Properties

Label 1755.2.i.c
Level $1755$
Weight $2$
Character orbit 1755.i
Analytic conductor $14.014$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1755 = 3^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1755.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(14.0137455547\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 585)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 1) q^{2} + \zeta_{6} q^{4} - \zeta_{6} q^{5} + ( - \zeta_{6} + 1) q^{7} - 3 q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{6} - 1) q^{2} + \zeta_{6} q^{4} - \zeta_{6} q^{5} + ( - \zeta_{6} + 1) q^{7} - 3 q^{8} + q^{10} + ( - 2 \zeta_{6} + 2) q^{11} + \zeta_{6} q^{13} + \zeta_{6} q^{14} + ( - \zeta_{6} + 1) q^{16} + 4 q^{17} + ( - \zeta_{6} + 1) q^{20} + 2 \zeta_{6} q^{22} - 3 \zeta_{6} q^{23} + (\zeta_{6} - 1) q^{25} - q^{26} + q^{28} + (\zeta_{6} - 1) q^{29} - 8 \zeta_{6} q^{31} - 5 \zeta_{6} q^{32} + (4 \zeta_{6} - 4) q^{34} - q^{35} + 4 q^{37} + 3 \zeta_{6} q^{40} + 9 \zeta_{6} q^{41} + ( - 8 \zeta_{6} + 8) q^{43} + 2 q^{44} + 3 q^{46} + ( - 13 \zeta_{6} + 13) q^{47} + 6 \zeta_{6} q^{49} - \zeta_{6} q^{50} + (\zeta_{6} - 1) q^{52} + 10 q^{53} - 2 q^{55} + (3 \zeta_{6} - 3) q^{56} - \zeta_{6} q^{58} + 6 \zeta_{6} q^{59} + ( - \zeta_{6} + 1) q^{61} + 8 q^{62} + 7 q^{64} + ( - \zeta_{6} + 1) q^{65} + \zeta_{6} q^{67} + 4 \zeta_{6} q^{68} + ( - \zeta_{6} + 1) q^{70} + 6 q^{71} - 12 q^{73} + (4 \zeta_{6} - 4) q^{74} - 2 \zeta_{6} q^{77} + ( - 6 \zeta_{6} + 6) q^{79} - q^{80} - 9 q^{82} + ( - 11 \zeta_{6} + 11) q^{83} - 4 \zeta_{6} q^{85} + 8 \zeta_{6} q^{86} + (6 \zeta_{6} - 6) q^{88} - 5 q^{89} + q^{91} + ( - 3 \zeta_{6} + 3) q^{92} + 13 \zeta_{6} q^{94} + ( - 2 \zeta_{6} + 2) q^{97} - 6 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + q^{4} - q^{5} + q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} + q^{4} - q^{5} + q^{7} - 6 q^{8} + 2 q^{10} + 2 q^{11} + q^{13} + q^{14} + q^{16} + 8 q^{17} + q^{20} + 2 q^{22} - 3 q^{23} - q^{25} - 2 q^{26} + 2 q^{28} - q^{29} - 8 q^{31} - 5 q^{32} - 4 q^{34} - 2 q^{35} + 8 q^{37} + 3 q^{40} + 9 q^{41} + 8 q^{43} + 4 q^{44} + 6 q^{46} + 13 q^{47} + 6 q^{49} - q^{50} - q^{52} + 20 q^{53} - 4 q^{55} - 3 q^{56} - q^{58} + 6 q^{59} + q^{61} + 16 q^{62} + 14 q^{64} + q^{65} + q^{67} + 4 q^{68} + q^{70} + 12 q^{71} - 24 q^{73} - 4 q^{74} - 2 q^{77} + 6 q^{79} - 2 q^{80} - 18 q^{82} + 11 q^{83} - 4 q^{85} + 8 q^{86} - 6 q^{88} - 10 q^{89} + 2 q^{91} + 3 q^{92} + 13 q^{94} + 2 q^{97} - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1755\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(1081\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
586.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 + 0.866025i 0 0.500000 + 0.866025i −0.500000 0.866025i 0 0.500000 0.866025i −3.00000 0 1.00000
1171.1 −0.500000 0.866025i 0 0.500000 0.866025i −0.500000 + 0.866025i 0 0.500000 + 0.866025i −3.00000 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1755.2.i.c 2
3.b odd 2 1 585.2.i.c 2
9.c even 3 1 inner 1755.2.i.c 2
9.c even 3 1 5265.2.a.l 1
9.d odd 6 1 585.2.i.c 2
9.d odd 6 1 5265.2.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
585.2.i.c 2 3.b odd 2 1
585.2.i.c 2 9.d odd 6 1
1755.2.i.c 2 1.a even 1 1 trivial
1755.2.i.c 2 9.c even 3 1 inner
5265.2.a.d 1 9.d odd 6 1
5265.2.a.l 1 9.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1755, [\chi])\):

\( T_{2}^{2} + T_{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{2} - T_{7} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$11$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$13$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$17$ \( (T - 4)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$29$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$31$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$37$ \( (T - 4)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$43$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$47$ \( T^{2} - 13T + 169 \) Copy content Toggle raw display
$53$ \( (T - 10)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$61$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$67$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$71$ \( (T - 6)^{2} \) Copy content Toggle raw display
$73$ \( (T + 12)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$83$ \( T^{2} - 11T + 121 \) Copy content Toggle raw display
$89$ \( (T + 5)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
show more
show less