103q^{93} + 252q^{94} + 59q^{95} + 212q^{96} + 83q^{97} + 212q^{98} + 37q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(176))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
176.2.a \(\chi_{176}(1, \cdot)\) 176.2.a.a 1 1
176.2.a.b 1
176.2.a.c 1
176.2.a.d 2
176.2.c \(\chi_{176}(89, \cdot)\) None 0 1
176.2.e \(\chi_{176}(175, \cdot)\) 176.2.e.a 2 1
176.2.e.b 4
176.2.g \(\chi_{176}(87, \cdot)\) None 0 1
176.2.i \(\chi_{176}(43, \cdot)\) 176.2.i.a 44 2
176.2.j \(\chi_{176}(45, \cdot)\) 176.2.j.a 40 2
176.2.m \(\chi_{176}(49, \cdot)\) 176.2.m.a 4 4
176.2.m.b 4
176.2.m.c 4
176.2.m.d 8
176.2.o \(\chi_{176}(7, \cdot)\) None 0 4
176.2.q \(\chi_{176}(63, \cdot)\) 176.2.q.a 8 4
176.2.q.b 16
176.2.s \(\chi_{176}(9, \cdot)\) None 0 4
176.2.w \(\chi_{176}(5, \cdot)\) 176.2.w.a 176 8
176.2.x \(\chi_{176}(19, \cdot)\) 176.2.x.a 176 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(176))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(176)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(88))\)\(^{\oplus 2}\)