Defining parameters
Level: | \( N \) | \(=\) | \( 175 = 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 175.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 9 \) | ||
Sturm bound: | \(100\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(175, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 86 | 53 | 33 |
Cusp forms | 74 | 47 | 27 |
Eisenstein series | 12 | 6 | 6 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(175, [\chi])\) into newform subspaces
Decomposition of \(S_{5}^{\mathrm{old}}(175, [\chi])\) into lower level spaces
\( S_{5}^{\mathrm{old}}(175, [\chi]) \cong \) \(S_{5}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)