Properties

Label 175.8.a.a.1.1
Level $175$
Weight $8$
Character 175.1
Self dual yes
Analytic conductor $54.667$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,8,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.6673794597\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 7)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.00000 q^{2} +42.0000 q^{3} -92.0000 q^{4} +252.000 q^{6} -343.000 q^{7} -1320.00 q^{8} -423.000 q^{9} +O(q^{10})\) \(q+6.00000 q^{2} +42.0000 q^{3} -92.0000 q^{4} +252.000 q^{6} -343.000 q^{7} -1320.00 q^{8} -423.000 q^{9} -5568.00 q^{11} -3864.00 q^{12} +5152.00 q^{13} -2058.00 q^{14} +3856.00 q^{16} +13986.0 q^{17} -2538.00 q^{18} +55370.0 q^{19} -14406.0 q^{21} -33408.0 q^{22} +91272.0 q^{23} -55440.0 q^{24} +30912.0 q^{26} -109620. q^{27} +31556.0 q^{28} +41610.0 q^{29} +150332. q^{31} +192096. q^{32} -233856. q^{33} +83916.0 q^{34} +38916.0 q^{36} +136366. q^{37} +332220. q^{38} +216384. q^{39} -510258. q^{41} -86436.0 q^{42} +172072. q^{43} +512256. q^{44} +547632. q^{46} +519036. q^{47} +161952. q^{48} +117649. q^{49} +587412. q^{51} -473984. q^{52} +59202.0 q^{53} -657720. q^{54} +452760. q^{56} +2.32554e6 q^{57} +249660. q^{58} +1.97925e6 q^{59} -2.98875e6 q^{61} +901992. q^{62} +145089. q^{63} +659008. q^{64} -1.40314e6 q^{66} -2.40940e6 q^{67} -1.28671e6 q^{68} +3.83342e6 q^{69} +1.50451e6 q^{71} +558360. q^{72} +1.82102e6 q^{73} +818196. q^{74} -5.09404e6 q^{76} +1.90982e6 q^{77} +1.29830e6 q^{78} -1.66924e6 q^{79} -3.67894e6 q^{81} -3.06155e6 q^{82} -696738. q^{83} +1.32535e6 q^{84} +1.03243e6 q^{86} +1.74762e6 q^{87} +7.34976e6 q^{88} +5.55849e6 q^{89} -1.76714e6 q^{91} -8.39702e6 q^{92} +6.31394e6 q^{93} +3.11422e6 q^{94} +8.06803e6 q^{96} -9.87673e6 q^{97} +705894. q^{98} +2.35526e6 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 6.00000 0.530330 0.265165 0.964203i \(-0.414574\pi\)
0.265165 + 0.964203i \(0.414574\pi\)
\(3\) 42.0000 0.898100 0.449050 0.893507i \(-0.351762\pi\)
0.449050 + 0.893507i \(0.351762\pi\)
\(4\) −92.0000 −0.718750
\(5\) 0 0
\(6\) 252.000 0.476290
\(7\) −343.000 −0.377964
\(8\) −1320.00 −0.911505
\(9\) −423.000 −0.193416
\(10\) 0 0
\(11\) −5568.00 −1.26132 −0.630659 0.776060i \(-0.717215\pi\)
−0.630659 + 0.776060i \(0.717215\pi\)
\(12\) −3864.00 −0.645510
\(13\) 5152.00 0.650390 0.325195 0.945647i \(-0.394570\pi\)
0.325195 + 0.945647i \(0.394570\pi\)
\(14\) −2058.00 −0.200446
\(15\) 0 0
\(16\) 3856.00 0.235352
\(17\) 13986.0 0.690434 0.345217 0.938523i \(-0.387805\pi\)
0.345217 + 0.938523i \(0.387805\pi\)
\(18\) −2538.00 −0.102574
\(19\) 55370.0 1.85198 0.925991 0.377545i \(-0.123232\pi\)
0.925991 + 0.377545i \(0.123232\pi\)
\(20\) 0 0
\(21\) −14406.0 −0.339450
\(22\) −33408.0 −0.668915
\(23\) 91272.0 1.56419 0.782096 0.623158i \(-0.214151\pi\)
0.782096 + 0.623158i \(0.214151\pi\)
\(24\) −55440.0 −0.818623
\(25\) 0 0
\(26\) 30912.0 0.344922
\(27\) −109620. −1.07181
\(28\) 31556.0 0.271662
\(29\) 41610.0 0.316814 0.158407 0.987374i \(-0.449364\pi\)
0.158407 + 0.987374i \(0.449364\pi\)
\(30\) 0 0
\(31\) 150332. 0.906328 0.453164 0.891427i \(-0.350295\pi\)
0.453164 + 0.891427i \(0.350295\pi\)
\(32\) 192096. 1.03632
\(33\) −233856. −1.13279
\(34\) 83916.0 0.366158
\(35\) 0 0
\(36\) 38916.0 0.139017
\(37\) 136366. 0.442588 0.221294 0.975207i \(-0.428972\pi\)
0.221294 + 0.975207i \(0.428972\pi\)
\(38\) 332220. 0.982162
\(39\) 216384. 0.584116
\(40\) 0 0
\(41\) −510258. −1.15624 −0.578118 0.815953i \(-0.696213\pi\)
−0.578118 + 0.815953i \(0.696213\pi\)
\(42\) −86436.0 −0.180021
\(43\) 172072. 0.330043 0.165022 0.986290i \(-0.447231\pi\)
0.165022 + 0.986290i \(0.447231\pi\)
\(44\) 512256. 0.906573
\(45\) 0 0
\(46\) 547632. 0.829538
\(47\) 519036. 0.729214 0.364607 0.931162i \(-0.381203\pi\)
0.364607 + 0.931162i \(0.381203\pi\)
\(48\) 161952. 0.211369
\(49\) 117649. 0.142857
\(50\) 0 0
\(51\) 587412. 0.620079
\(52\) −473984. −0.467468
\(53\) 59202.0 0.0546224 0.0273112 0.999627i \(-0.491305\pi\)
0.0273112 + 0.999627i \(0.491305\pi\)
\(54\) −657720. −0.568412
\(55\) 0 0
\(56\) 452760. 0.344516
\(57\) 2.32554e6 1.66327
\(58\) 249660. 0.168016
\(59\) 1.97925e6 1.25464 0.627319 0.778762i \(-0.284152\pi\)
0.627319 + 0.778762i \(0.284152\pi\)
\(60\) 0 0
\(61\) −2.98875e6 −1.68591 −0.842956 0.537983i \(-0.819187\pi\)
−0.842956 + 0.537983i \(0.819187\pi\)
\(62\) 901992. 0.480653
\(63\) 145089. 0.0731042
\(64\) 659008. 0.314240
\(65\) 0 0
\(66\) −1.40314e6 −0.600753
\(67\) −2.40940e6 −0.978696 −0.489348 0.872089i \(-0.662765\pi\)
−0.489348 + 0.872089i \(0.662765\pi\)
\(68\) −1.28671e6 −0.496250
\(69\) 3.83342e6 1.40480
\(70\) 0 0
\(71\) 1.50451e6 0.498875 0.249437 0.968391i \(-0.419754\pi\)
0.249437 + 0.968391i \(0.419754\pi\)
\(72\) 558360. 0.176299
\(73\) 1.82102e6 0.547880 0.273940 0.961747i \(-0.411673\pi\)
0.273940 + 0.961747i \(0.411673\pi\)
\(74\) 818196. 0.234718
\(75\) 0 0
\(76\) −5.09404e6 −1.33111
\(77\) 1.90982e6 0.476734
\(78\) 1.29830e6 0.309774
\(79\) −1.66924e6 −0.380911 −0.190456 0.981696i \(-0.560997\pi\)
−0.190456 + 0.981696i \(0.560997\pi\)
\(80\) 0 0
\(81\) −3.67894e6 −0.769175
\(82\) −3.06155e6 −0.613187
\(83\) −696738. −0.133751 −0.0668754 0.997761i \(-0.521303\pi\)
−0.0668754 + 0.997761i \(0.521303\pi\)
\(84\) 1.32535e6 0.243980
\(85\) 0 0
\(86\) 1.03243e6 0.175032
\(87\) 1.74762e6 0.284531
\(88\) 7.34976e6 1.14970
\(89\) 5.55849e6 0.835780 0.417890 0.908498i \(-0.362770\pi\)
0.417890 + 0.908498i \(0.362770\pi\)
\(90\) 0 0
\(91\) −1.76714e6 −0.245824
\(92\) −8.39702e6 −1.12426
\(93\) 6.31394e6 0.813974
\(94\) 3.11422e6 0.386724
\(95\) 0 0
\(96\) 8.06803e6 0.930718
\(97\) −9.87673e6 −1.09878 −0.549392 0.835565i \(-0.685141\pi\)
−0.549392 + 0.835565i \(0.685141\pi\)
\(98\) 705894. 0.0757614
\(99\) 2.35526e6 0.243959
\(100\) 0 0
\(101\) −2.16359e6 −0.208954 −0.104477 0.994527i \(-0.533317\pi\)
−0.104477 + 0.994527i \(0.533317\pi\)
\(102\) 3.52447e6 0.328847
\(103\) 1.15657e7 1.04289 0.521447 0.853284i \(-0.325393\pi\)
0.521447 + 0.853284i \(0.325393\pi\)
\(104\) −6.80064e6 −0.592834
\(105\) 0 0
\(106\) 355212. 0.0289679
\(107\) 1.82564e7 1.44069 0.720346 0.693615i \(-0.243983\pi\)
0.720346 + 0.693615i \(0.243983\pi\)
\(108\) 1.00850e7 0.770361
\(109\) 2.34053e7 1.73110 0.865550 0.500823i \(-0.166969\pi\)
0.865550 + 0.500823i \(0.166969\pi\)
\(110\) 0 0
\(111\) 5.72737e6 0.397489
\(112\) −1.32261e6 −0.0889545
\(113\) 2.53040e7 1.64973 0.824867 0.565327i \(-0.191250\pi\)
0.824867 + 0.565327i \(0.191250\pi\)
\(114\) 1.39532e7 0.882080
\(115\) 0 0
\(116\) −3.82812e6 −0.227710
\(117\) −2.17930e6 −0.125796
\(118\) 1.18755e7 0.665373
\(119\) −4.79720e6 −0.260960
\(120\) 0 0
\(121\) 1.15155e7 0.590925
\(122\) −1.79325e7 −0.894090
\(123\) −2.14308e7 −1.03842
\(124\) −1.38305e7 −0.651423
\(125\) 0 0
\(126\) 870534. 0.0387694
\(127\) 2.65646e6 0.115077 0.0575386 0.998343i \(-0.481675\pi\)
0.0575386 + 0.998343i \(0.481675\pi\)
\(128\) −2.06342e7 −0.869668
\(129\) 7.22702e6 0.296412
\(130\) 0 0
\(131\) −3.01946e7 −1.17349 −0.586745 0.809771i \(-0.699591\pi\)
−0.586745 + 0.809771i \(0.699591\pi\)
\(132\) 2.15148e7 0.814193
\(133\) −1.89919e7 −0.699984
\(134\) −1.44564e7 −0.519032
\(135\) 0 0
\(136\) −1.84615e7 −0.629334
\(137\) 1.58504e7 0.526647 0.263323 0.964708i \(-0.415181\pi\)
0.263323 + 0.964708i \(0.415181\pi\)
\(138\) 2.30005e7 0.745009
\(139\) −1.02518e7 −0.323780 −0.161890 0.986809i \(-0.551759\pi\)
−0.161890 + 0.986809i \(0.551759\pi\)
\(140\) 0 0
\(141\) 2.17995e7 0.654907
\(142\) 9.02707e6 0.264568
\(143\) −2.86863e7 −0.820350
\(144\) −1.63109e6 −0.0455207
\(145\) 0 0
\(146\) 1.09261e7 0.290557
\(147\) 4.94126e6 0.128300
\(148\) −1.25457e7 −0.318110
\(149\) 2.21020e7 0.547368 0.273684 0.961820i \(-0.411758\pi\)
0.273684 + 0.961820i \(0.411758\pi\)
\(150\) 0 0
\(151\) 1.48011e6 0.0349845 0.0174922 0.999847i \(-0.494432\pi\)
0.0174922 + 0.999847i \(0.494432\pi\)
\(152\) −7.30884e7 −1.68809
\(153\) −5.91608e6 −0.133541
\(154\) 1.14589e7 0.252826
\(155\) 0 0
\(156\) −1.99073e7 −0.419833
\(157\) 4.73086e7 0.975643 0.487822 0.872943i \(-0.337792\pi\)
0.487822 + 0.872943i \(0.337792\pi\)
\(158\) −1.00154e7 −0.202009
\(159\) 2.48648e6 0.0490564
\(160\) 0 0
\(161\) −3.13063e7 −0.591209
\(162\) −2.20736e7 −0.407917
\(163\) −1.32133e6 −0.0238976 −0.0119488 0.999929i \(-0.503804\pi\)
−0.0119488 + 0.999929i \(0.503804\pi\)
\(164\) 4.69437e7 0.831044
\(165\) 0 0
\(166\) −4.18043e6 −0.0709320
\(167\) 3.56294e7 0.591971 0.295985 0.955192i \(-0.404352\pi\)
0.295985 + 0.955192i \(0.404352\pi\)
\(168\) 1.90159e7 0.309410
\(169\) −3.62054e7 −0.576992
\(170\) 0 0
\(171\) −2.34215e7 −0.358202
\(172\) −1.58306e7 −0.237218
\(173\) −9.17248e7 −1.34687 −0.673435 0.739247i \(-0.735182\pi\)
−0.673435 + 0.739247i \(0.735182\pi\)
\(174\) 1.04857e7 0.150895
\(175\) 0 0
\(176\) −2.14702e7 −0.296853
\(177\) 8.31285e7 1.12679
\(178\) 3.33509e7 0.443239
\(179\) −9.83043e7 −1.28111 −0.640556 0.767912i \(-0.721296\pi\)
−0.640556 + 0.767912i \(0.721296\pi\)
\(180\) 0 0
\(181\) 8.75015e7 1.09683 0.548417 0.836205i \(-0.315231\pi\)
0.548417 + 0.836205i \(0.315231\pi\)
\(182\) −1.06028e7 −0.130368
\(183\) −1.25527e8 −1.51412
\(184\) −1.20479e8 −1.42577
\(185\) 0 0
\(186\) 3.78837e7 0.431675
\(187\) −7.78740e7 −0.870858
\(188\) −4.77513e7 −0.524123
\(189\) 3.75997e7 0.405105
\(190\) 0 0
\(191\) 1.61682e8 1.67898 0.839490 0.543375i \(-0.182854\pi\)
0.839490 + 0.543375i \(0.182854\pi\)
\(192\) 2.76783e7 0.282219
\(193\) 1.10526e7 0.110666 0.0553328 0.998468i \(-0.482378\pi\)
0.0553328 + 0.998468i \(0.482378\pi\)
\(194\) −5.92604e7 −0.582718
\(195\) 0 0
\(196\) −1.08237e7 −0.102679
\(197\) 3.32668e7 0.310013 0.155006 0.987913i \(-0.450460\pi\)
0.155006 + 0.987913i \(0.450460\pi\)
\(198\) 1.41316e7 0.129379
\(199\) 2.36571e7 0.212802 0.106401 0.994323i \(-0.466067\pi\)
0.106401 + 0.994323i \(0.466067\pi\)
\(200\) 0 0
\(201\) −1.01195e8 −0.878967
\(202\) −1.29815e7 −0.110814
\(203\) −1.42722e7 −0.119745
\(204\) −5.40419e7 −0.445682
\(205\) 0 0
\(206\) 6.93939e7 0.553078
\(207\) −3.86081e7 −0.302539
\(208\) 1.98661e7 0.153070
\(209\) −3.08300e8 −2.33594
\(210\) 0 0
\(211\) 1.59342e7 0.116773 0.0583863 0.998294i \(-0.481404\pi\)
0.0583863 + 0.998294i \(0.481404\pi\)
\(212\) −5.44658e6 −0.0392599
\(213\) 6.31895e7 0.448040
\(214\) 1.09538e8 0.764042
\(215\) 0 0
\(216\) 1.44698e8 0.976957
\(217\) −5.15639e7 −0.342560
\(218\) 1.40432e8 0.918054
\(219\) 7.64829e7 0.492051
\(220\) 0 0
\(221\) 7.20559e7 0.449052
\(222\) 3.43642e7 0.210800
\(223\) 1.22028e8 0.736871 0.368436 0.929653i \(-0.379894\pi\)
0.368436 + 0.929653i \(0.379894\pi\)
\(224\) −6.58889e7 −0.391692
\(225\) 0 0
\(226\) 1.51824e8 0.874904
\(227\) −3.03605e8 −1.72274 −0.861368 0.507981i \(-0.830392\pi\)
−0.861368 + 0.507981i \(0.830392\pi\)
\(228\) −2.13950e8 −1.19547
\(229\) −1.14364e8 −0.629309 −0.314655 0.949206i \(-0.601889\pi\)
−0.314655 + 0.949206i \(0.601889\pi\)
\(230\) 0 0
\(231\) 8.02126e7 0.428155
\(232\) −5.49252e7 −0.288778
\(233\) −1.39403e7 −0.0721982 −0.0360991 0.999348i \(-0.511493\pi\)
−0.0360991 + 0.999348i \(0.511493\pi\)
\(234\) −1.30758e7 −0.0667132
\(235\) 0 0
\(236\) −1.82091e8 −0.901771
\(237\) −7.01081e7 −0.342097
\(238\) −2.87832e7 −0.138395
\(239\) −2.64328e8 −1.25242 −0.626210 0.779655i \(-0.715395\pi\)
−0.626210 + 0.779655i \(0.715395\pi\)
\(240\) 0 0
\(241\) −3.64932e8 −1.67939 −0.839696 0.543056i \(-0.817267\pi\)
−0.839696 + 0.543056i \(0.817267\pi\)
\(242\) 6.90927e7 0.313385
\(243\) 8.52235e7 0.381011
\(244\) 2.74965e8 1.21175
\(245\) 0 0
\(246\) −1.28585e8 −0.550703
\(247\) 2.85266e8 1.20451
\(248\) −1.98438e8 −0.826123
\(249\) −2.92630e7 −0.120122
\(250\) 0 0
\(251\) 4.55058e7 0.181639 0.0908194 0.995867i \(-0.471051\pi\)
0.0908194 + 0.995867i \(0.471051\pi\)
\(252\) −1.33482e7 −0.0525437
\(253\) −5.08202e8 −1.97294
\(254\) 1.59387e7 0.0610289
\(255\) 0 0
\(256\) −2.08158e8 −0.775451
\(257\) −5.04016e7 −0.185216 −0.0926079 0.995703i \(-0.529520\pi\)
−0.0926079 + 0.995703i \(0.529520\pi\)
\(258\) 4.33621e7 0.157196
\(259\) −4.67735e7 −0.167283
\(260\) 0 0
\(261\) −1.76010e7 −0.0612768
\(262\) −1.81168e8 −0.622338
\(263\) 2.21310e8 0.750163 0.375082 0.926992i \(-0.377615\pi\)
0.375082 + 0.926992i \(0.377615\pi\)
\(264\) 3.08690e8 1.03254
\(265\) 0 0
\(266\) −1.13951e8 −0.371222
\(267\) 2.33457e8 0.750614
\(268\) 2.21665e8 0.703438
\(269\) 3.38343e8 1.05980 0.529900 0.848060i \(-0.322229\pi\)
0.529900 + 0.848060i \(0.322229\pi\)
\(270\) 0 0
\(271\) 3.79683e8 1.15885 0.579427 0.815024i \(-0.303276\pi\)
0.579427 + 0.815024i \(0.303276\pi\)
\(272\) 5.39300e7 0.162495
\(273\) −7.42197e7 −0.220775
\(274\) 9.51027e7 0.279297
\(275\) 0 0
\(276\) −3.52675e8 −1.00970
\(277\) −2.18056e8 −0.616437 −0.308219 0.951316i \(-0.599733\pi\)
−0.308219 + 0.951316i \(0.599733\pi\)
\(278\) −6.15111e7 −0.171710
\(279\) −6.35904e7 −0.175298
\(280\) 0 0
\(281\) 3.60144e8 0.968286 0.484143 0.874989i \(-0.339131\pi\)
0.484143 + 0.874989i \(0.339131\pi\)
\(282\) 1.30797e8 0.347317
\(283\) 5.44384e8 1.42775 0.713876 0.700272i \(-0.246938\pi\)
0.713876 + 0.700272i \(0.246938\pi\)
\(284\) −1.38415e8 −0.358566
\(285\) 0 0
\(286\) −1.72118e8 −0.435056
\(287\) 1.75018e8 0.437016
\(288\) −8.12566e7 −0.200440
\(289\) −2.14730e8 −0.523301
\(290\) 0 0
\(291\) −4.14823e8 −0.986818
\(292\) −1.67534e8 −0.393789
\(293\) −1.17983e8 −0.274020 −0.137010 0.990570i \(-0.543749\pi\)
−0.137010 + 0.990570i \(0.543749\pi\)
\(294\) 2.96475e7 0.0680414
\(295\) 0 0
\(296\) −1.80003e8 −0.403422
\(297\) 6.10364e8 1.35189
\(298\) 1.32612e8 0.290286
\(299\) 4.70233e8 1.01734
\(300\) 0 0
\(301\) −5.90207e7 −0.124745
\(302\) 8.88067e6 0.0185533
\(303\) −9.08707e7 −0.187661
\(304\) 2.13507e8 0.435867
\(305\) 0 0
\(306\) −3.54965e7 −0.0708207
\(307\) −1.46606e8 −0.289180 −0.144590 0.989492i \(-0.546186\pi\)
−0.144590 + 0.989492i \(0.546186\pi\)
\(308\) −1.75704e8 −0.342652
\(309\) 4.85757e8 0.936623
\(310\) 0 0
\(311\) 6.85655e8 1.29254 0.646270 0.763109i \(-0.276328\pi\)
0.646270 + 0.763109i \(0.276328\pi\)
\(312\) −2.85627e8 −0.532424
\(313\) 5.41169e8 0.997533 0.498767 0.866736i \(-0.333786\pi\)
0.498767 + 0.866736i \(0.333786\pi\)
\(314\) 2.83851e8 0.517413
\(315\) 0 0
\(316\) 1.53570e8 0.273780
\(317\) 2.68477e8 0.473369 0.236684 0.971587i \(-0.423939\pi\)
0.236684 + 0.971587i \(0.423939\pi\)
\(318\) 1.49189e7 0.0260161
\(319\) −2.31684e8 −0.399604
\(320\) 0 0
\(321\) 7.66767e8 1.29389
\(322\) −1.87838e8 −0.313536
\(323\) 7.74405e8 1.27867
\(324\) 3.38462e8 0.552844
\(325\) 0 0
\(326\) −7.92797e6 −0.0126736
\(327\) 9.83024e8 1.55470
\(328\) 6.73541e8 1.05391
\(329\) −1.78029e8 −0.275617
\(330\) 0 0
\(331\) −1.33832e7 −0.0202844 −0.0101422 0.999949i \(-0.503228\pi\)
−0.0101422 + 0.999949i \(0.503228\pi\)
\(332\) 6.40999e7 0.0961333
\(333\) −5.76828e7 −0.0856035
\(334\) 2.13776e8 0.313940
\(335\) 0 0
\(336\) −5.55495e7 −0.0798901
\(337\) 6.98606e8 0.994323 0.497162 0.867658i \(-0.334376\pi\)
0.497162 + 0.867658i \(0.334376\pi\)
\(338\) −2.17232e8 −0.305996
\(339\) 1.06277e9 1.48163
\(340\) 0 0
\(341\) −8.37049e8 −1.14317
\(342\) −1.40529e8 −0.189966
\(343\) −4.03536e7 −0.0539949
\(344\) −2.27135e8 −0.300836
\(345\) 0 0
\(346\) −5.50349e8 −0.714285
\(347\) −4.25461e8 −0.546647 −0.273323 0.961922i \(-0.588123\pi\)
−0.273323 + 0.961922i \(0.588123\pi\)
\(348\) −1.60781e8 −0.204507
\(349\) 2.83399e8 0.356869 0.178435 0.983952i \(-0.442897\pi\)
0.178435 + 0.983952i \(0.442897\pi\)
\(350\) 0 0
\(351\) −5.64762e8 −0.697093
\(352\) −1.06959e9 −1.30713
\(353\) 1.20608e9 1.45937 0.729684 0.683784i \(-0.239667\pi\)
0.729684 + 0.683784i \(0.239667\pi\)
\(354\) 4.98771e8 0.597571
\(355\) 0 0
\(356\) −5.11381e8 −0.600717
\(357\) −2.01482e8 −0.234368
\(358\) −5.89826e8 −0.679412
\(359\) 5.68486e8 0.648469 0.324235 0.945977i \(-0.394893\pi\)
0.324235 + 0.945977i \(0.394893\pi\)
\(360\) 0 0
\(361\) 2.17197e9 2.42984
\(362\) 5.25009e8 0.581684
\(363\) 4.83649e8 0.530710
\(364\) 1.62577e8 0.176686
\(365\) 0 0
\(366\) −7.53164e8 −0.802982
\(367\) −1.28228e9 −1.35410 −0.677051 0.735936i \(-0.736742\pi\)
−0.677051 + 0.735936i \(0.736742\pi\)
\(368\) 3.51945e8 0.368135
\(369\) 2.15839e8 0.223634
\(370\) 0 0
\(371\) −2.03063e7 −0.0206453
\(372\) −5.80883e8 −0.585044
\(373\) 9.80232e7 0.0978020 0.0489010 0.998804i \(-0.484428\pi\)
0.0489010 + 0.998804i \(0.484428\pi\)
\(374\) −4.67244e8 −0.461842
\(375\) 0 0
\(376\) −6.85128e8 −0.664682
\(377\) 2.14375e8 0.206053
\(378\) 2.25598e8 0.214839
\(379\) −8.04985e8 −0.759539 −0.379770 0.925081i \(-0.623997\pi\)
−0.379770 + 0.925081i \(0.623997\pi\)
\(380\) 0 0
\(381\) 1.11571e8 0.103351
\(382\) 9.70094e8 0.890414
\(383\) −1.80572e9 −1.64231 −0.821155 0.570705i \(-0.806670\pi\)
−0.821155 + 0.570705i \(0.806670\pi\)
\(384\) −8.66638e8 −0.781049
\(385\) 0 0
\(386\) 6.63154e7 0.0586893
\(387\) −7.27865e7 −0.0638355
\(388\) 9.08660e8 0.789751
\(389\) −1.60994e9 −1.38672 −0.693358 0.720593i \(-0.743869\pi\)
−0.693358 + 0.720593i \(0.743869\pi\)
\(390\) 0 0
\(391\) 1.27653e9 1.07997
\(392\) −1.55297e8 −0.130215
\(393\) −1.26817e9 −1.05391
\(394\) 1.99601e8 0.164409
\(395\) 0 0
\(396\) −2.16684e8 −0.175345
\(397\) 3.69718e8 0.296554 0.148277 0.988946i \(-0.452627\pi\)
0.148277 + 0.988946i \(0.452627\pi\)
\(398\) 1.41942e8 0.112855
\(399\) −7.97660e8 −0.628656
\(400\) 0 0
\(401\) −2.16035e9 −1.67309 −0.836545 0.547898i \(-0.815428\pi\)
−0.836545 + 0.547898i \(0.815428\pi\)
\(402\) −6.07170e8 −0.466143
\(403\) 7.74510e8 0.589467
\(404\) 1.99050e8 0.150185
\(405\) 0 0
\(406\) −8.56334e7 −0.0635041
\(407\) −7.59286e8 −0.558245
\(408\) −7.75384e8 −0.565205
\(409\) −4.97539e8 −0.359580 −0.179790 0.983705i \(-0.557542\pi\)
−0.179790 + 0.983705i \(0.557542\pi\)
\(410\) 0 0
\(411\) 6.65719e8 0.472982
\(412\) −1.06404e9 −0.749579
\(413\) −6.78883e8 −0.474209
\(414\) −2.31648e8 −0.160446
\(415\) 0 0
\(416\) 9.89679e8 0.674012
\(417\) −4.30578e8 −0.290787
\(418\) −1.84980e9 −1.23882
\(419\) 7.04012e8 0.467553 0.233777 0.972290i \(-0.424892\pi\)
0.233777 + 0.972290i \(0.424892\pi\)
\(420\) 0 0
\(421\) −1.07019e9 −0.698995 −0.349497 0.936937i \(-0.613648\pi\)
−0.349497 + 0.936937i \(0.613648\pi\)
\(422\) 9.56050e7 0.0619280
\(423\) −2.19552e8 −0.141041
\(424\) −7.81466e7 −0.0497886
\(425\) 0 0
\(426\) 3.79137e8 0.237609
\(427\) 1.02514e9 0.637215
\(428\) −1.67958e9 −1.03550
\(429\) −1.20483e9 −0.736756
\(430\) 0 0
\(431\) 1.36893e9 0.823587 0.411793 0.911277i \(-0.364903\pi\)
0.411793 + 0.911277i \(0.364903\pi\)
\(432\) −4.22695e8 −0.252251
\(433\) 7.83027e8 0.463521 0.231760 0.972773i \(-0.425551\pi\)
0.231760 + 0.972773i \(0.425551\pi\)
\(434\) −3.09383e8 −0.181670
\(435\) 0 0
\(436\) −2.15329e9 −1.24423
\(437\) 5.05373e9 2.89686
\(438\) 4.58898e8 0.260949
\(439\) −1.52936e9 −0.862747 −0.431373 0.902173i \(-0.641971\pi\)
−0.431373 + 0.902173i \(0.641971\pi\)
\(440\) 0 0
\(441\) −4.97655e7 −0.0276308
\(442\) 4.32335e8 0.238146
\(443\) −3.44970e8 −0.188525 −0.0942624 0.995547i \(-0.530049\pi\)
−0.0942624 + 0.995547i \(0.530049\pi\)
\(444\) −5.26918e8 −0.285695
\(445\) 0 0
\(446\) 7.32167e8 0.390785
\(447\) 9.28284e8 0.491591
\(448\) −2.26040e8 −0.118771
\(449\) 1.20565e9 0.628580 0.314290 0.949327i \(-0.398234\pi\)
0.314290 + 0.949327i \(0.398234\pi\)
\(450\) 0 0
\(451\) 2.84112e9 1.45838
\(452\) −2.32796e9 −1.18575
\(453\) 6.21647e7 0.0314196
\(454\) −1.82163e9 −0.913619
\(455\) 0 0
\(456\) −3.06971e9 −1.51608
\(457\) −2.85702e9 −1.40026 −0.700128 0.714018i \(-0.746874\pi\)
−0.700128 + 0.714018i \(0.746874\pi\)
\(458\) −6.86183e8 −0.333742
\(459\) −1.53315e9 −0.740012
\(460\) 0 0
\(461\) 2.73931e9 1.30223 0.651115 0.758979i \(-0.274302\pi\)
0.651115 + 0.758979i \(0.274302\pi\)
\(462\) 4.81276e8 0.227063
\(463\) −7.27885e8 −0.340823 −0.170412 0.985373i \(-0.554510\pi\)
−0.170412 + 0.985373i \(0.554510\pi\)
\(464\) 1.60448e8 0.0745627
\(465\) 0 0
\(466\) −8.36418e7 −0.0382889
\(467\) 1.37399e9 0.624275 0.312138 0.950037i \(-0.398955\pi\)
0.312138 + 0.950037i \(0.398955\pi\)
\(468\) 2.00495e8 0.0904156
\(469\) 8.26426e8 0.369912
\(470\) 0 0
\(471\) 1.98696e9 0.876226
\(472\) −2.61261e9 −1.14361
\(473\) −9.58097e8 −0.416289
\(474\) −4.20648e8 −0.181424
\(475\) 0 0
\(476\) 4.41342e8 0.187565
\(477\) −2.50424e7 −0.0105648
\(478\) −1.58597e9 −0.664196
\(479\) −2.49370e8 −0.103674 −0.0518369 0.998656i \(-0.516508\pi\)
−0.0518369 + 0.998656i \(0.516508\pi\)
\(480\) 0 0
\(481\) 7.02558e8 0.287855
\(482\) −2.18959e9 −0.890632
\(483\) −1.31486e9 −0.530965
\(484\) −1.05942e9 −0.424727
\(485\) 0 0
\(486\) 5.11341e8 0.202062
\(487\) 2.18907e9 0.858830 0.429415 0.903107i \(-0.358720\pi\)
0.429415 + 0.903107i \(0.358720\pi\)
\(488\) 3.94515e9 1.53672
\(489\) −5.54958e7 −0.0214624
\(490\) 0 0
\(491\) 1.39900e9 0.533375 0.266688 0.963783i \(-0.414071\pi\)
0.266688 + 0.963783i \(0.414071\pi\)
\(492\) 1.97164e9 0.746361
\(493\) 5.81957e8 0.218739
\(494\) 1.71160e9 0.638789
\(495\) 0 0
\(496\) 5.79680e8 0.213306
\(497\) −5.16048e8 −0.188557
\(498\) −1.75578e8 −0.0637041
\(499\) 1.55162e9 0.559027 0.279514 0.960142i \(-0.409827\pi\)
0.279514 + 0.960142i \(0.409827\pi\)
\(500\) 0 0
\(501\) 1.49643e9 0.531649
\(502\) 2.73035e8 0.0963285
\(503\) 4.95456e9 1.73587 0.867934 0.496679i \(-0.165447\pi\)
0.867934 + 0.496679i \(0.165447\pi\)
\(504\) −1.91517e8 −0.0666349
\(505\) 0 0
\(506\) −3.04921e9 −1.04631
\(507\) −1.52063e9 −0.518197
\(508\) −2.44394e8 −0.0827118
\(509\) −3.58960e9 −1.20652 −0.603260 0.797545i \(-0.706132\pi\)
−0.603260 + 0.797545i \(0.706132\pi\)
\(510\) 0 0
\(511\) −6.24611e8 −0.207079
\(512\) 1.39223e9 0.458423
\(513\) −6.06966e9 −1.98497
\(514\) −3.02409e8 −0.0982255
\(515\) 0 0
\(516\) −6.64886e8 −0.213046
\(517\) −2.88999e9 −0.919771
\(518\) −2.80641e8 −0.0887151
\(519\) −3.85244e9 −1.20962
\(520\) 0 0
\(521\) −2.44223e9 −0.756580 −0.378290 0.925687i \(-0.623488\pi\)
−0.378290 + 0.925687i \(0.623488\pi\)
\(522\) −1.05606e8 −0.0324969
\(523\) −6.22285e8 −0.190210 −0.0951050 0.995467i \(-0.530319\pi\)
−0.0951050 + 0.995467i \(0.530319\pi\)
\(524\) 2.77790e9 0.843447
\(525\) 0 0
\(526\) 1.32786e9 0.397834
\(527\) 2.10254e9 0.625760
\(528\) −9.01749e8 −0.266604
\(529\) 4.92575e9 1.44670
\(530\) 0 0
\(531\) −8.37223e8 −0.242667
\(532\) 1.74726e9 0.503113
\(533\) −2.62885e9 −0.752005
\(534\) 1.40074e9 0.398073
\(535\) 0 0
\(536\) 3.18041e9 0.892086
\(537\) −4.12878e9 −1.15057
\(538\) 2.03006e9 0.562044
\(539\) −6.55070e8 −0.180188
\(540\) 0 0
\(541\) −5.56421e9 −1.51082 −0.755411 0.655251i \(-0.772563\pi\)
−0.755411 + 0.655251i \(0.772563\pi\)
\(542\) 2.27810e9 0.614575
\(543\) 3.67506e9 0.985066
\(544\) 2.68665e9 0.715510
\(545\) 0 0
\(546\) −4.45318e8 −0.117084
\(547\) 2.01375e9 0.526077 0.263038 0.964785i \(-0.415275\pi\)
0.263038 + 0.964785i \(0.415275\pi\)
\(548\) −1.45824e9 −0.378527
\(549\) 1.26424e9 0.326082
\(550\) 0 0
\(551\) 2.30395e9 0.586735
\(552\) −5.06012e9 −1.28048
\(553\) 5.72549e8 0.143971
\(554\) −1.30834e9 −0.326915
\(555\) 0 0
\(556\) 9.43170e8 0.232717
\(557\) 5.59246e9 1.37123 0.685614 0.727965i \(-0.259534\pi\)
0.685614 + 0.727965i \(0.259534\pi\)
\(558\) −3.81543e8 −0.0929658
\(559\) 8.86515e8 0.214657
\(560\) 0 0
\(561\) −3.27071e9 −0.782118
\(562\) 2.16086e9 0.513511
\(563\) 5.44186e7 0.0128519 0.00642596 0.999979i \(-0.497955\pi\)
0.00642596 + 0.999979i \(0.497955\pi\)
\(564\) −2.00556e9 −0.470715
\(565\) 0 0
\(566\) 3.26630e9 0.757180
\(567\) 1.26188e9 0.290721
\(568\) −1.98596e9 −0.454727
\(569\) −2.67749e9 −0.609304 −0.304652 0.952464i \(-0.598540\pi\)
−0.304652 + 0.952464i \(0.598540\pi\)
\(570\) 0 0
\(571\) −3.65014e9 −0.820510 −0.410255 0.911971i \(-0.634560\pi\)
−0.410255 + 0.911971i \(0.634560\pi\)
\(572\) 2.63914e9 0.589626
\(573\) 6.79066e9 1.50789
\(574\) 1.05011e9 0.231763
\(575\) 0 0
\(576\) −2.78760e8 −0.0607788
\(577\) 1.07847e9 0.233718 0.116859 0.993149i \(-0.462717\pi\)
0.116859 + 0.993149i \(0.462717\pi\)
\(578\) −1.28838e9 −0.277522
\(579\) 4.64208e8 0.0993888
\(580\) 0 0
\(581\) 2.38981e8 0.0505530
\(582\) −2.48894e9 −0.523339
\(583\) −3.29637e8 −0.0688963
\(584\) −2.40375e9 −0.499395
\(585\) 0 0
\(586\) −7.07897e8 −0.145321
\(587\) −4.20971e9 −0.859051 −0.429525 0.903055i \(-0.641319\pi\)
−0.429525 + 0.903055i \(0.641319\pi\)
\(588\) −4.54596e8 −0.0922157
\(589\) 8.32388e9 1.67850
\(590\) 0 0
\(591\) 1.39721e9 0.278423
\(592\) 5.25827e8 0.104164
\(593\) −5.74388e9 −1.13113 −0.565567 0.824702i \(-0.691343\pi\)
−0.565567 + 0.824702i \(0.691343\pi\)
\(594\) 3.66218e9 0.716948
\(595\) 0 0
\(596\) −2.03338e9 −0.393421
\(597\) 9.93597e8 0.191117
\(598\) 2.82140e9 0.539524
\(599\) 9.33394e8 0.177448 0.0887240 0.996056i \(-0.471721\pi\)
0.0887240 + 0.996056i \(0.471721\pi\)
\(600\) 0 0
\(601\) 3.35934e9 0.631239 0.315619 0.948886i \(-0.397788\pi\)
0.315619 + 0.948886i \(0.397788\pi\)
\(602\) −3.54124e8 −0.0661558
\(603\) 1.01918e9 0.189295
\(604\) −1.36170e8 −0.0251451
\(605\) 0 0
\(606\) −5.45224e8 −0.0995224
\(607\) −4.15281e9 −0.753670 −0.376835 0.926280i \(-0.622988\pi\)
−0.376835 + 0.926280i \(0.622988\pi\)
\(608\) 1.06364e10 1.91924
\(609\) −5.99434e8 −0.107543
\(610\) 0 0
\(611\) 2.67407e9 0.474274
\(612\) 5.44279e8 0.0959824
\(613\) 7.50640e9 1.31620 0.658098 0.752933i \(-0.271361\pi\)
0.658098 + 0.752933i \(0.271361\pi\)
\(614\) −8.79639e8 −0.153361
\(615\) 0 0
\(616\) −2.52097e9 −0.434545
\(617\) 3.00913e9 0.515754 0.257877 0.966178i \(-0.416977\pi\)
0.257877 + 0.966178i \(0.416977\pi\)
\(618\) 2.91454e9 0.496719
\(619\) 3.76275e8 0.0637659 0.0318830 0.999492i \(-0.489850\pi\)
0.0318830 + 0.999492i \(0.489850\pi\)
\(620\) 0 0
\(621\) −1.00052e10 −1.67651
\(622\) 4.11393e9 0.685473
\(623\) −1.90656e9 −0.315895
\(624\) 8.34377e8 0.137473
\(625\) 0 0
\(626\) 3.24701e9 0.529022
\(627\) −1.29486e10 −2.09791
\(628\) −4.35239e9 −0.701244
\(629\) 1.90721e9 0.305578
\(630\) 0 0
\(631\) −1.14466e10 −1.81373 −0.906866 0.421418i \(-0.861532\pi\)
−0.906866 + 0.421418i \(0.861532\pi\)
\(632\) 2.20340e9 0.347203
\(633\) 6.69235e8 0.104874
\(634\) 1.61086e9 0.251042
\(635\) 0 0
\(636\) −2.28757e8 −0.0352593
\(637\) 6.06128e8 0.0929129
\(638\) −1.39011e9 −0.211922
\(639\) −6.36409e8 −0.0964902
\(640\) 0 0
\(641\) 5.64297e9 0.846261 0.423131 0.906069i \(-0.360931\pi\)
0.423131 + 0.906069i \(0.360931\pi\)
\(642\) 4.60060e9 0.686186
\(643\) −1.28092e9 −0.190013 −0.0950063 0.995477i \(-0.530287\pi\)
−0.0950063 + 0.995477i \(0.530287\pi\)
\(644\) 2.88018e9 0.424932
\(645\) 0 0
\(646\) 4.64643e9 0.678118
\(647\) −2.91819e9 −0.423593 −0.211797 0.977314i \(-0.567931\pi\)
−0.211797 + 0.977314i \(0.567931\pi\)
\(648\) 4.85620e9 0.701107
\(649\) −1.10205e10 −1.58250
\(650\) 0 0
\(651\) −2.16568e9 −0.307653
\(652\) 1.21562e8 0.0171764
\(653\) −7.26090e9 −1.02046 −0.510228 0.860039i \(-0.670439\pi\)
−0.510228 + 0.860039i \(0.670439\pi\)
\(654\) 5.89814e9 0.824505
\(655\) 0 0
\(656\) −1.96755e9 −0.272122
\(657\) −7.70292e8 −0.105968
\(658\) −1.06818e9 −0.146168
\(659\) 5.72191e8 0.0778828 0.0389414 0.999241i \(-0.487601\pi\)
0.0389414 + 0.999241i \(0.487601\pi\)
\(660\) 0 0
\(661\) 3.74993e9 0.505031 0.252515 0.967593i \(-0.418742\pi\)
0.252515 + 0.967593i \(0.418742\pi\)
\(662\) −8.02992e7 −0.0107574
\(663\) 3.02635e9 0.403294
\(664\) 9.19694e8 0.121914
\(665\) 0 0
\(666\) −3.46097e8 −0.0453981
\(667\) 3.79783e9 0.495558
\(668\) −3.27790e9 −0.425479
\(669\) 5.12517e9 0.661784
\(670\) 0 0
\(671\) 1.66413e10 2.12647
\(672\) −2.76733e9 −0.351778
\(673\) 2.63426e9 0.333124 0.166562 0.986031i \(-0.446733\pi\)
0.166562 + 0.986031i \(0.446733\pi\)
\(674\) 4.19164e9 0.527320
\(675\) 0 0
\(676\) 3.33090e9 0.414713
\(677\) 3.95251e9 0.489568 0.244784 0.969578i \(-0.421283\pi\)
0.244784 + 0.969578i \(0.421283\pi\)
\(678\) 6.37660e9 0.785751
\(679\) 3.38772e9 0.415301
\(680\) 0 0
\(681\) −1.27514e10 −1.54719
\(682\) −5.02229e9 −0.606257
\(683\) 1.18389e10 1.42180 0.710898 0.703295i \(-0.248289\pi\)
0.710898 + 0.703295i \(0.248289\pi\)
\(684\) 2.15478e9 0.257458
\(685\) 0 0
\(686\) −2.42122e8 −0.0286351
\(687\) −4.80328e9 −0.565183
\(688\) 6.63510e8 0.0776762
\(689\) 3.05009e8 0.0355259
\(690\) 0 0
\(691\) −1.41598e10 −1.63261 −0.816306 0.577620i \(-0.803982\pi\)
−0.816306 + 0.577620i \(0.803982\pi\)
\(692\) 8.43868e9 0.968062
\(693\) −8.07856e8 −0.0922077
\(694\) −2.55277e9 −0.289903
\(695\) 0 0
\(696\) −2.30686e9 −0.259351
\(697\) −7.13647e9 −0.798305
\(698\) 1.70039e9 0.189259
\(699\) −5.85493e8 −0.0648412
\(700\) 0 0
\(701\) −8.54644e9 −0.937070 −0.468535 0.883445i \(-0.655218\pi\)
−0.468535 + 0.883445i \(0.655218\pi\)
\(702\) −3.38857e9 −0.369689
\(703\) 7.55059e9 0.819666
\(704\) −3.66936e9 −0.396356
\(705\) 0 0
\(706\) 7.23649e9 0.773947
\(707\) 7.42111e8 0.0789770
\(708\) −7.64782e9 −0.809881
\(709\) −4.02549e9 −0.424187 −0.212093 0.977249i \(-0.568028\pi\)
−0.212093 + 0.977249i \(0.568028\pi\)
\(710\) 0 0
\(711\) 7.06089e8 0.0736742
\(712\) −7.33721e9 −0.761817
\(713\) 1.37211e10 1.41767
\(714\) −1.20889e9 −0.124292
\(715\) 0 0
\(716\) 9.04400e9 0.920799
\(717\) −1.11018e10 −1.12480
\(718\) 3.41092e9 0.343903
\(719\) 1.86141e10 1.86763 0.933816 0.357754i \(-0.116457\pi\)
0.933816 + 0.357754i \(0.116457\pi\)
\(720\) 0 0
\(721\) −3.96702e9 −0.394177
\(722\) 1.30318e10 1.28862
\(723\) −1.53271e10 −1.50826
\(724\) −8.05014e9 −0.788349
\(725\) 0 0
\(726\) 2.90189e9 0.281451
\(727\) −1.65695e9 −0.159934 −0.0799668 0.996798i \(-0.525481\pi\)
−0.0799668 + 0.996798i \(0.525481\pi\)
\(728\) 2.33262e9 0.224070
\(729\) 1.16252e10 1.11136
\(730\) 0 0
\(731\) 2.40660e9 0.227873
\(732\) 1.15485e10 1.08827
\(733\) −1.54861e10 −1.45237 −0.726187 0.687498i \(-0.758709\pi\)
−0.726187 + 0.687498i \(0.758709\pi\)
\(734\) −7.69368e9 −0.718121
\(735\) 0 0
\(736\) 1.75330e10 1.62100
\(737\) 1.34156e10 1.23445
\(738\) 1.29503e9 0.118600
\(739\) 1.33359e10 1.21553 0.607766 0.794117i \(-0.292066\pi\)
0.607766 + 0.794117i \(0.292066\pi\)
\(740\) 0 0
\(741\) 1.19812e10 1.08177
\(742\) −1.21838e8 −0.0109488
\(743\) −3.28409e9 −0.293734 −0.146867 0.989156i \(-0.546919\pi\)
−0.146867 + 0.989156i \(0.546919\pi\)
\(744\) −8.33441e9 −0.741941
\(745\) 0 0
\(746\) 5.88139e8 0.0518674
\(747\) 2.94720e8 0.0258695
\(748\) 7.16441e9 0.625929
\(749\) −6.26193e9 −0.544530
\(750\) 0 0
\(751\) −5.69946e9 −0.491014 −0.245507 0.969395i \(-0.578954\pi\)
−0.245507 + 0.969395i \(0.578954\pi\)
\(752\) 2.00140e9 0.171622
\(753\) 1.91124e9 0.163130
\(754\) 1.28625e9 0.109276
\(755\) 0 0
\(756\) −3.45917e9 −0.291169
\(757\) 1.13301e9 0.0949287 0.0474643 0.998873i \(-0.484886\pi\)
0.0474643 + 0.998873i \(0.484886\pi\)
\(758\) −4.82991e9 −0.402807
\(759\) −2.13445e10 −1.77190
\(760\) 0 0
\(761\) 7.00776e9 0.576412 0.288206 0.957568i \(-0.406941\pi\)
0.288206 + 0.957568i \(0.406941\pi\)
\(762\) 6.69427e8 0.0548101
\(763\) −8.02803e9 −0.654294
\(764\) −1.48748e10 −1.20677
\(765\) 0 0
\(766\) −1.08343e10 −0.870967
\(767\) 1.01971e10 0.816005
\(768\) −8.74266e9 −0.696433
\(769\) 1.53891e9 0.122031 0.0610155 0.998137i \(-0.480566\pi\)
0.0610155 + 0.998137i \(0.480566\pi\)
\(770\) 0 0
\(771\) −2.11687e9 −0.166342
\(772\) −1.01684e9 −0.0795409
\(773\) −2.26463e10 −1.76347 −0.881737 0.471741i \(-0.843626\pi\)
−0.881737 + 0.471741i \(0.843626\pi\)
\(774\) −4.36719e8 −0.0338539
\(775\) 0 0
\(776\) 1.30373e10 1.00155
\(777\) −1.96449e9 −0.150237
\(778\) −9.65967e9 −0.735417
\(779\) −2.82530e10 −2.14133
\(780\) 0 0
\(781\) −8.37712e9 −0.629240
\(782\) 7.65918e9 0.572742
\(783\) −4.56129e9 −0.339564
\(784\) 4.53655e8 0.0336217
\(785\) 0 0
\(786\) −7.60904e9 −0.558922
\(787\) −3.90403e9 −0.285497 −0.142748 0.989759i \(-0.545594\pi\)
−0.142748 + 0.989759i \(0.545594\pi\)
\(788\) −3.06055e9 −0.222822
\(789\) 9.29502e9 0.673722
\(790\) 0 0
\(791\) −8.67926e9 −0.623541
\(792\) −3.10895e9 −0.222370
\(793\) −1.53980e10 −1.09650
\(794\) 2.21831e9 0.157272
\(795\) 0 0
\(796\) −2.17645e9 −0.152951
\(797\) −1.47537e10 −1.03228 −0.516138 0.856505i \(-0.672631\pi\)
−0.516138 + 0.856505i \(0.672631\pi\)
\(798\) −4.78596e9 −0.333395
\(799\) 7.25924e9 0.503474
\(800\) 0 0
\(801\) −2.35124e9 −0.161653
\(802\) −1.29621e10 −0.887290
\(803\) −1.01395e10 −0.691051
\(804\) 9.30994e9 0.631758
\(805\) 0 0
\(806\) 4.64706e9 0.312612
\(807\) 1.42104e10 0.951807
\(808\) 2.85594e9 0.190462
\(809\) −1.79877e10 −1.19442 −0.597209 0.802085i \(-0.703724\pi\)
−0.597209 + 0.802085i \(0.703724\pi\)
\(810\) 0 0
\(811\) −3.52168e9 −0.231834 −0.115917 0.993259i \(-0.536981\pi\)
−0.115917 + 0.993259i \(0.536981\pi\)
\(812\) 1.31305e9 0.0860664
\(813\) 1.59467e10 1.04077
\(814\) −4.55572e9 −0.296054
\(815\) 0 0
\(816\) 2.26506e9 0.145937
\(817\) 9.52763e9 0.611234
\(818\) −2.98524e9 −0.190696
\(819\) 7.47499e8 0.0475463
\(820\) 0 0
\(821\) 2.51068e10 1.58340 0.791699 0.610911i \(-0.209197\pi\)
0.791699 + 0.610911i \(0.209197\pi\)
\(822\) 3.99431e9 0.250836
\(823\) −1.28188e10 −0.801584 −0.400792 0.916169i \(-0.631265\pi\)
−0.400792 + 0.916169i \(0.631265\pi\)
\(824\) −1.52667e10 −0.950602
\(825\) 0 0
\(826\) −4.07330e9 −0.251487
\(827\) 8.04747e9 0.494755 0.247377 0.968919i \(-0.420431\pi\)
0.247377 + 0.968919i \(0.420431\pi\)
\(828\) 3.55194e9 0.217450
\(829\) 1.39485e10 0.850330 0.425165 0.905116i \(-0.360216\pi\)
0.425165 + 0.905116i \(0.360216\pi\)
\(830\) 0 0
\(831\) −9.15836e9 −0.553623
\(832\) 3.39521e9 0.204378
\(833\) 1.64544e9 0.0986335
\(834\) −2.58347e9 −0.154213
\(835\) 0 0
\(836\) 2.83636e10 1.67896
\(837\) −1.64794e10 −0.971409
\(838\) 4.22407e9 0.247958
\(839\) −2.03937e10 −1.19215 −0.596074 0.802930i \(-0.703273\pi\)
−0.596074 + 0.802930i \(0.703273\pi\)
\(840\) 0 0
\(841\) −1.55185e10 −0.899629
\(842\) −6.42114e9 −0.370698
\(843\) 1.51260e10 0.869618
\(844\) −1.46594e9 −0.0839303
\(845\) 0 0
\(846\) −1.31731e9 −0.0747985
\(847\) −3.94980e9 −0.223349
\(848\) 2.28283e8 0.0128555
\(849\) 2.28641e10 1.28226
\(850\) 0 0
\(851\) 1.24464e10 0.692293
\(852\) −5.81343e9 −0.322028
\(853\) 3.20572e10 1.76850 0.884248 0.467018i \(-0.154672\pi\)
0.884248 + 0.467018i \(0.154672\pi\)
\(854\) 6.15084e9 0.337934
\(855\) 0 0
\(856\) −2.40984e10 −1.31320
\(857\) −4.54985e9 −0.246925 −0.123462 0.992349i \(-0.539400\pi\)
−0.123462 + 0.992349i \(0.539400\pi\)
\(858\) −7.22896e9 −0.390724
\(859\) −3.07832e10 −1.65706 −0.828530 0.559945i \(-0.810822\pi\)
−0.828530 + 0.559945i \(0.810822\pi\)
\(860\) 0 0
\(861\) 7.35078e9 0.392484
\(862\) 8.21355e9 0.436773
\(863\) −9.27058e9 −0.490986 −0.245493 0.969398i \(-0.578950\pi\)
−0.245493 + 0.969398i \(0.578950\pi\)
\(864\) −2.10576e10 −1.11073
\(865\) 0 0
\(866\) 4.69816e9 0.245819
\(867\) −9.01868e9 −0.469976
\(868\) 4.74388e9 0.246215
\(869\) 9.29433e9 0.480451
\(870\) 0 0
\(871\) −1.24132e10 −0.636534
\(872\) −3.08950e10 −1.57791
\(873\) 4.17786e9 0.212522
\(874\) 3.03224e10 1.53629
\(875\) 0 0
\(876\) −7.03643e9 −0.353662
\(877\) −2.02698e10 −1.01473 −0.507365 0.861731i \(-0.669380\pi\)
−0.507365 + 0.861731i \(0.669380\pi\)
\(878\) −9.17615e9 −0.457541
\(879\) −4.95528e9 −0.246097
\(880\) 0 0
\(881\) −1.20420e10 −0.593312 −0.296656 0.954984i \(-0.595871\pi\)
−0.296656 + 0.954984i \(0.595871\pi\)
\(882\) −2.98593e8 −0.0146534
\(883\) −4.07501e10 −1.99189 −0.995946 0.0899511i \(-0.971329\pi\)
−0.995946 + 0.0899511i \(0.971329\pi\)
\(884\) −6.62914e9 −0.322756
\(885\) 0 0
\(886\) −2.06982e9 −0.0999804
\(887\) −6.25298e9 −0.300853 −0.150426 0.988621i \(-0.548065\pi\)
−0.150426 + 0.988621i \(0.548065\pi\)
\(888\) −7.56013e9 −0.362313
\(889\) −9.11164e8 −0.0434951
\(890\) 0 0
\(891\) 2.04843e10 0.970174
\(892\) −1.12266e10 −0.529626
\(893\) 2.87390e10 1.35049
\(894\) 5.56970e9 0.260706
\(895\) 0 0
\(896\) 7.07754e9 0.328704
\(897\) 1.97498e10 0.913670
\(898\) 7.23392e9 0.333355
\(899\) 6.25531e9 0.287138
\(900\) 0 0
\(901\) 8.27999e8 0.0377132
\(902\) 1.70467e10 0.773424
\(903\) −2.47887e9 −0.112033
\(904\) −3.34012e10 −1.50374
\(905\) 0 0
\(906\) 3.72988e8 0.0166627
\(907\) −9.81994e9 −0.437002 −0.218501 0.975837i \(-0.570117\pi\)
−0.218501 + 0.975837i \(0.570117\pi\)
\(908\) 2.79317e10 1.23822
\(909\) 9.15198e8 0.0404149
\(910\) 0 0
\(911\) 9.73056e9 0.426406 0.213203 0.977008i \(-0.431610\pi\)
0.213203 + 0.977008i \(0.431610\pi\)
\(912\) 8.96728e9 0.391452
\(913\) 3.87944e9 0.168702
\(914\) −1.71421e10 −0.742598
\(915\) 0 0
\(916\) 1.05215e10 0.452316
\(917\) 1.03567e10 0.443538
\(918\) −9.19887e9 −0.392451
\(919\) −4.29536e9 −0.182556 −0.0912778 0.995825i \(-0.529095\pi\)
−0.0912778 + 0.995825i \(0.529095\pi\)
\(920\) 0 0
\(921\) −6.15747e9 −0.259713
\(922\) 1.64358e10 0.690612
\(923\) 7.75125e9 0.324463
\(924\) −7.37956e9 −0.307736
\(925\) 0 0
\(926\) −4.36731e9 −0.180749
\(927\) −4.89227e9 −0.201712
\(928\) 7.99311e9 0.328321
\(929\) 2.64304e10 1.08155 0.540777 0.841166i \(-0.318130\pi\)
0.540777 + 0.841166i \(0.318130\pi\)
\(930\) 0 0
\(931\) 6.51423e9 0.264569
\(932\) 1.28251e9 0.0518925
\(933\) 2.87975e10 1.16083
\(934\) 8.24397e9 0.331072
\(935\) 0 0
\(936\) 2.87667e9 0.114663
\(937\) −2.42536e10 −0.963136 −0.481568 0.876409i \(-0.659933\pi\)
−0.481568 + 0.876409i \(0.659933\pi\)
\(938\) 4.95855e9 0.196176
\(939\) 2.27291e10 0.895885
\(940\) 0 0
\(941\) −2.13011e10 −0.833370 −0.416685 0.909051i \(-0.636808\pi\)
−0.416685 + 0.909051i \(0.636808\pi\)
\(942\) 1.19218e10 0.464689
\(943\) −4.65723e10 −1.80857
\(944\) 7.63199e9 0.295281
\(945\) 0 0
\(946\) −5.74858e9 −0.220771
\(947\) 2.55846e9 0.0978934 0.0489467 0.998801i \(-0.484414\pi\)
0.0489467 + 0.998801i \(0.484414\pi\)
\(948\) 6.44994e9 0.245882
\(949\) 9.38191e9 0.356336
\(950\) 0 0
\(951\) 1.12760e10 0.425133
\(952\) 6.33230e9 0.237866
\(953\) 4.10738e10 1.53723 0.768616 0.639711i \(-0.220946\pi\)
0.768616 + 0.639711i \(0.220946\pi\)
\(954\) −1.50255e8 −0.00560285
\(955\) 0 0
\(956\) 2.43181e10 0.900177
\(957\) −9.73075e9 −0.358884
\(958\) −1.49622e9 −0.0549813
\(959\) −5.43670e9 −0.199054
\(960\) 0 0
\(961\) −4.91290e9 −0.178569
\(962\) 4.21535e9 0.152658
\(963\) −7.72244e9 −0.278652
\(964\) 3.35737e10 1.20706
\(965\) 0 0
\(966\) −7.88919e9 −0.281587
\(967\) −3.87008e10 −1.37634 −0.688172 0.725548i \(-0.741587\pi\)
−0.688172 + 0.725548i \(0.741587\pi\)
\(968\) −1.52004e10 −0.538631
\(969\) 3.25250e10 1.14838
\(970\) 0 0
\(971\) −1.86478e9 −0.0653672 −0.0326836 0.999466i \(-0.510405\pi\)
−0.0326836 + 0.999466i \(0.510405\pi\)
\(972\) −7.84056e9 −0.273852
\(973\) 3.51638e9 0.122377
\(974\) 1.31344e10 0.455464
\(975\) 0 0
\(976\) −1.15246e10 −0.396782
\(977\) 4.44026e10 1.52327 0.761635 0.648006i \(-0.224397\pi\)
0.761635 + 0.648006i \(0.224397\pi\)
\(978\) −3.32975e8 −0.0113822
\(979\) −3.09497e10 −1.05418
\(980\) 0 0
\(981\) −9.90045e9 −0.334822
\(982\) 8.39401e9 0.282865
\(983\) 5.42112e10 1.82034 0.910169 0.414238i \(-0.135952\pi\)
0.910169 + 0.414238i \(0.135952\pi\)
\(984\) 2.82887e10 0.946521
\(985\) 0 0
\(986\) 3.49174e9 0.116004
\(987\) −7.47723e9 −0.247532
\(988\) −2.62445e10 −0.865743
\(989\) 1.57054e10 0.516251
\(990\) 0 0
\(991\) −2.64475e9 −0.0863230 −0.0431615 0.999068i \(-0.513743\pi\)
−0.0431615 + 0.999068i \(0.513743\pi\)
\(992\) 2.88782e10 0.939245
\(993\) −5.62095e8 −0.0182174
\(994\) −3.09629e9 −0.0999974
\(995\) 0 0
\(996\) 2.69220e9 0.0863374
\(997\) 4.58169e10 1.46417 0.732087 0.681211i \(-0.238547\pi\)
0.732087 + 0.681211i \(0.238547\pi\)
\(998\) 9.30971e9 0.296469
\(999\) −1.49484e10 −0.474369
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.8.a.a.1.1 1
5.2 odd 4 175.8.b.a.99.2 2
5.3 odd 4 175.8.b.a.99.1 2
5.4 even 2 7.8.a.a.1.1 1
15.14 odd 2 63.8.a.b.1.1 1
20.19 odd 2 112.8.a.c.1.1 1
35.4 even 6 49.8.c.b.30.1 2
35.9 even 6 49.8.c.b.18.1 2
35.19 odd 6 49.8.c.a.18.1 2
35.24 odd 6 49.8.c.a.30.1 2
35.34 odd 2 49.8.a.b.1.1 1
40.19 odd 2 448.8.a.d.1.1 1
40.29 even 2 448.8.a.g.1.1 1
105.104 even 2 441.8.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.8.a.a.1.1 1 5.4 even 2
49.8.a.b.1.1 1 35.34 odd 2
49.8.c.a.18.1 2 35.19 odd 6
49.8.c.a.30.1 2 35.24 odd 6
49.8.c.b.18.1 2 35.9 even 6
49.8.c.b.30.1 2 35.4 even 6
63.8.a.b.1.1 1 15.14 odd 2
112.8.a.c.1.1 1 20.19 odd 2
175.8.a.a.1.1 1 1.1 even 1 trivial
175.8.b.a.99.1 2 5.3 odd 4
175.8.b.a.99.2 2 5.2 odd 4
441.8.a.e.1.1 1 105.104 even 2
448.8.a.d.1.1 1 40.19 odd 2
448.8.a.g.1.1 1 40.29 even 2