Properties

Label 176.2
Level 176
Weight 2
Dimension 491
Nonzero newspaces 8
Newform subspaces 16
Sturm bound 3840
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 16 \)
Sturm bound: \(3840\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(176))\).

Total New Old
Modular forms 1100 571 529
Cusp forms 821 491 330
Eisenstein series 279 80 199

Trace form

\( 491 q - 16 q^{2} - 11 q^{3} - 20 q^{4} - 21 q^{5} - 28 q^{6} - 15 q^{7} - 28 q^{8} - 5 q^{9} - 20 q^{10} - 17 q^{11} - 32 q^{12} - 21 q^{13} - 12 q^{14} - 23 q^{15} - 4 q^{16} - 37 q^{17} - 24 q^{18} - 27 q^{19}+ \cdots + 37 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(176))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
176.2.a \(\chi_{176}(1, \cdot)\) 176.2.a.a 1 1
176.2.a.b 1
176.2.a.c 1
176.2.a.d 2
176.2.c \(\chi_{176}(89, \cdot)\) None 0 1
176.2.e \(\chi_{176}(175, \cdot)\) 176.2.e.a 2 1
176.2.e.b 4
176.2.g \(\chi_{176}(87, \cdot)\) None 0 1
176.2.i \(\chi_{176}(43, \cdot)\) 176.2.i.a 44 2
176.2.j \(\chi_{176}(45, \cdot)\) 176.2.j.a 40 2
176.2.m \(\chi_{176}(49, \cdot)\) 176.2.m.a 4 4
176.2.m.b 4
176.2.m.c 4
176.2.m.d 8
176.2.o \(\chi_{176}(7, \cdot)\) None 0 4
176.2.q \(\chi_{176}(63, \cdot)\) 176.2.q.a 8 4
176.2.q.b 16
176.2.s \(\chi_{176}(9, \cdot)\) None 0 4
176.2.w \(\chi_{176}(5, \cdot)\) 176.2.w.a 176 8
176.2.x \(\chi_{176}(19, \cdot)\) 176.2.x.a 176 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(176))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(176)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(88))\)\(^{\oplus 2}\)