Properties

Label 175.7.c.a.174.2
Level $175$
Weight $7$
Character 175.174
Analytic conductor $40.259$
Analytic rank $0$
Dimension $2$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [175,7,Mod(174,175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(175, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("175.174"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 175.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.2594646335\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 174.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 175.174
Dual form 175.7.c.a.174.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000i q^{2} -17.0000 q^{4} -343.000i q^{7} +423.000i q^{8} -729.000 q^{9} +1962.00 q^{11} +3087.00 q^{14} -4895.00 q^{16} -6561.00i q^{18} +17658.0i q^{22} +22734.0i q^{23} +5831.00i q^{28} +21222.0 q^{29} -16983.0i q^{32} +12393.0 q^{36} +101194. i q^{37} +126614. i q^{43} -33354.0 q^{44} -204606. q^{46} -117649. q^{49} -50346.0i q^{53} +145089. q^{56} +190998. i q^{58} +250047. i q^{63} -160433. q^{64} -53926.0i q^{67} -242478. q^{71} -308367. i q^{72} -910746. q^{74} -672966. i q^{77} -929378. q^{79} +531441. q^{81} -1.13953e6 q^{86} +829926. i q^{88} -386478. i q^{92} -1.05884e6i q^{98} -1.43030e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 34 q^{4} - 1458 q^{9} + 3924 q^{11} + 6174 q^{14} - 9790 q^{16} + 42444 q^{29} + 24786 q^{36} - 66708 q^{44} - 409212 q^{46} - 235298 q^{49} + 290178 q^{56} - 320866 q^{64} - 484956 q^{71} - 1821492 q^{74}+ \cdots - 2860596 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9.00000i 1.12500i 0.826797 + 0.562500i \(0.190160\pi\)
−0.826797 + 0.562500i \(0.809840\pi\)
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) −17.0000 −0.265625
\(5\) 0 0
\(6\) 0 0
\(7\) − 343.000i − 1.00000i
\(8\) 423.000i 0.826172i
\(9\) −729.000 −1.00000
\(10\) 0 0
\(11\) 1962.00 1.47408 0.737040 0.675849i \(-0.236223\pi\)
0.737040 + 0.675849i \(0.236223\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 3087.00 1.12500
\(15\) 0 0
\(16\) −4895.00 −1.19507
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) − 6561.00i − 1.12500i
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 17658.0i 1.65834i
\(23\) 22734.0i 1.86850i 0.356623 + 0.934248i \(0.383928\pi\)
−0.356623 + 0.934248i \(0.616072\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 5831.00i 0.265625i
\(29\) 21222.0 0.870146 0.435073 0.900395i \(-0.356722\pi\)
0.435073 + 0.900395i \(0.356722\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) − 16983.0i − 0.518280i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 12393.0 0.265625
\(37\) 101194.i 1.99779i 0.0470096 + 0.998894i \(0.485031\pi\)
−0.0470096 + 0.998894i \(0.514969\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 126614.i 1.59249i 0.604975 + 0.796244i \(0.293183\pi\)
−0.604975 + 0.796244i \(0.706817\pi\)
\(44\) −33354.0 −0.391552
\(45\) 0 0
\(46\) −204606. −2.10206
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −117649. −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 50346.0i − 0.338172i −0.985601 0.169086i \(-0.945918\pi\)
0.985601 0.169086i \(-0.0540815\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 145089. 0.826172
\(57\) 0 0
\(58\) 190998.i 0.978915i
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 250047.i 1.00000i
\(64\) −160433. −0.612003
\(65\) 0 0
\(66\) 0 0
\(67\) − 53926.0i − 0.179297i −0.995973 0.0896487i \(-0.971426\pi\)
0.995973 0.0896487i \(-0.0285744\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −242478. −0.677481 −0.338741 0.940880i \(-0.610001\pi\)
−0.338741 + 0.940880i \(0.610001\pi\)
\(72\) − 308367.i − 0.826172i
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) −910746. −2.24751
\(75\) 0 0
\(76\) 0 0
\(77\) − 672966.i − 1.47408i
\(78\) 0 0
\(79\) −929378. −1.88500 −0.942499 0.334208i \(-0.891531\pi\)
−0.942499 + 0.334208i \(0.891531\pi\)
\(80\) 0 0
\(81\) 531441. 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.13953e6 −1.79155
\(87\) 0 0
\(88\) 829926.i 1.21784i
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) − 386478.i − 0.496319i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) − 1.05884e6i − 1.12500i
\(99\) −1.43030e6 −1.47408
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 453114. 0.380443
\(107\) 46314.0i 0.0378060i 0.999821 + 0.0189030i \(0.00601737\pi\)
−0.999821 + 0.0189030i \(0.993983\pi\)
\(108\) 0 0
\(109\) 2.58714e6 1.99775 0.998874 0.0474386i \(-0.0151058\pi\)
0.998874 + 0.0474386i \(0.0151058\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.67898e6i 1.19507i
\(113\) 2.43689e6i 1.68889i 0.535642 + 0.844445i \(0.320069\pi\)
−0.535642 + 0.844445i \(0.679931\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −360774. −0.231133
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 2.07788e6 1.17291
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) −2.25042e6 −1.12500
\(127\) − 96766.0i − 0.0472402i −0.999721 0.0236201i \(-0.992481\pi\)
0.999721 0.0236201i \(-0.00751921\pi\)
\(128\) − 2.53081e6i − 1.20678i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 485334. 0.201709
\(135\) 0 0
\(136\) 0 0
\(137\) 4.52939e6i 1.76148i 0.473598 + 0.880741i \(0.342955\pi\)
−0.473598 + 0.880741i \(0.657045\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) − 2.18230e6i − 0.762166i
\(143\) 0 0
\(144\) 3.56846e6 1.19507
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) − 1.72030e6i − 0.530663i
\(149\) 5.95330e6 1.79970 0.899848 0.436204i \(-0.143677\pi\)
0.899848 + 0.436204i \(0.143677\pi\)
\(150\) 0 0
\(151\) 1.82840e6 0.531057 0.265528 0.964103i \(-0.414454\pi\)
0.265528 + 0.964103i \(0.414454\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 6.05669e6 1.65834
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) − 8.36440e6i − 2.12062i
\(159\) 0 0
\(160\) 0 0
\(161\) 7.79776e6 1.86850
\(162\) 4.78297e6i 1.12500i
\(163\) 5.49309e6i 1.26839i 0.773171 + 0.634197i \(0.218669\pi\)
−0.773171 + 0.634197i \(0.781331\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −4.82681e6 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) − 2.15244e6i − 0.423005i
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −9.60399e6 −1.76163
\(177\) 0 0
\(178\) 0 0
\(179\) 7.12762e6 1.24276 0.621378 0.783511i \(-0.286573\pi\)
0.621378 + 0.783511i \(0.286573\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −9.61648e6 −1.54370
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.64544e6 0.379663 0.189831 0.981817i \(-0.439206\pi\)
0.189831 + 0.981817i \(0.439206\pi\)
\(192\) 0 0
\(193\) − 6.68999e6i − 0.930579i −0.885159 0.465290i \(-0.845950\pi\)
0.885159 0.465290i \(-0.154050\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 2.00003e6 0.265625
\(197\) − 1.04066e7i − 1.36117i −0.732670 0.680585i \(-0.761726\pi\)
0.732670 0.680585i \(-0.238274\pi\)
\(198\) − 1.28727e7i − 1.65834i
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 7.27915e6i − 0.870146i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 1.65731e7i − 1.86850i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 1.56456e7 1.66550 0.832748 0.553652i \(-0.186766\pi\)
0.832748 + 0.553652i \(0.186766\pi\)
\(212\) 855882.i 0.0898269i
\(213\) 0 0
\(214\) −416826. −0.0425318
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 2.32843e7i 2.24747i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) −5.82517e6 −0.518280
\(225\) 0 0
\(226\) −2.19320e7 −1.90000
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 8.97691e6i 0.718890i
\(233\) 2.92577e6i 0.231299i 0.993290 + 0.115649i \(0.0368949\pi\)
−0.993290 + 0.115649i \(0.963105\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.71015e7 −1.98518 −0.992591 0.121505i \(-0.961228\pi\)
−0.992591 + 0.121505i \(0.961228\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 1.87009e7i 1.31952i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) − 4.25080e6i − 0.265625i
\(253\) 4.46041e7i 2.75431i
\(254\) 870894. 0.0531452
\(255\) 0 0
\(256\) 1.25096e7 0.745628
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 3.47095e7 1.99779
\(260\) 0 0
\(261\) −1.54708e7 −0.870146
\(262\) 0 0
\(263\) − 2.01675e7i − 1.10863i −0.832308 0.554313i \(-0.812981\pi\)
0.832308 0.554313i \(-0.187019\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 916742.i 0.0476259i
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −4.07645e7 −1.98167
\(275\) 0 0
\(276\) 0 0
\(277\) 1.09282e7i 0.514175i 0.966388 + 0.257087i \(0.0827628\pi\)
−0.966388 + 0.257087i \(0.917237\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.55231e7 −1.15031 −0.575155 0.818045i \(-0.695058\pi\)
−0.575155 + 0.818045i \(0.695058\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 4.12213e6 0.179956
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 1.23806e7i 0.518280i
\(289\) −2.41376e7 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4.28051e7 −1.65052
\(297\) 0 0
\(298\) 5.35797e7i 2.02466i
\(299\) 0 0
\(300\) 0 0
\(301\) 4.34286e7 1.59249
\(302\) 1.64556e7i 0.597439i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 1.14404e7i 0.391552i
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 1.57994e7 0.500703
\(317\) − 1.51291e7i − 0.474937i −0.971395 0.237469i \(-0.923682\pi\)
0.971395 0.237469i \(-0.0763177\pi\)
\(318\) 0 0
\(319\) 4.16376e7 1.28267
\(320\) 0 0
\(321\) 0 0
\(322\) 7.01799e7i 2.10206i
\(323\) 0 0
\(324\) −9.03450e6 −0.265625
\(325\) 0 0
\(326\) −4.94378e7 −1.42694
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 4.64551e7 1.28100 0.640500 0.767958i \(-0.278727\pi\)
0.640500 + 0.767958i \(0.278727\pi\)
\(332\) 0 0
\(333\) − 7.37704e7i − 1.99779i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 6.54566e7i − 1.71027i −0.518408 0.855133i \(-0.673475\pi\)
0.518408 0.855133i \(-0.326525\pi\)
\(338\) − 4.34413e7i − 1.12500i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 4.03536e7i 1.00000i
\(344\) −5.35577e7 −1.31567
\(345\) 0 0
\(346\) 0 0
\(347\) − 6.67538e7i − 1.59767i −0.601548 0.798836i \(-0.705449\pi\)
0.601548 0.798836i \(-0.294551\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 3.33206e7i − 0.763986i
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 6.41486e7i 1.39810i
\(359\) 2.68617e7 0.580565 0.290282 0.956941i \(-0.406251\pi\)
0.290282 + 0.956941i \(0.406251\pi\)
\(360\) 0 0
\(361\) 4.70459e7 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) − 1.11283e8i − 2.23298i
\(369\) 0 0
\(370\) 0 0
\(371\) −1.72687e7 −0.338172
\(372\) 0 0
\(373\) − 9.13707e7i − 1.76068i −0.474344 0.880340i \(-0.657315\pi\)
0.474344 0.880340i \(-0.342685\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −3.31112e7 −0.608215 −0.304107 0.952638i \(-0.598358\pi\)
−0.304107 + 0.952638i \(0.598358\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 2.38090e7i 0.427121i
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 6.02099e7 1.04690
\(387\) − 9.23016e7i − 1.59249i
\(388\) 0 0
\(389\) 6.93106e6 0.117747 0.0588737 0.998265i \(-0.481249\pi\)
0.0588737 + 0.998265i \(0.481249\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) − 4.97655e7i − 0.826172i
\(393\) 0 0
\(394\) 9.36598e7 1.53132
\(395\) 0 0
\(396\) 2.43151e7 0.391552
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.26409e8 −1.96040 −0.980199 0.198016i \(-0.936550\pi\)
−0.980199 + 0.198016i \(0.936550\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 6.55123e7 0.978915
\(407\) 1.98543e8i 2.94490i
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 1.49158e8 2.10206
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 8.36917e7 1.12160 0.560798 0.827953i \(-0.310495\pi\)
0.560798 + 0.827953i \(0.310495\pi\)
\(422\) 1.40810e8i 1.87368i
\(423\) 0 0
\(424\) 2.12964e7 0.279388
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) − 787338.i − 0.0100422i
\(429\) 0 0
\(430\) 0 0
\(431\) −8.60283e7 −1.07451 −0.537254 0.843421i \(-0.680538\pi\)
−0.537254 + 0.843421i \(0.680538\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −4.39814e7 −0.530652
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 8.57661e7 1.00000
\(442\) 0 0
\(443\) − 1.71340e8i − 1.97082i −0.170196 0.985410i \(-0.554440\pi\)
0.170196 0.985410i \(-0.445560\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 5.50285e7i 0.612003i
\(449\) 1.73823e8 1.92030 0.960149 0.279490i \(-0.0901653\pi\)
0.960149 + 0.279490i \(0.0901653\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) − 4.14272e7i − 0.448611i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 1.26728e8i − 1.32777i −0.747834 0.663886i \(-0.768906\pi\)
0.747834 0.663886i \(-0.231094\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 1.27272e8i 1.28230i 0.767415 + 0.641151i \(0.221543\pi\)
−0.767415 + 0.641151i \(0.778457\pi\)
\(464\) −1.03882e8 −1.03988
\(465\) 0 0
\(466\) −2.63320e7 −0.260211
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) −1.84966e7 −0.179297
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.48417e8i 2.34746i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 3.67022e7i 0.338172i
\(478\) − 2.43914e8i − 2.23333i
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −3.53240e7 −0.311554
\(485\) 0 0
\(486\) 0 0
\(487\) 2.20135e8i 1.90591i 0.303113 + 0.952955i \(0.401974\pi\)
−0.303113 + 0.952955i \(0.598026\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.78277e8 1.50609 0.753044 0.657970i \(-0.228585\pi\)
0.753044 + 0.657970i \(0.228585\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.31700e7i 0.677481i
\(498\) 0 0
\(499\) 1.96143e8 1.57860 0.789300 0.614008i \(-0.210444\pi\)
0.789300 + 0.614008i \(0.210444\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) −1.05770e8 −0.826172
\(505\) 0 0
\(506\) −4.01437e8 −3.09860
\(507\) 0 0
\(508\) 1.64502e6i 0.0125482i
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) − 4.93857e7i − 0.367952i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 3.12386e8i 2.24751i
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) − 1.39238e8i − 0.978915i
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 1.81508e8 1.24720
\(527\) 0 0
\(528\) 0 0
\(529\) −3.68799e8 −2.49128
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 2.28107e7 0.148130
\(537\) 0 0
\(538\) 0 0
\(539\) −2.30827e8 −1.47408
\(540\) 0 0
\(541\) −6.45700e7 −0.407792 −0.203896 0.978993i \(-0.565360\pi\)
−0.203896 + 0.978993i \(0.565360\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 1.58854e8i − 0.970592i −0.874350 0.485296i \(-0.838712\pi\)
0.874350 0.485296i \(-0.161288\pi\)
\(548\) − 7.69997e7i − 0.467894i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 3.18777e8i 1.88500i
\(554\) −9.83541e7 −0.578447
\(555\) 0 0
\(556\) 0 0
\(557\) 7.34035e7i 0.424767i 0.977186 + 0.212384i \(0.0681227\pi\)
−0.977186 + 0.212384i \(0.931877\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) − 2.29708e8i − 1.29410i
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 1.82284e8i − 1.00000i
\(568\) − 1.02568e8i − 0.559716i
\(569\) −3.55493e8 −1.92972 −0.964859 0.262767i \(-0.915365\pi\)
−0.964859 + 0.262767i \(0.915365\pi\)
\(570\) 0 0
\(571\) −3.26262e8 −1.75250 −0.876250 0.481857i \(-0.839963\pi\)
−0.876250 + 0.481857i \(0.839963\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 1.16956e8 0.612003
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) − 2.17238e8i − 1.12500i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) − 9.87789e7i − 0.498492i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) − 4.95345e8i − 2.38749i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.01206e8 −0.478044
\(597\) 0 0
\(598\) 0 0
\(599\) −1.82026e8 −0.846941 −0.423471 0.905910i \(-0.639188\pi\)
−0.423471 + 0.905910i \(0.639188\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 3.90857e8i 1.79155i
\(603\) 3.93121e7i 0.179297i
\(604\) −3.10828e7 −0.141062
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 2.35393e8i 1.02191i 0.859608 + 0.510954i \(0.170708\pi\)
−0.859608 + 0.510954i \(0.829292\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 2.84665e8 1.21784
\(617\) 4.63532e8i 1.97344i 0.162423 + 0.986721i \(0.448069\pi\)
−0.162423 + 0.986721i \(0.551931\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1.83542e8 0.730544 0.365272 0.930901i \(-0.380976\pi\)
0.365272 + 0.930901i \(0.380976\pi\)
\(632\) − 3.93127e8i − 1.55733i
\(633\) 0 0
\(634\) 1.36162e8 0.534304
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 3.74738e8i 1.44300i
\(639\) 1.76766e8 0.677481
\(640\) 0 0
\(641\) −4.47931e8 −1.70073 −0.850367 0.526189i \(-0.823620\pi\)
−0.850367 + 0.526189i \(0.823620\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) −1.32562e8 −0.496319
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 2.24800e8i 0.826172i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) − 9.33826e7i − 0.336917i
\(653\) − 1.74812e8i − 0.627816i −0.949453 0.313908i \(-0.898362\pi\)
0.949453 0.313908i \(-0.101638\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 5.69128e8 1.98863 0.994314 0.106485i \(-0.0339598\pi\)
0.994314 + 0.106485i \(0.0339598\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 4.18096e8i 1.44113i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 6.63934e8 2.24751
\(667\) 4.82461e8i 1.62587i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) − 5.17302e8i − 1.69707i −0.529141 0.848534i \(-0.677486\pi\)
0.529141 0.848534i \(-0.322514\pi\)
\(674\) 5.89109e8 1.92405
\(675\) 0 0
\(676\) 8.20558e7 0.265625
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 5.22860e8i − 1.64105i −0.571607 0.820527i \(-0.693680\pi\)
0.571607 0.820527i \(-0.306320\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −3.63182e8 −1.12500
\(687\) 0 0
\(688\) − 6.19776e8i − 1.90313i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 4.90592e8i 1.47408i
\(694\) 6.00785e8 1.79738
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −6.71321e8 −1.94884 −0.974420 0.224735i \(-0.927848\pi\)
−0.974420 + 0.224735i \(0.927848\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −3.14770e8 −0.902142
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 5.55400e8 1.55836 0.779178 0.626802i \(-0.215637\pi\)
0.779178 + 0.626802i \(0.215637\pi\)
\(710\) 0 0
\(711\) 6.77517e8 1.88500
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −1.21170e8 −0.330107
\(717\) 0 0
\(718\) 2.41756e8i 0.653136i
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 4.23413e8i 1.12500i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −3.87420e8 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 3.86092e8 0.968405
\(737\) − 1.05803e8i − 0.264299i
\(738\) 0 0
\(739\) 1.65862e8 0.410973 0.205486 0.978660i \(-0.434122\pi\)
0.205486 + 0.978660i \(0.434122\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 1.55418e8i − 0.380443i
\(743\) 1.87319e8i 0.456684i 0.973581 + 0.228342i \(0.0733304\pi\)
−0.973581 + 0.228342i \(0.926670\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 8.22336e8 1.98076
\(747\) 0 0
\(748\) 0 0
\(749\) 1.58857e7 0.0378060
\(750\) 0 0
\(751\) −8.41137e8 −1.98585 −0.992926 0.118736i \(-0.962116\pi\)
−0.992926 + 0.118736i \(0.962116\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 3.45533e8i 0.796529i 0.917271 + 0.398264i \(0.130387\pi\)
−0.917271 + 0.398264i \(0.869613\pi\)
\(758\) − 2.98001e8i − 0.684242i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) − 8.87390e8i − 1.99775i
\(764\) −4.49725e7 −0.100848
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.13730e8i 0.247185i
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 8.30714e8 1.79155
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 6.23796e7i 0.132466i
\(779\) 0 0
\(780\) 0 0
\(781\) −4.75742e8 −0.998661
\(782\) 0 0
\(783\) 0 0
\(784\) 5.75892e8 1.19507
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 1.76913e8i 0.361561i
\(789\) 0 0
\(790\) 0 0
\(791\) 8.35855e8 1.68889
\(792\) − 6.05016e8i − 1.21784i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) − 1.13768e9i − 2.20545i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −3.36371e8 −0.635292 −0.317646 0.948209i \(-0.602892\pi\)
−0.317646 + 0.948209i \(0.602892\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 1.23745e8i 0.231133i
\(813\) 0 0
\(814\) −1.78688e9 −3.31301
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.88782e8 1.42537 0.712685 0.701484i \(-0.247479\pi\)
0.712685 + 0.701484i \(0.247479\pi\)
\(822\) 0 0
\(823\) − 1.02325e9i − 1.83563i −0.397014 0.917813i \(-0.629954\pi\)
0.397014 0.917813i \(-0.370046\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 5.56178e8i − 0.983326i −0.870786 0.491663i \(-0.836389\pi\)
0.870786 0.491663i \(-0.163611\pi\)
\(828\) 2.81742e8i 0.496319i
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −1.44450e8 −0.242845
\(842\) 7.53225e8i 1.26179i
\(843\) 0 0
\(844\) −2.65975e8 −0.442398
\(845\) 0 0
\(846\) 0 0
\(847\) − 7.12714e8i − 1.17291i
\(848\) 2.46444e8i 0.404138i
\(849\) 0 0
\(850\) 0 0
\(851\) −2.30054e9 −3.73286
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1.95908e7 −0.0312343
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 7.74255e8i − 1.20882i
\(863\) 8.77431e8i 1.36515i 0.730815 + 0.682576i \(0.239140\pi\)
−0.730815 + 0.682576i \(0.760860\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.82344e9 −2.77864
\(870\) 0 0
\(871\) 0 0
\(872\) 1.09436e9i 1.65048i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 1.30615e9i − 1.93640i −0.250185 0.968198i \(-0.580491\pi\)
0.250185 0.968198i \(-0.419509\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 7.71895e8i 1.12500i
\(883\) 4.73327e8i 0.687510i 0.939059 + 0.343755i \(0.111699\pi\)
−0.939059 + 0.343755i \(0.888301\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 1.54206e9 2.21717
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) −3.31907e7 −0.0472402
\(890\) 0 0
\(891\) 1.04269e9 1.47408
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −8.68067e8 −1.20678
\(897\) 0 0
\(898\) 1.56441e9i 2.16033i
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −1.03081e9 −1.39531
\(905\) 0 0
\(906\) 0 0
\(907\) 1.28922e9i 1.72785i 0.503621 + 0.863925i \(0.332001\pi\)
−0.503621 + 0.863925i \(0.667999\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 5.85794e7 0.0774800 0.0387400 0.999249i \(-0.487666\pi\)
0.0387400 + 0.999249i \(0.487666\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 1.14055e9 1.49374
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.07950e9 1.39084 0.695419 0.718604i \(-0.255219\pi\)
0.695419 + 0.718604i \(0.255219\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −1.14545e9 −1.44259
\(927\) 0 0
\(928\) − 3.60413e8i − 0.450979i
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) − 4.97382e7i − 0.0614387i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) − 1.66470e8i − 0.201709i
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) −2.23575e9 −2.64089
\(947\) 6.84836e8i 0.806374i 0.915118 + 0.403187i \(0.132098\pi\)
−0.915118 + 0.403187i \(0.867902\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 8.73142e8i 1.00880i 0.863469 + 0.504401i \(0.168287\pi\)
−0.863469 + 0.504401i \(0.831713\pi\)
\(954\) −3.30320e8 −0.380443
\(955\) 0 0
\(956\) 4.60726e8 0.527314
\(957\) 0 0
\(958\) 0 0
\(959\) 1.55358e9 1.76148
\(960\) 0 0
\(961\) 8.87504e8 1.00000
\(962\) 0 0
\(963\) − 3.37629e7i − 0.0378060i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 8.99699e8i 0.994988i 0.867467 + 0.497494i \(0.165746\pi\)
−0.867467 + 0.497494i \(0.834254\pi\)
\(968\) 8.78945e8i 0.969026i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −1.98121e9 −2.14415
\(975\) 0 0
\(976\) 0 0
\(977\) − 4.59650e8i − 0.492882i −0.969158 0.246441i \(-0.920739\pi\)
0.969158 0.246441i \(-0.0792612\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −1.88603e9 −1.99775
\(982\) 1.60449e9i 1.69435i
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.87844e9 −2.97556
\(990\) 0 0
\(991\) 1.36299e9 1.40046 0.700230 0.713918i \(-0.253081\pi\)
0.700230 + 0.713918i \(0.253081\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −7.48530e8 −0.762166
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 1.76529e9i 1.77592i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.7.c.a.174.2 2
5.2 odd 4 175.7.d.a.76.1 1
5.3 odd 4 7.7.b.a.6.1 1
5.4 even 2 inner 175.7.c.a.174.1 2
7.6 odd 2 CM 175.7.c.a.174.2 2
15.8 even 4 63.7.d.a.55.1 1
20.3 even 4 112.7.c.a.97.1 1
35.3 even 12 49.7.d.a.19.1 2
35.13 even 4 7.7.b.a.6.1 1
35.18 odd 12 49.7.d.a.19.1 2
35.23 odd 12 49.7.d.a.31.1 2
35.27 even 4 175.7.d.a.76.1 1
35.33 even 12 49.7.d.a.31.1 2
35.34 odd 2 inner 175.7.c.a.174.1 2
40.3 even 4 448.7.c.b.321.1 1
40.13 odd 4 448.7.c.a.321.1 1
105.83 odd 4 63.7.d.a.55.1 1
140.83 odd 4 112.7.c.a.97.1 1
280.13 even 4 448.7.c.a.321.1 1
280.83 odd 4 448.7.c.b.321.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.7.b.a.6.1 1 5.3 odd 4
7.7.b.a.6.1 1 35.13 even 4
49.7.d.a.19.1 2 35.3 even 12
49.7.d.a.19.1 2 35.18 odd 12
49.7.d.a.31.1 2 35.23 odd 12
49.7.d.a.31.1 2 35.33 even 12
63.7.d.a.55.1 1 15.8 even 4
63.7.d.a.55.1 1 105.83 odd 4
112.7.c.a.97.1 1 20.3 even 4
112.7.c.a.97.1 1 140.83 odd 4
175.7.c.a.174.1 2 5.4 even 2 inner
175.7.c.a.174.1 2 35.34 odd 2 inner
175.7.c.a.174.2 2 1.1 even 1 trivial
175.7.c.a.174.2 2 7.6 odd 2 CM
175.7.d.a.76.1 1 5.2 odd 4
175.7.d.a.76.1 1 35.27 even 4
448.7.c.a.321.1 1 40.13 odd 4
448.7.c.a.321.1 1 280.13 even 4
448.7.c.b.321.1 1 40.3 even 4
448.7.c.b.321.1 1 280.83 odd 4