Properties

Label 175.6.b.d
Level $175$
Weight $6$
Character orbit 175.b
Analytic conductor $28.067$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [175,6,Mod(99,175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("175.99"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(175, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 175.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,62] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.0671684673\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{65})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 33x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (3 \beta_{2} + 3 \beta_1) q^{3} + (\beta_{3} + 15) q^{4} - 48 q^{6} + 49 \beta_{2} q^{7} + (16 \beta_{2} + 47 \beta_1) q^{8} + ( - 9 \beta_{3} + 99) q^{9} + ( - 97 \beta_{3} - 252) q^{11}+ \cdots + ( - 6462 \beta_{3} - 10980) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 62 q^{4} - 192 q^{6} + 378 q^{9} - 1202 q^{11} + 98 q^{14} - 1086 q^{16} - 1260 q^{19} - 294 q^{21} - 9120 q^{24} + 2868 q^{26} - 11770 q^{29} - 792 q^{31} - 16356 q^{34} + 5274 q^{36} + 12066 q^{39}+ \cdots - 56844 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 33x^{2} + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 17\nu ) / 16 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 17 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 17 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 16\beta_{2} - 17\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
4.53113i
3.53113i
3.53113i
4.53113i
4.53113i 10.5934i 11.4689 0 −48.0000 49.0000i 196.963i 130.780 0
99.2 3.53113i 13.5934i 19.5311 0 −48.0000 49.0000i 181.963i 58.2198 0
99.3 3.53113i 13.5934i 19.5311 0 −48.0000 49.0000i 181.963i 58.2198 0
99.4 4.53113i 10.5934i 11.4689 0 −48.0000 49.0000i 196.963i 130.780 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.6.b.d 4
5.b even 2 1 inner 175.6.b.d 4
5.c odd 4 1 35.6.a.b 2
5.c odd 4 1 175.6.a.d 2
15.e even 4 1 315.6.a.c 2
20.e even 4 1 560.6.a.l 2
35.f even 4 1 245.6.a.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.6.a.b 2 5.c odd 4 1
175.6.a.d 2 5.c odd 4 1
175.6.b.d 4 1.a even 1 1 trivial
175.6.b.d 4 5.b even 2 1 inner
245.6.a.c 2 35.f even 4 1
315.6.a.c 2 15.e even 4 1
560.6.a.l 2 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 33T_{2}^{2} + 256 \) acting on \(S_{6}^{\mathrm{new}}(175, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 33T^{2} + 256 \) Copy content Toggle raw display
$3$ \( T^{4} + 297 T^{2} + 20736 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 2401)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 601 T - 62596)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 1412707396 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 1047237035716 \) Copy content Toggle raw display
$19$ \( (T^{2} + 630 T - 20960)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 173507485106176 \) Copy content Toggle raw display
$29$ \( (T^{2} + 5885 T - 5853350)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 396 T - 13834656)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 35738827414416 \) Copy content Toggle raw display
$41$ \( (T^{2} - 1774 T - 236091496)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 28\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 53\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 59\!\cdots\!16 \) Copy content Toggle raw display
$59$ \( (T^{2} + 59600 T + 451339840)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 51846 T + 142927344)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 30\!\cdots\!36 \) Copy content Toggle raw display
$71$ \( (T^{2} - 80744 T + 1172746624)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 57\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( (T^{2} - 51795 T - 4382959400)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 76\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( (T^{2} - 37650 T - 177665240)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 70\!\cdots\!56 \) Copy content Toggle raw display
show more
show less