Properties

Label 175.4.x.a.103.8
Level $175$
Weight $4$
Character 175.103
Analytic conductor $10.325$
Analytic rank $0$
Dimension $928$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(928\)
Relative dimension: \(58\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 103.8
Character \(\chi\) \(=\) 175.103
Dual form 175.4.x.a.17.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.55296 - 0.238611i) q^{2} +(1.16184 + 1.43476i) q^{3} +(12.7163 + 1.33654i) q^{4} +(0.739681 + 11.1558i) q^{5} +(-4.94748 - 6.80963i) q^{6} +(4.38567 - 17.9935i) q^{7} +(-21.5535 - 3.41373i) q^{8} +(4.90497 - 23.0761i) q^{9} +O(q^{10})\) \(q+(-4.55296 - 0.238611i) q^{2} +(1.16184 + 1.43476i) q^{3} +(12.7163 + 1.33654i) q^{4} +(0.739681 + 11.1558i) q^{5} +(-4.94748 - 6.80963i) q^{6} +(4.38567 - 17.9935i) q^{7} +(-21.5535 - 3.41373i) q^{8} +(4.90497 - 23.0761i) q^{9} +(-0.705835 - 50.9686i) q^{10} +(-29.1757 + 6.20148i) q^{11} +(12.8568 + 19.7977i) q^{12} +(33.5772 + 17.1084i) q^{13} +(-24.2612 + 80.8772i) q^{14} +(-15.1465 + 14.0226i) q^{15} +(-2.73824 - 0.582032i) q^{16} +(-1.86788 - 4.86599i) q^{17} +(-27.8383 + 103.894i) q^{18} +(-10.3818 - 98.7763i) q^{19} +(-5.50421 + 142.850i) q^{20} +(30.9118 - 14.6133i) q^{21} +(134.316 - 21.2735i) q^{22} +(-6.71157 + 128.064i) q^{23} +(-20.1439 - 34.8902i) q^{24} +(-123.906 + 16.5035i) q^{25} +(-148.793 - 85.9059i) q^{26} +(83.2215 - 42.4035i) q^{27} +(79.8187 - 222.950i) q^{28} +(148.907 - 204.953i) q^{29} +(72.3076 - 60.2303i) q^{30} +(48.2050 - 108.270i) q^{31} +(180.957 + 48.4872i) q^{32} +(-42.7952 - 34.6549i) q^{33} +(7.34330 + 22.6004i) q^{34} +(203.977 + 35.6164i) q^{35} +(93.2153 - 286.887i) q^{36} +(241.596 - 156.894i) q^{37} +(23.6989 + 452.202i) q^{38} +(14.4650 + 68.0525i) q^{39} +(22.1404 - 242.972i) q^{40} +(373.584 - 121.385i) q^{41} +(-144.227 + 59.1578i) q^{42} +(257.326 + 257.326i) q^{43} +(-379.297 + 39.8657i) q^{44} +(261.061 + 37.6501i) q^{45} +(61.1150 - 581.471i) q^{46} +(-294.443 - 113.026i) q^{47} +(-2.34634 - 4.60495i) q^{48} +(-304.532 - 157.827i) q^{49} +(568.076 - 45.5747i) q^{50} +(4.81134 - 8.33348i) q^{51} +(404.113 + 262.434i) q^{52} +(293.082 - 237.333i) q^{53} +(-389.022 + 173.204i) q^{54} +(-90.7635 - 320.892i) q^{55} +(-155.951 + 372.851i) q^{56} +(129.658 - 129.658i) q^{57} +(-726.870 + 897.610i) q^{58} +(-191.477 + 212.657i) q^{59} +(-211.350 + 158.072i) q^{60} +(-36.1653 + 32.5634i) q^{61} +(-245.310 + 481.448i) q^{62} +(-393.707 - 189.461i) q^{63} +(-791.020 - 257.018i) q^{64} +(-166.023 + 387.237i) q^{65} +(186.576 + 167.994i) q^{66} +(571.777 - 219.485i) q^{67} +(-17.2490 - 64.3741i) q^{68} +(-191.539 + 139.161i) q^{69} +(-920.199 - 210.831i) q^{70} +(775.979 + 563.782i) q^{71} +(-184.495 + 480.625i) q^{72} +(86.5291 - 133.243i) q^{73} +(-1137.41 + 656.686i) q^{74} +(-167.638 - 158.600i) q^{75} -1269.95i q^{76} +(-16.3685 + 552.170i) q^{77} +(-49.6205 - 313.292i) q^{78} +(148.229 + 332.928i) q^{79} +(4.46763 - 30.9779i) q^{80} +(-424.375 - 188.944i) q^{81} +(-1729.88 + 463.519i) q^{82} +(-104.113 + 657.345i) q^{83} +(412.616 - 144.512i) q^{84} +(52.9026 - 24.4370i) q^{85} +(-1110.19 - 1233.00i) q^{86} +(467.064 - 24.4778i) q^{87} +(650.008 - 34.0655i) q^{88} +(-276.345 - 306.913i) q^{89} +(-1179.62 - 233.711i) q^{90} +(455.099 - 529.139i) q^{91} +(-256.510 + 1619.54i) q^{92} +(211.348 - 56.6306i) q^{93} +(1313.62 + 584.860i) q^{94} +(1094.25 - 188.881i) q^{95} +(140.676 + 315.964i) q^{96} +(43.0516 + 271.817i) q^{97} +(1348.86 + 791.245i) q^{98} +703.678i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 928 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 24 q^{7} + 84 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 928 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 24 q^{7} + 84 q^{8} - 10 q^{9} - 96 q^{10} - 6 q^{11} - 72 q^{12} - 20 q^{14} - 368 q^{15} - 1670 q^{16} + 120 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} - 880 q^{22} + 296 q^{23} + 32 q^{25} - 48 q^{26} + 226 q^{28} - 200 q^{29} - 38 q^{30} - 18 q^{31} - 964 q^{32} - 1092 q^{33} + 288 q^{35} + 7400 q^{36} - 392 q^{37} + 5424 q^{38} + 2430 q^{39} + 2172 q^{40} - 2098 q^{42} + 1560 q^{43} - 10 q^{44} - 4224 q^{45} - 6 q^{46} + 96 q^{47} + 6232 q^{50} - 16 q^{51} - 8928 q^{52} - 2384 q^{53} - 30 q^{54} + 244 q^{56} + 1556 q^{57} + 640 q^{58} + 4890 q^{59} + 3676 q^{60} - 18 q^{61} + 224 q^{63} - 9700 q^{64} - 1116 q^{65} - 2610 q^{66} - 2404 q^{67} - 13614 q^{68} - 1700 q^{70} - 24 q^{71} - 518 q^{72} - 4200 q^{73} - 16104 q^{75} - 722 q^{77} - 356 q^{78} - 10 q^{79} + 6414 q^{80} - 6810 q^{81} + 1692 q^{82} + 20620 q^{84} + 2712 q^{85} - 6 q^{86} + 9102 q^{87} + 1650 q^{88} + 20370 q^{89} - 12 q^{91} + 1612 q^{92} - 4604 q^{93} - 30 q^{94} + 1652 q^{95} - 2610 q^{96} - 19478 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.55296 0.238611i −1.60971 0.0843616i −0.773876 0.633337i \(-0.781685\pi\)
−0.835839 + 0.548975i \(0.815018\pi\)
\(3\) 1.16184 + 1.43476i 0.223597 + 0.276119i 0.876583 0.481251i \(-0.159817\pi\)
−0.652986 + 0.757370i \(0.726484\pi\)
\(4\) 12.7163 + 1.33654i 1.58954 + 0.167068i
\(5\) 0.739681 + 11.1558i 0.0661591 + 0.997809i
\(6\) −4.94748 6.80963i −0.336634 0.463336i
\(7\) 4.38567 17.9935i 0.236804 0.971557i
\(8\) −21.5535 3.41373i −0.952538 0.150867i
\(9\) 4.90497 23.0761i 0.181665 0.854669i
\(10\) −0.705835 50.9686i −0.0223205 1.61177i
\(11\) −29.1757 + 6.20148i −0.799709 + 0.169983i −0.589601 0.807695i \(-0.700715\pi\)
−0.210108 + 0.977678i \(0.567382\pi\)
\(12\) 12.8568 + 19.7977i 0.309286 + 0.476259i
\(13\) 33.5772 + 17.1084i 0.716357 + 0.365002i 0.773871 0.633343i \(-0.218318\pi\)
−0.0575149 + 0.998345i \(0.518318\pi\)
\(14\) −24.2612 + 80.8772i −0.463149 + 1.54395i
\(15\) −15.1465 + 14.0226i −0.260721 + 0.241375i
\(16\) −2.73824 0.582032i −0.0427851 0.00909425i
\(17\) −1.86788 4.86599i −0.0266487 0.0694221i 0.919611 0.392831i \(-0.128504\pi\)
−0.946259 + 0.323409i \(0.895171\pi\)
\(18\) −27.8383 + 103.894i −0.364531 + 1.36045i
\(19\) −10.3818 98.7763i −0.125355 1.19268i −0.858577 0.512685i \(-0.828651\pi\)
0.733221 0.679990i \(-0.238016\pi\)
\(20\) −5.50421 + 142.850i −0.0615390 + 1.59711i
\(21\) 30.9118 14.6133i 0.321214 0.151851i
\(22\) 134.316 21.2735i 1.30164 0.206160i
\(23\) −6.71157 + 128.064i −0.0608460 + 1.16101i 0.782149 + 0.623091i \(0.214123\pi\)
−0.842995 + 0.537921i \(0.819210\pi\)
\(24\) −20.1439 34.8902i −0.171327 0.296748i
\(25\) −123.906 + 16.5035i −0.991246 + 0.132028i
\(26\) −148.793 85.9059i −1.12234 0.647982i
\(27\) 83.2215 42.4035i 0.593184 0.302243i
\(28\) 79.8187 222.950i 0.538726 1.50477i
\(29\) 148.907 204.953i 0.953493 1.31237i 0.00353442 0.999994i \(-0.498875\pi\)
0.949958 0.312376i \(-0.101125\pi\)
\(30\) 72.3076 60.2303i 0.440050 0.366550i
\(31\) 48.2050 108.270i 0.279286 0.627287i −0.718374 0.695657i \(-0.755113\pi\)
0.997660 + 0.0683701i \(0.0217799\pi\)
\(32\) 180.957 + 48.4872i 0.999654 + 0.267857i
\(33\) −42.7952 34.6549i −0.225748 0.182807i
\(34\) 7.34330 + 22.6004i 0.0370402 + 0.113998i
\(35\) 203.977 + 35.6164i 0.985096 + 0.172008i
\(36\) 93.2153 286.887i 0.431552 1.32818i
\(37\) 241.596 156.894i 1.07346 0.697115i 0.118235 0.992986i \(-0.462276\pi\)
0.955228 + 0.295871i \(0.0956097\pi\)
\(38\) 23.6989 + 452.202i 0.101170 + 1.93044i
\(39\) 14.4650 + 68.0525i 0.0593911 + 0.279413i
\(40\) 22.1404 242.972i 0.0875176 0.960432i
\(41\) 373.584 121.385i 1.42302 0.462369i 0.506463 0.862262i \(-0.330953\pi\)
0.916562 + 0.399893i \(0.130953\pi\)
\(42\) −144.227 + 59.1578i −0.529874 + 0.217339i
\(43\) 257.326 + 257.326i 0.912601 + 0.912601i 0.996476 0.0838754i \(-0.0267298\pi\)
−0.0838754 + 0.996476i \(0.526730\pi\)
\(44\) −379.297 + 39.8657i −1.29957 + 0.136590i
\(45\) 261.061 + 37.6501i 0.864815 + 0.124723i
\(46\) 61.1150 581.471i 0.195890 1.86376i
\(47\) −294.443 113.026i −0.913806 0.350777i −0.144386 0.989521i \(-0.546121\pi\)
−0.769419 + 0.638744i \(0.779454\pi\)
\(48\) −2.34634 4.60495i −0.00705552 0.0138472i
\(49\) −304.532 157.827i −0.887848 0.460137i
\(50\) 568.076 45.5747i 1.60676 0.128905i
\(51\) 4.81134 8.33348i 0.0132102 0.0228808i
\(52\) 404.113 + 262.434i 1.07770 + 0.699866i
\(53\) 293.082 237.333i 0.759582 0.615098i −0.169261 0.985571i \(-0.554138\pi\)
0.928843 + 0.370474i \(0.120805\pi\)
\(54\) −389.022 + 173.204i −0.980355 + 0.436482i
\(55\) −90.7635 320.892i −0.222519 0.786711i
\(56\) −155.951 + 372.851i −0.372141 + 0.889719i
\(57\) 129.658 129.658i 0.301292 0.301292i
\(58\) −726.870 + 897.610i −1.64556 + 2.03210i
\(59\) −191.477 + 212.657i −0.422512 + 0.469247i −0.916391 0.400284i \(-0.868912\pi\)
0.493880 + 0.869530i \(0.335578\pi\)
\(60\) −211.350 + 158.072i −0.454754 + 0.340118i
\(61\) −36.1653 + 32.5634i −0.0759098 + 0.0683495i −0.706212 0.708000i \(-0.749598\pi\)
0.630302 + 0.776350i \(0.282931\pi\)
\(62\) −245.310 + 481.448i −0.502490 + 0.986193i
\(63\) −393.707 189.461i −0.787341 0.378887i
\(64\) −791.020 257.018i −1.54496 0.501988i
\(65\) −166.023 + 387.237i −0.316809 + 0.738935i
\(66\) 186.576 + 167.994i 0.347969 + 0.313312i
\(67\) 571.777 219.485i 1.04259 0.400214i 0.224000 0.974589i \(-0.428088\pi\)
0.818592 + 0.574376i \(0.194755\pi\)
\(68\) −17.2490 64.3741i −0.0307610 0.114802i
\(69\) −191.539 + 139.161i −0.334183 + 0.242798i
\(70\) −920.199 210.831i −1.57121 0.359988i
\(71\) 775.979 + 563.782i 1.29707 + 0.942375i 0.999922 0.0124577i \(-0.00396550\pi\)
0.297145 + 0.954832i \(0.403965\pi\)
\(72\) −184.495 + 480.625i −0.301985 + 0.786697i
\(73\) 86.5291 133.243i 0.138732 0.213629i −0.762474 0.647018i \(-0.776016\pi\)
0.901207 + 0.433389i \(0.142682\pi\)
\(74\) −1137.41 + 656.686i −1.78678 + 1.03160i
\(75\) −167.638 158.600i −0.258095 0.244181i
\(76\) 1269.95i 1.91675i
\(77\) −16.3685 + 552.170i −0.0242255 + 0.817216i
\(78\) −49.6205 313.292i −0.0720310 0.454786i
\(79\) 148.229 + 332.928i 0.211102 + 0.474144i 0.987800 0.155730i \(-0.0497731\pi\)
−0.776697 + 0.629874i \(0.783106\pi\)
\(80\) 4.46763 30.9779i 0.00624370 0.0432930i
\(81\) −424.375 188.944i −0.582132 0.259182i
\(82\) −1729.88 + 463.519i −2.32967 + 0.624233i
\(83\) −104.113 + 657.345i −0.137686 + 0.869313i 0.818063 + 0.575129i \(0.195048\pi\)
−0.955749 + 0.294184i \(0.904952\pi\)
\(84\) 412.616 144.512i 0.535954 0.187710i
\(85\) 52.9026 24.4370i 0.0675070 0.0311832i
\(86\) −1110.19 1233.00i −1.39204 1.54602i
\(87\) 467.064 24.4778i 0.575569 0.0301643i
\(88\) 650.008 34.0655i 0.787398 0.0412658i
\(89\) −276.345 306.913i −0.329130 0.365536i 0.555755 0.831346i \(-0.312429\pi\)
−0.884884 + 0.465811i \(0.845763\pi\)
\(90\) −1179.62 233.711i −1.38158 0.273726i
\(91\) 455.099 529.139i 0.524256 0.609548i
\(92\) −256.510 + 1619.54i −0.290685 + 1.83531i
\(93\) 211.348 56.6306i 0.235654 0.0631432i
\(94\) 1313.62 + 584.860i 1.44137 + 0.641741i
\(95\) 1094.25 188.881i 1.18177 0.203987i
\(96\) 140.676 + 315.964i 0.149559 + 0.335916i
\(97\) 43.0516 + 271.817i 0.0450642 + 0.284524i 0.999921 0.0125413i \(-0.00399213\pi\)
−0.954857 + 0.297065i \(0.903992\pi\)
\(98\) 1348.86 + 791.245i 1.39036 + 0.815590i
\(99\) 703.678i 0.714367i
\(100\) −1597.69 + 44.2593i −1.59769 + 0.0442593i
\(101\) 1250.48 721.966i 1.23196 0.711271i 0.264519 0.964380i \(-0.414787\pi\)
0.967438 + 0.253110i \(0.0814534\pi\)
\(102\) −23.8943 + 36.7940i −0.0231950 + 0.0357171i
\(103\) 556.788 1450.48i 0.532640 1.38757i −0.358365 0.933582i \(-0.616666\pi\)
0.891005 0.453993i \(-0.150001\pi\)
\(104\) −665.301 483.370i −0.627290 0.455753i
\(105\) 185.888 + 334.038i 0.172770 + 0.310464i
\(106\) −1391.02 + 1010.63i −1.27460 + 0.926052i
\(107\) 269.736 + 1006.67i 0.243705 + 0.909518i 0.974030 + 0.226418i \(0.0727017\pi\)
−0.730326 + 0.683099i \(0.760632\pi\)
\(108\) 1114.95 427.988i 0.993387 0.381325i
\(109\) −1022.55 920.712i −0.898559 0.809066i 0.0837203 0.996489i \(-0.473320\pi\)
−0.982279 + 0.187423i \(0.939986\pi\)
\(110\) 336.674 + 1482.67i 0.291824 + 1.28515i
\(111\) 505.802 + 164.345i 0.432510 + 0.140531i
\(112\) −22.4818 + 46.7180i −0.0189672 + 0.0394146i
\(113\) −89.2825 + 175.227i −0.0743274 + 0.145876i −0.925180 0.379529i \(-0.876086\pi\)
0.850852 + 0.525405i \(0.176086\pi\)
\(114\) −621.266 + 559.390i −0.510411 + 0.459576i
\(115\) −1433.63 + 19.8535i −1.16249 + 0.0160987i
\(116\) 2167.48 2407.23i 1.73487 1.92677i
\(117\) 559.490 690.913i 0.442093 0.545939i
\(118\) 922.529 922.529i 0.719710 0.719710i
\(119\) −95.7481 + 12.2690i −0.0737581 + 0.00945128i
\(120\) 374.330 250.530i 0.284763 0.190584i
\(121\) −403.167 + 179.501i −0.302905 + 0.134862i
\(122\) 172.429 139.631i 0.127959 0.103619i
\(123\) 608.204 + 394.973i 0.445853 + 0.289540i
\(124\) 757.699 1312.37i 0.548737 0.950440i
\(125\) −275.761 1370.07i −0.197319 0.980339i
\(126\) 1747.33 + 956.553i 1.23543 + 0.676322i
\(127\) −753.542 1478.91i −0.526504 1.03332i −0.989168 0.146789i \(-0.953106\pi\)
0.462664 0.886534i \(-0.346894\pi\)
\(128\) 2140.98 + 821.845i 1.47842 + 0.567512i
\(129\) −70.2278 + 668.173i −0.0479319 + 0.456042i
\(130\) 848.293 1723.46i 0.572309 1.16275i
\(131\) −2378.90 + 250.032i −1.58661 + 0.166759i −0.856343 0.516407i \(-0.827269\pi\)
−0.730263 + 0.683166i \(0.760602\pi\)
\(132\) −497.881 497.881i −0.328295 0.328295i
\(133\) −1822.86 246.395i −1.18844 0.160640i
\(134\) −2655.65 + 862.873i −1.71204 + 0.556275i
\(135\) 534.604 + 897.041i 0.340825 + 0.571889i
\(136\) 23.6481 + 111.255i 0.0149103 + 0.0701476i
\(137\) −3.53437 67.4397i −0.00220410 0.0420567i 0.997306 0.0733527i \(-0.0233699\pi\)
−0.999510 + 0.0312960i \(0.990037\pi\)
\(138\) 905.276 587.893i 0.558422 0.362643i
\(139\) 377.402 1161.52i 0.230294 0.708771i −0.767417 0.641148i \(-0.778459\pi\)
0.997711 0.0676229i \(-0.0215415\pi\)
\(140\) 2546.23 + 725.533i 1.53711 + 0.437991i
\(141\) −179.932 553.772i −0.107468 0.330752i
\(142\) −3398.48 2752.03i −2.00841 1.62638i
\(143\) −1085.74 290.922i −0.634921 0.170127i
\(144\) −26.8620 + 60.3330i −0.0155451 + 0.0349149i
\(145\) 2396.56 + 1509.58i 1.37258 + 0.864579i
\(146\) −425.757 + 586.004i −0.241342 + 0.332178i
\(147\) −127.375 620.300i −0.0714674 0.348037i
\(148\) 3281.91 1672.22i 1.82278 0.928753i
\(149\) 568.347 + 328.135i 0.312488 + 0.180415i 0.648039 0.761607i \(-0.275589\pi\)
−0.335551 + 0.942022i \(0.608923\pi\)
\(150\) 725.404 + 762.101i 0.394860 + 0.414835i
\(151\) 616.881 + 1068.47i 0.332457 + 0.575833i 0.982993 0.183643i \(-0.0587889\pi\)
−0.650536 + 0.759476i \(0.725456\pi\)
\(152\) −113.432 + 2164.41i −0.0605300 + 1.15498i
\(153\) −121.450 + 19.2358i −0.0641741 + 0.0101642i
\(154\) 206.279 2510.10i 0.107938 1.31344i
\(155\) 1243.50 + 457.682i 0.644390 + 0.237174i
\(156\) 92.9869 + 884.712i 0.0477238 + 0.454062i
\(157\) 217.342 811.133i 0.110483 0.412328i −0.888426 0.459019i \(-0.848201\pi\)
0.998909 + 0.0466912i \(0.0148677\pi\)
\(158\) −595.442 1551.18i −0.299815 0.781045i
\(159\) 681.031 + 144.758i 0.339681 + 0.0722014i
\(160\) −407.066 + 2054.59i −0.201134 + 1.01519i
\(161\) 2274.89 + 682.413i 1.11358 + 0.334047i
\(162\) 1887.08 + 961.514i 0.915202 + 0.466319i
\(163\) 23.4246 + 36.0708i 0.0112562 + 0.0173330i 0.844254 0.535943i \(-0.180044\pi\)
−0.832998 + 0.553276i \(0.813377\pi\)
\(164\) 4912.86 1044.26i 2.33921 0.497214i
\(165\) 354.950 503.051i 0.167472 0.237348i
\(166\) 630.873 2968.02i 0.294971 1.38773i
\(167\) −1085.00 171.846i −0.502751 0.0796280i −0.100092 0.994978i \(-0.531914\pi\)
−0.402659 + 0.915350i \(0.631914\pi\)
\(168\) −716.142 + 209.442i −0.328878 + 0.0961833i
\(169\) −456.635 628.505i −0.207845 0.286074i
\(170\) −246.694 + 98.6378i −0.111298 + 0.0445010i
\(171\) −2330.29 244.923i −1.04212 0.109531i
\(172\) 2928.32 + 3616.17i 1.29815 + 1.60308i
\(173\) −2949.13 154.557i −1.29606 0.0679235i −0.608208 0.793778i \(-0.708111\pi\)
−0.687849 + 0.725854i \(0.741445\pi\)
\(174\) −2132.36 −0.929047
\(175\) −246.453 + 2301.88i −0.106458 + 0.994317i
\(176\) 83.4996 0.0357615
\(177\) −527.578 27.6492i −0.224040 0.0117415i
\(178\) 1184.96 + 1463.30i 0.498968 + 0.616174i
\(179\) −1030.19 108.277i −0.430167 0.0452123i −0.113029 0.993592i \(-0.536055\pi\)
−0.317138 + 0.948379i \(0.602722\pi\)
\(180\) 3269.42 + 827.691i 1.35382 + 0.342736i
\(181\) −60.9428 83.8806i −0.0250268 0.0344464i 0.796320 0.604875i \(-0.206777\pi\)
−0.821347 + 0.570429i \(0.806777\pi\)
\(182\) −2198.31 + 2300.56i −0.895325 + 0.936971i
\(183\) −88.7391 14.0549i −0.0358458 0.00567742i
\(184\) 581.835 2737.32i 0.233117 1.09673i
\(185\) 1928.99 + 2579.16i 0.766607 + 1.02499i
\(186\) −975.773 + 207.407i −0.384662 + 0.0817625i
\(187\) 84.6730 + 130.385i 0.0331118 + 0.0509877i
\(188\) −3593.17 1830.81i −1.39393 0.710243i
\(189\) −398.005 1683.41i −0.153178 0.647885i
\(190\) −5027.16 + 598.866i −1.91952 + 0.228665i
\(191\) −4305.57 915.177i −1.63110 0.346701i −0.700759 0.713398i \(-0.747155\pi\)
−0.930341 + 0.366697i \(0.880489\pi\)
\(192\) −550.284 1433.54i −0.206840 0.538837i
\(193\) −524.065 + 1955.84i −0.195456 + 0.729452i 0.796692 + 0.604385i \(0.206581\pi\)
−0.992148 + 0.125067i \(0.960086\pi\)
\(194\) −131.154 1247.84i −0.0485376 0.461804i
\(195\) −748.483 + 211.706i −0.274872 + 0.0777467i
\(196\) −3661.59 2414.00i −1.33440 0.879738i
\(197\) 1686.70 267.147i 0.610013 0.0966165i 0.156218 0.987723i \(-0.450070\pi\)
0.453795 + 0.891106i \(0.350070\pi\)
\(198\) 167.905 3203.82i 0.0602651 1.14993i
\(199\) 1666.36 + 2886.22i 0.593594 + 1.02813i 0.993744 + 0.111685i \(0.0356247\pi\)
−0.400150 + 0.916450i \(0.631042\pi\)
\(200\) 2726.94 + 67.2730i 0.964118 + 0.0237846i
\(201\) 979.223 + 565.355i 0.343627 + 0.198393i
\(202\) −5865.66 + 2988.71i −2.04310 + 1.04101i
\(203\) −3034.76 3578.21i −1.04925 1.23715i
\(204\) 72.3206 99.5408i 0.0248209 0.0341630i
\(205\) 1630.48 + 4077.86i 0.555502 + 1.38932i
\(206\) −2881.13 + 6471.13i −0.974456 + 2.18866i
\(207\) 2922.30 + 783.028i 0.981227 + 0.262919i
\(208\) −81.9849 66.3900i −0.0273299 0.0221314i
\(209\) 915.456 + 2817.48i 0.302983 + 0.932485i
\(210\) −766.637 1565.22i −0.251919 0.514334i
\(211\) 1122.56 3454.89i 0.366258 1.12723i −0.582932 0.812521i \(-0.698095\pi\)
0.949190 0.314704i \(-0.101905\pi\)
\(212\) 4044.13 2626.29i 1.31015 0.850822i
\(213\) 92.6763 + 1768.37i 0.0298126 + 0.568858i
\(214\) −987.896 4647.69i −0.315566 1.48462i
\(215\) −2680.35 + 3061.03i −0.850225 + 0.970978i
\(216\) −1938.47 + 629.846i −0.610629 + 0.198405i
\(217\) −1736.75 1342.21i −0.543310 0.419887i
\(218\) 4435.96 + 4435.96i 1.37817 + 1.37817i
\(219\) 291.705 30.6595i 0.0900074 0.00946015i
\(220\) −725.294 4201.89i −0.222269 1.28769i
\(221\) 20.5313 195.343i 0.00624927 0.0594578i
\(222\) −2263.68 868.947i −0.684362 0.262702i
\(223\) 2008.20 + 3941.31i 0.603045 + 1.18354i 0.967630 + 0.252372i \(0.0812107\pi\)
−0.364586 + 0.931170i \(0.618789\pi\)
\(224\) 1666.07 3043.40i 0.496960 0.907792i
\(225\) −226.917 + 2940.20i −0.0672347 + 0.871172i
\(226\) 448.311 776.497i 0.131952 0.228548i
\(227\) −3638.51 2362.88i −1.06386 0.690880i −0.110857 0.993836i \(-0.535360\pi\)
−0.953004 + 0.302956i \(0.902026\pi\)
\(228\) 1822.07 1475.48i 0.529252 0.428580i
\(229\) 1682.88 749.265i 0.485623 0.216213i −0.149295 0.988793i \(-0.547700\pi\)
0.634918 + 0.772579i \(0.281034\pi\)
\(230\) 6532.00 + 251.687i 1.87264 + 0.0721555i
\(231\) −811.249 + 618.051i −0.231066 + 0.176038i
\(232\) −3909.11 + 3909.11i −1.10623 + 1.10623i
\(233\) 3218.38 3974.36i 0.904905 1.11746i −0.0877087 0.996146i \(-0.527954\pi\)
0.992614 0.121318i \(-0.0387122\pi\)
\(234\) −2712.19 + 3012.20i −0.757700 + 0.841511i
\(235\) 1043.11 3368.36i 0.289552 0.935011i
\(236\) −2719.11 + 2448.30i −0.749996 + 0.675300i
\(237\) −305.452 + 599.484i −0.0837184 + 0.164307i
\(238\) 438.865 33.0140i 0.119527 0.00899151i
\(239\) −1919.14 623.565i −0.519408 0.168766i 0.0375685 0.999294i \(-0.488039\pi\)
−0.556977 + 0.830528i \(0.688039\pi\)
\(240\) 49.6366 29.5816i 0.0133501 0.00795618i
\(241\) 4127.47 + 3716.39i 1.10321 + 0.993334i 0.999999 0.00132541i \(-0.000421891\pi\)
0.103210 + 0.994660i \(0.467089\pi\)
\(242\) 1878.43 721.063i 0.498968 0.191536i
\(243\) −874.670 3264.31i −0.230906 0.861752i
\(244\) −503.413 + 365.751i −0.132081 + 0.0959623i
\(245\) 1535.44 3514.05i 0.400390 0.916345i
\(246\) −2674.89 1943.42i −0.693270 0.503690i
\(247\) 1341.32 3494.25i 0.345530 0.900136i
\(248\) −1408.59 + 2169.04i −0.360668 + 0.555380i
\(249\) −1064.09 + 614.355i −0.270820 + 0.156358i
\(250\) 928.619 + 6303.66i 0.234924 + 1.59471i
\(251\) 1146.84i 0.288399i −0.989549 0.144199i \(-0.953939\pi\)
0.989549 0.144199i \(-0.0460607\pi\)
\(252\) −4753.29 2935.46i −1.18821 0.733797i
\(253\) −598.375 3777.99i −0.148694 0.938815i
\(254\) 3077.96 + 6913.22i 0.760349 + 1.70777i
\(255\) 96.5259 + 47.5104i 0.0237046 + 0.0116675i
\(256\) −3473.12 1546.33i −0.847931 0.377523i
\(257\) −5272.91 + 1412.87i −1.27982 + 0.342928i −0.833787 0.552086i \(-0.813832\pi\)
−0.446038 + 0.895014i \(0.647165\pi\)
\(258\) 479.178 3025.41i 0.115629 0.730053i
\(259\) −1763.52 5035.24i −0.423087 1.20801i
\(260\) −2628.76 + 4702.34i −0.627033 + 1.12164i
\(261\) −3999.11 4441.47i −0.948425 1.05333i
\(262\) 10890.7 570.757i 2.56805 0.134586i
\(263\) −4227.86 + 221.573i −0.991260 + 0.0519497i −0.541065 0.840981i \(-0.681979\pi\)
−0.450195 + 0.892930i \(0.648645\pi\)
\(264\) 804.083 + 893.025i 0.187454 + 0.208189i
\(265\) 2864.44 + 3094.02i 0.664003 + 0.717224i
\(266\) 8240.63 + 1556.78i 1.89949 + 0.358844i
\(267\) 119.275 753.073i 0.0273390 0.172612i
\(268\) 7564.26 2026.84i 1.72411 0.461973i
\(269\) 2324.34 + 1034.86i 0.526830 + 0.234560i 0.652876 0.757464i \(-0.273562\pi\)
−0.126046 + 0.992024i \(0.540229\pi\)
\(270\) −2219.99 4211.75i −0.500385 0.949330i
\(271\) 3457.92 + 7766.62i 0.775106 + 1.74092i 0.664803 + 0.747019i \(0.268516\pi\)
0.110303 + 0.993898i \(0.464818\pi\)
\(272\) 2.28255 + 14.4114i 0.000508823 + 0.00321258i
\(273\) 1287.94 + 38.1797i 0.285530 + 0.00846424i
\(274\) 307.894i 0.0678852i
\(275\) 3512.69 1249.90i 0.770266 0.274080i
\(276\) −2621.67 + 1513.62i −0.571762 + 0.330107i
\(277\) −1235.39 + 1902.34i −0.267969 + 0.412636i −0.946881 0.321583i \(-0.895785\pi\)
0.678912 + 0.734220i \(0.262452\pi\)
\(278\) −1995.45 + 5198.32i −0.430500 + 1.12149i
\(279\) −2262.01 1643.44i −0.485386 0.352654i
\(280\) −4274.82 1463.98i −0.912390 0.312462i
\(281\) 5649.25 4104.42i 1.19931 0.871349i 0.205093 0.978743i \(-0.434250\pi\)
0.994217 + 0.107393i \(0.0342504\pi\)
\(282\) 687.085 + 2564.24i 0.145090 + 0.541483i
\(283\) −7181.64 + 2756.77i −1.50850 + 0.579057i −0.965437 0.260638i \(-0.916067\pi\)
−0.543059 + 0.839695i \(0.682734\pi\)
\(284\) 9114.10 + 8206.37i 1.90430 + 1.71464i
\(285\) 1542.35 + 1350.54i 0.320565 + 0.280698i
\(286\) 4873.89 + 1583.62i 1.00769 + 0.327418i
\(287\) −545.721 7254.44i −0.112240 1.49204i
\(288\) 2006.48 3937.94i 0.410531 0.805713i
\(289\) 3630.88 3269.26i 0.739036 0.665431i
\(290\) −10551.3 7444.91i −2.13652 1.50752i
\(291\) −339.972 + 377.577i −0.0684863 + 0.0760618i
\(292\) 1278.42 1578.72i 0.256212 0.316395i
\(293\) −3230.91 + 3230.91i −0.644203 + 0.644203i −0.951586 0.307383i \(-0.900547\pi\)
0.307383 + 0.951586i \(0.400547\pi\)
\(294\) 431.923 + 2854.59i 0.0856812 + 0.566270i
\(295\) −2514.00 1978.79i −0.496172 0.390541i
\(296\) −5742.83 + 2556.87i −1.12769 + 0.502078i
\(297\) −2165.08 + 1753.25i −0.422999 + 0.342538i
\(298\) −2509.36 1629.60i −0.487797 0.316779i
\(299\) −2416.34 + 4185.22i −0.467359 + 0.809489i
\(300\) −1919.76 2240.87i −0.369459 0.431256i
\(301\) 5758.74 3501.65i 1.10275 0.670537i
\(302\) −2553.69 5011.89i −0.486583 0.954974i
\(303\) 2488.71 + 955.327i 0.471857 + 0.181129i
\(304\) −29.0630 + 276.516i −0.00548315 + 0.0521687i
\(305\) −390.023 379.368i −0.0732218 0.0712215i
\(306\) 557.546 58.6004i 0.104159 0.0109476i
\(307\) 3724.17 + 3724.17i 0.692344 + 0.692344i 0.962747 0.270403i \(-0.0871570\pi\)
−0.270403 + 0.962747i \(0.587157\pi\)
\(308\) −946.146 + 6999.71i −0.175038 + 1.29495i
\(309\) 2727.99 886.378i 0.502233 0.163185i
\(310\) −5552.41 2380.52i −1.01728 0.436144i
\(311\) −608.551 2863.01i −0.110957 0.522013i −0.998160 0.0606336i \(-0.980688\pi\)
0.887203 0.461380i \(-0.152645\pi\)
\(312\) −79.4579 1516.15i −0.0144180 0.275112i
\(313\) −79.1983 + 51.4320i −0.0143021 + 0.00928789i −0.551770 0.833996i \(-0.686047\pi\)
0.537468 + 0.843284i \(0.319381\pi\)
\(314\) −1183.10 + 3641.20i −0.212631 + 0.654409i
\(315\) 1822.38 4532.28i 0.325967 0.810682i
\(316\) 1439.96 + 4431.74i 0.256342 + 0.788940i
\(317\) 875.326 + 708.825i 0.155089 + 0.125589i 0.703724 0.710473i \(-0.251519\pi\)
−0.548635 + 0.836062i \(0.684852\pi\)
\(318\) −3066.16 821.576i −0.540698 0.144880i
\(319\) −3073.45 + 6903.08i −0.539436 + 1.21159i
\(320\) 2282.15 9014.61i 0.398675 1.57479i
\(321\) −1130.94 + 1556.60i −0.196644 + 0.270657i
\(322\) −10194.7 3649.81i −1.76437 0.631665i
\(323\) −461.253 + 235.020i −0.0794575 + 0.0404856i
\(324\) −5143.96 2969.87i −0.882023 0.509236i
\(325\) −4442.76 1565.69i −0.758276 0.267227i
\(326\) −98.0446 169.818i −0.0166570 0.0288508i
\(327\) 132.950 2536.84i 0.0224837 0.429014i
\(328\) −8466.41 + 1340.95i −1.42524 + 0.225736i
\(329\) −3325.06 + 4802.36i −0.557193 + 0.804749i
\(330\) −1736.11 + 2205.68i −0.289605 + 0.367935i
\(331\) 361.653 + 3440.90i 0.0600552 + 0.571387i 0.982631 + 0.185571i \(0.0594134\pi\)
−0.922576 + 0.385816i \(0.873920\pi\)
\(332\) −2202.51 + 8219.87i −0.364091 + 1.35881i
\(333\) −2435.48 6344.64i −0.400791 1.04410i
\(334\) 4898.94 + 1041.30i 0.802568 + 0.170591i
\(335\) 2871.47 + 6216.30i 0.468314 + 1.01383i
\(336\) −93.1494 + 22.0231i −0.0151242 + 0.00357576i
\(337\) 7416.98 + 3779.14i 1.19890 + 0.610869i 0.935332 0.353772i \(-0.115101\pi\)
0.263566 + 0.964641i \(0.415101\pi\)
\(338\) 1929.07 + 2970.51i 0.310437 + 0.478032i
\(339\) −355.141 + 75.4875i −0.0568985 + 0.0120941i
\(340\) 705.389 240.043i 0.112515 0.0382888i
\(341\) −734.978 + 3457.80i −0.116719 + 0.549122i
\(342\) 10551.3 + 1671.16i 1.66827 + 0.264228i
\(343\) −4175.44 + 4787.42i −0.657295 + 0.753633i
\(344\) −4667.82 6424.71i −0.731605 1.00697i
\(345\) −1694.14 2033.85i −0.264375 0.317387i
\(346\) 13390.4 + 1407.38i 2.08055 + 0.218675i
\(347\) 3115.07 + 3846.79i 0.481918 + 0.595119i 0.958883 0.283803i \(-0.0915962\pi\)
−0.476964 + 0.878923i \(0.658263\pi\)
\(348\) 5972.06 + 312.982i 0.919931 + 0.0482115i
\(349\) −4289.89 −0.657973 −0.328987 0.944335i \(-0.606707\pi\)
−0.328987 + 0.944335i \(0.606707\pi\)
\(350\) 1671.34 10421.5i 0.255249 1.59159i
\(351\) 3519.80 0.535251
\(352\) −5580.23 292.447i −0.844964 0.0442827i
\(353\) −2515.12 3105.91i −0.379224 0.468303i 0.551420 0.834228i \(-0.314086\pi\)
−0.930644 + 0.365925i \(0.880753\pi\)
\(354\) 2395.44 + 251.771i 0.359651 + 0.0378008i
\(355\) −5715.49 + 9073.72i −0.854497 + 1.35657i
\(356\) −3103.90 4272.15i −0.462097 0.636021i
\(357\) −128.848 123.121i −0.0191018 0.0182528i
\(358\) 4664.57 + 738.795i 0.688631 + 0.109069i
\(359\) −2143.06 + 10082.3i −0.315060 + 1.48224i 0.480837 + 0.876810i \(0.340333\pi\)
−0.795897 + 0.605431i \(0.793001\pi\)
\(360\) −5498.24 1702.68i −0.804952 0.249276i
\(361\) −2939.86 + 624.886i −0.428613 + 0.0911046i
\(362\) 257.455 + 396.447i 0.0373800 + 0.0575601i
\(363\) −725.958 369.894i −0.104967 0.0534832i
\(364\) 6494.41 6120.45i 0.935163 0.881316i
\(365\) 1550.44 + 866.748i 0.222340 + 0.124295i
\(366\) 400.672 + 85.1655i 0.0572226 + 0.0121630i
\(367\) −3825.31 9965.28i −0.544086 1.41739i −0.879762 0.475415i \(-0.842298\pi\)
0.335675 0.941978i \(-0.391035\pi\)
\(368\) 92.9154 346.765i 0.0131618 0.0491206i
\(369\) −968.665 9216.23i −0.136658 1.30021i
\(370\) −8167.21 12203.1i −1.14755 1.71461i
\(371\) −2985.09 6314.43i −0.417731 0.883635i
\(372\) 2763.27 437.658i 0.385131 0.0609987i
\(373\) −219.317 + 4184.82i −0.0304445 + 0.580916i 0.940233 + 0.340531i \(0.110607\pi\)
−0.970678 + 0.240384i \(0.922726\pi\)
\(374\) −354.402 613.842i −0.0489991 0.0848690i
\(375\) 1645.32 1987.45i 0.226571 0.273685i
\(376\) 5960.42 + 3441.25i 0.817514 + 0.471992i
\(377\) 8506.29 4334.17i 1.16206 0.592098i
\(378\) 1410.42 + 7759.48i 0.191916 + 1.05583i
\(379\) −894.591 + 1231.30i −0.121245 + 0.166880i −0.865325 0.501211i \(-0.832888\pi\)
0.744080 + 0.668091i \(0.232888\pi\)
\(380\) 14167.4 939.357i 1.91255 0.126810i
\(381\) 1246.38 2799.41i 0.167596 0.376426i
\(382\) 19384.7 + 5194.12i 2.59636 + 0.695692i
\(383\) 8705.31 + 7049.42i 1.16141 + 0.940493i 0.998931 0.0462191i \(-0.0147172\pi\)
0.162480 + 0.986712i \(0.448051\pi\)
\(384\) 1308.34 + 4026.64i 0.173869 + 0.535114i
\(385\) −6172.03 + 225.825i −0.817028 + 0.0298938i
\(386\) 2852.73 8779.80i 0.376166 1.15772i
\(387\) 7200.24 4675.89i 0.945759 0.614183i
\(388\) 184.164 + 3514.06i 0.0240967 + 0.459792i
\(389\) 1018.36 + 4791.02i 0.132733 + 0.624458i 0.993343 + 0.115194i \(0.0367490\pi\)
−0.860610 + 0.509264i \(0.829918\pi\)
\(390\) 3458.33 785.295i 0.449024 0.101961i
\(391\) 635.697 206.550i 0.0822214 0.0267153i
\(392\) 6024.94 + 4441.31i 0.776289 + 0.572245i
\(393\) −3122.65 3122.65i −0.400806 0.400806i
\(394\) −7743.23 + 813.846i −0.990097 + 0.104063i
\(395\) −3604.45 + 1899.88i −0.459139 + 0.242009i
\(396\) −940.494 + 8948.21i −0.119348 + 1.13552i
\(397\) 5036.95 + 1933.50i 0.636769 + 0.244433i 0.655268 0.755396i \(-0.272555\pi\)
−0.0184992 + 0.999829i \(0.505889\pi\)
\(398\) −6898.19 13538.5i −0.868781 1.70508i
\(399\) −1764.36 2901.64i −0.221375 0.364069i
\(400\) 348.890 + 26.9264i 0.0436112 + 0.00336580i
\(401\) 5287.18 9157.66i 0.658426 1.14043i −0.322597 0.946536i \(-0.604556\pi\)
0.981023 0.193891i \(-0.0621109\pi\)
\(402\) −4323.46 2807.69i −0.536405 0.348345i
\(403\) 3470.92 2810.70i 0.429030 0.347421i
\(404\) 16866.5 7509.45i 2.07708 0.924775i
\(405\) 1793.93 4874.01i 0.220101 0.598004i
\(406\) 12963.3 + 17015.6i 1.58463 + 2.07997i
\(407\) −6075.75 + 6075.75i −0.739960 + 0.739960i
\(408\) −132.149 + 163.191i −0.0160352 + 0.0198018i
\(409\) 7026.38 7803.59i 0.849467 0.943429i −0.149505 0.988761i \(-0.547768\pi\)
0.998972 + 0.0453320i \(0.0144346\pi\)
\(410\) −6450.50 18955.4i −0.776994 2.28327i
\(411\) 92.6533 83.4254i 0.0111198 0.0100123i
\(412\) 9018.93 17700.6i 1.07847 2.11662i
\(413\) 2986.68 + 4377.98i 0.355848 + 0.521614i
\(414\) −13118.3 4262.39i −1.55731 0.506002i
\(415\) −7410.25 675.246i −0.876518 0.0798711i
\(416\) 5246.48 + 4723.95i 0.618341 + 0.556756i
\(417\) 2104.99 808.029i 0.247198 0.0948905i
\(418\) −3495.75 13046.3i −0.409050 1.52660i
\(419\) −1524.45 + 1107.58i −0.177743 + 0.129138i −0.673099 0.739552i \(-0.735037\pi\)
0.495357 + 0.868690i \(0.335037\pi\)
\(420\) 1917.36 + 4496.19i 0.222756 + 0.522361i
\(421\) −4322.16 3140.23i −0.500354 0.363529i 0.308798 0.951128i \(-0.400073\pi\)
−0.809152 + 0.587599i \(0.800073\pi\)
\(422\) −5935.35 + 15462.1i −0.684665 + 1.78361i
\(423\) −4052.42 + 6240.18i −0.465805 + 0.717277i
\(424\) −7127.12 + 4114.84i −0.816329 + 0.471308i
\(425\) 311.747 + 572.098i 0.0355811 + 0.0652960i
\(426\) 8073.43i 0.918214i
\(427\) 427.321 + 793.553i 0.0484297 + 0.0899361i
\(428\) 2084.60 + 13161.7i 0.235428 + 1.48643i
\(429\) −844.053 1895.77i −0.0949913 0.213354i
\(430\) 12933.9 13297.2i 1.45053 1.49127i
\(431\) −7597.30 3382.53i −0.849069 0.378030i −0.0643847 0.997925i \(-0.520508\pi\)
−0.784685 + 0.619895i \(0.787175\pi\)
\(432\) −252.561 + 67.6735i −0.0281281 + 0.00753690i
\(433\) −2205.37 + 13924.1i −0.244765 + 1.54539i 0.492820 + 0.870131i \(0.335966\pi\)
−0.737585 + 0.675254i \(0.764034\pi\)
\(434\) 7587.08 + 6525.45i 0.839151 + 0.721732i
\(435\) 618.549 + 5192.39i 0.0681773 + 0.572312i
\(436\) −11772.6 13074.8i −1.29313 1.43617i
\(437\) 12719.4 666.596i 1.39234 0.0729693i
\(438\) −1335.44 + 69.9873i −0.145684 + 0.00763499i
\(439\) −3124.11 3469.68i −0.339649 0.377218i 0.548988 0.835830i \(-0.315013\pi\)
−0.888636 + 0.458612i \(0.848347\pi\)
\(440\) 860.827 + 7226.19i 0.0932689 + 0.782943i
\(441\) −5135.74 + 6253.26i −0.554556 + 0.675225i
\(442\) −140.089 + 884.489i −0.0150755 + 0.0951829i
\(443\) −1777.06 + 476.163i −0.190589 + 0.0510681i −0.352851 0.935680i \(-0.614788\pi\)
0.162262 + 0.986748i \(0.448121\pi\)
\(444\) 6212.30 + 2765.89i 0.664015 + 0.295639i
\(445\) 3219.46 3309.88i 0.342960 0.352592i
\(446\) −8202.81 18423.8i −0.870885 1.95604i
\(447\) 189.536 + 1196.68i 0.0200553 + 0.126624i
\(448\) −8093.81 + 13106.0i −0.853563 + 1.38215i
\(449\) 5058.52i 0.531684i −0.964017 0.265842i \(-0.914350\pi\)
0.964017 0.265842i \(-0.0856500\pi\)
\(450\) 1734.71 13332.5i 0.181722 1.39667i
\(451\) −10146.8 + 5858.26i −1.05941 + 0.611651i
\(452\) −1369.55 + 2108.91i −0.142518 + 0.219458i
\(453\) −816.275 + 2126.47i −0.0846622 + 0.220552i
\(454\) 16002.2 + 11626.3i 1.65423 + 1.20187i
\(455\) 6239.62 + 4685.62i 0.642897 + 0.482781i
\(456\) −3237.20 + 2351.96i −0.332447 + 0.241537i
\(457\) 2684.58 + 10019.0i 0.274791 + 1.02553i 0.955981 + 0.293428i \(0.0947961\pi\)
−0.681190 + 0.732107i \(0.738537\pi\)
\(458\) −7840.86 + 3009.82i −0.799955 + 0.307074i
\(459\) −361.782 325.750i −0.0367899 0.0331258i
\(460\) −18257.1 1663.64i −1.85052 0.168626i
\(461\) −2417.37 785.450i −0.244226 0.0793537i 0.184346 0.982861i \(-0.440983\pi\)
−0.428572 + 0.903508i \(0.640983\pi\)
\(462\) 3841.06 2620.39i 0.386801 0.263878i
\(463\) −1223.32 + 2400.90i −0.122792 + 0.240992i −0.944217 0.329324i \(-0.893179\pi\)
0.821425 + 0.570316i \(0.193179\pi\)
\(464\) −527.032 + 474.542i −0.0527303 + 0.0474785i
\(465\) 788.093 + 2315.88i 0.0785955 + 0.230960i
\(466\) −15601.5 + 17327.2i −1.55091 + 1.72246i
\(467\) 4566.58 5639.25i 0.452497 0.558787i −0.498938 0.866638i \(-0.666276\pi\)
0.951435 + 0.307851i \(0.0996097\pi\)
\(468\) 8038.10 8038.10i 0.793934 0.793934i
\(469\) −1441.67 11250.9i −0.141941 1.10771i
\(470\) −5552.95 + 15087.1i −0.544975 + 1.48067i
\(471\) 1416.30 630.576i 0.138555 0.0616888i
\(472\) 4852.95 3929.84i 0.473252 0.383232i
\(473\) −9103.46 5911.86i −0.884942 0.574688i
\(474\) 1533.76 2656.54i 0.148624 0.257424i
\(475\) 2916.52 + 12067.6i 0.281725 + 1.16568i
\(476\) −1233.96 + 28.0461i −0.118821 + 0.00270062i
\(477\) −4039.15 7927.28i −0.387715 0.760933i
\(478\) 8588.96 + 3296.99i 0.821862 + 0.315483i
\(479\) 264.798 2519.39i 0.0252587 0.240321i −0.974607 0.223923i \(-0.928114\pi\)
0.999866 0.0163977i \(-0.00521978\pi\)
\(480\) −3420.79 + 1803.07i −0.325285 + 0.171456i
\(481\) 10796.3 1134.74i 1.02343 0.107567i
\(482\) −17905.4 17905.4i −1.69205 1.69205i
\(483\) 1663.97 + 4056.78i 0.156756 + 0.382173i
\(484\) −5366.71 + 1743.75i −0.504011 + 0.163763i
\(485\) −3000.50 + 681.334i −0.280919 + 0.0637893i
\(486\) 3203.44 + 15071.0i 0.298994 + 1.40665i
\(487\) −293.375 5597.93i −0.0272979 0.520875i −0.977720 0.209913i \(-0.932682\pi\)
0.950422 0.310962i \(-0.100651\pi\)
\(488\) 890.651 578.396i 0.0826186 0.0536532i
\(489\) −24.5371 + 75.5173i −0.00226913 + 0.00698366i
\(490\) −7829.28 + 15633.0i −0.721818 + 1.44128i
\(491\) 1400.14 + 4309.20i 0.128692 + 0.396073i 0.994556 0.104207i \(-0.0332305\pi\)
−0.865864 + 0.500280i \(0.833231\pi\)
\(492\) 7206.24 + 5835.50i 0.660330 + 0.534725i
\(493\) −1275.44 341.752i −0.116517 0.0312206i
\(494\) −6940.72 + 15589.1i −0.632141 + 1.41981i
\(495\) −7850.12 + 520.497i −0.712801 + 0.0472618i
\(496\) −195.014 + 268.413i −0.0176540 + 0.0242986i
\(497\) 13547.6 11490.0i 1.22272 1.03702i
\(498\) 4991.37 2543.23i 0.449134 0.228845i
\(499\) −7896.51 4559.05i −0.708410 0.409000i 0.102062 0.994778i \(-0.467456\pi\)
−0.810472 + 0.585778i \(0.800789\pi\)
\(500\) −1675.53 17790.8i −0.149864 1.59126i
\(501\) −1014.04 1756.36i −0.0904269 0.156624i
\(502\) −273.649 + 5221.53i −0.0243298 + 0.464240i
\(503\) −3966.01 + 628.155i −0.351562 + 0.0556820i −0.329718 0.944079i \(-0.606954\pi\)
−0.0218440 + 0.999761i \(0.506954\pi\)
\(504\) 7838.99 + 5427.56i 0.692810 + 0.479688i
\(505\) 8979.10 + 13416.2i 0.791217 + 1.18220i
\(506\) 1822.91 + 17343.8i 0.160154 + 1.52377i
\(507\) 371.213 1385.39i 0.0325171 0.121355i
\(508\) −7605.67 19813.5i −0.664266 1.73047i
\(509\) −12427.8 2641.61i −1.08222 0.230034i −0.367911 0.929861i \(-0.619927\pi\)
−0.714312 + 0.699827i \(0.753260\pi\)
\(510\) −428.142 239.345i −0.0371734 0.0207811i
\(511\) −2018.02 2141.32i −0.174701 0.185375i
\(512\) −902.730 459.964i −0.0779207 0.0397026i
\(513\) −5052.45 7780.08i −0.434836 0.669589i
\(514\) 24344.5 5174.58i 2.08908 0.444048i
\(515\) 16593.2 + 5138.54i 1.41977 + 0.439672i
\(516\) −1786.08 + 8402.86i −0.152380 + 0.716890i
\(517\) 9291.49 + 1471.63i 0.790405 + 0.125188i
\(518\) 6827.76 + 23346.1i 0.579140 + 1.98024i
\(519\) −3204.67 4410.85i −0.271040 0.373054i
\(520\) 4900.29 7779.54i 0.413253 0.656068i
\(521\) −19453.5 2044.64i −1.63584 0.171934i −0.758456 0.651724i \(-0.774046\pi\)
−0.877383 + 0.479791i \(0.840713\pi\)
\(522\) 17148.0 + 21176.1i 1.43783 + 1.77558i
\(523\) −19322.1 1012.63i −1.61548 0.0846637i −0.776965 0.629544i \(-0.783242\pi\)
−0.838514 + 0.544880i \(0.816575\pi\)
\(524\) −30585.1 −2.54984
\(525\) −3588.98 + 2320.82i −0.298354 + 0.192931i
\(526\) 19302.2 1.60003
\(527\) −616.883 32.3295i −0.0509902 0.00267228i
\(528\) 97.0136 + 119.802i 0.00799616 + 0.00987444i
\(529\) −4255.09 447.228i −0.349724 0.0367575i
\(530\) −12303.4 14770.4i −1.00835 1.21054i
\(531\) 3968.09 + 5461.61i 0.324295 + 0.446353i
\(532\) −22850.8 5569.57i −1.86223 0.453894i
\(533\) 14620.6 + 2315.68i 1.18816 + 0.188186i
\(534\) −722.746 + 3400.25i −0.0585698 + 0.275549i
\(535\) −11030.7 + 3753.75i −0.891402 + 0.303343i
\(536\) −13073.0 + 2778.76i −1.05349 + 0.223926i
\(537\) −1041.57 1603.87i −0.0837000 0.128887i
\(538\) −10335.7 5266.30i −0.828259 0.422019i
\(539\) 9863.69 + 2716.16i 0.788236 + 0.217056i
\(540\) 5599.27 + 12121.6i 0.446212 + 0.965982i
\(541\) −1764.74 375.107i −0.140244 0.0298098i 0.137255 0.990536i \(-0.456172\pi\)
−0.277499 + 0.960726i \(0.589505\pi\)
\(542\) −13890.6 36186.2i −1.10083 2.86777i
\(543\) 49.5423 184.894i 0.00391540 0.0146125i
\(544\) −102.067 971.102i −0.00804427 0.0765361i
\(545\) 9514.96 12088.5i 0.747846 0.950117i
\(546\) −5854.83 481.147i −0.458908 0.0377128i
\(547\) −13626.3 + 2158.19i −1.06512 + 0.168698i −0.664304 0.747463i \(-0.731272\pi\)
−0.400812 + 0.916160i \(0.631272\pi\)
\(548\) 45.1918 862.310i 0.00352280 0.0672191i
\(549\) 574.045 + 994.276i 0.0446260 + 0.0772944i
\(550\) −16291.4 + 4852.59i −1.26303 + 0.376209i
\(551\) −21790.4 12580.7i −1.68476 0.972695i
\(552\) 4603.39 2345.55i 0.354952 0.180857i
\(553\) 6640.63 1207.05i 0.510648 0.0928191i
\(554\) 6078.60 8366.48i 0.466165 0.641621i
\(555\) −1459.28 + 5764.21i −0.111609 + 0.440860i
\(556\) 6351.60 14265.9i 0.484474 1.08815i
\(557\) −13960.5 3740.71i −1.06199 0.284558i −0.314790 0.949161i \(-0.601934\pi\)
−0.747197 + 0.664603i \(0.768601\pi\)
\(558\) 9906.68 + 8022.27i 0.751583 + 0.608620i
\(559\) 4237.84 + 13042.7i 0.320647 + 0.986849i
\(560\) −537.808 216.247i −0.0405831 0.0163181i
\(561\) −88.6941 + 272.972i −0.00667499 + 0.0205435i
\(562\) −26700.2 + 17339.3i −2.00405 + 1.30145i
\(563\) 125.535 + 2395.36i 0.00939731 + 0.179311i 0.999295 + 0.0375311i \(0.0119493\pi\)
−0.989898 + 0.141780i \(0.954717\pi\)
\(564\) −1547.93 7282.45i −0.115567 0.543699i
\(565\) −2020.84 866.410i −0.150474 0.0645135i
\(566\) 33355.5 10837.9i 2.47710 0.804858i
\(567\) −5260.92 + 6807.34i −0.389661 + 0.504200i
\(568\) −14800.4 14800.4i −1.09333 1.09333i
\(569\) 25693.9 2700.53i 1.89305 0.198967i 0.914441 0.404718i \(-0.132630\pi\)
0.978604 + 0.205751i \(0.0659637\pi\)
\(570\) −6700.01 6516.98i −0.492338 0.478888i
\(571\) −757.194 + 7204.22i −0.0554949 + 0.527998i 0.931095 + 0.364778i \(0.118855\pi\)
−0.986590 + 0.163221i \(0.947812\pi\)
\(572\) −13417.7 5150.59i −0.980812 0.376498i
\(573\) −3689.34 7240.75i −0.268978 0.527900i
\(574\) 753.663 + 33159.4i 0.0548036 + 2.41123i
\(575\) −1281.91 15978.7i −0.0929729 1.15888i
\(576\) −9810.89 + 16993.0i −0.709700 + 1.22924i
\(577\) 8129.87 + 5279.60i 0.586570 + 0.380923i 0.803536 0.595256i \(-0.202949\pi\)
−0.216966 + 0.976179i \(0.569616\pi\)
\(578\) −17311.3 + 14018.4i −1.24577 + 1.00881i
\(579\) −3415.03 + 1520.47i −0.245119 + 0.109134i
\(580\) 28457.9 + 22399.5i 2.03733 + 1.60360i
\(581\) 11371.3 + 4756.26i 0.811983 + 0.339626i
\(582\) 1637.97 1637.97i 0.116660 0.116660i
\(583\) −7079.04 + 8741.89i −0.502889 + 0.621016i
\(584\) −2319.86 + 2576.47i −0.164378 + 0.182560i
\(585\) 8121.56 + 5730.53i 0.573992 + 0.405005i
\(586\) 15481.1 13939.3i 1.09133 0.982637i
\(587\) −1987.56 + 3900.82i −0.139754 + 0.274283i −0.950266 0.311439i \(-0.899189\pi\)
0.810512 + 0.585722i \(0.199189\pi\)
\(588\) −790.687 8058.19i −0.0554547 0.565160i
\(589\) −11195.0 3637.47i −0.783160 0.254464i
\(590\) 10974.0 + 9609.22i 0.765748 + 0.670517i
\(591\) 2342.98 + 2109.63i 0.163075 + 0.146833i
\(592\) −752.866 + 288.998i −0.0522679 + 0.0200638i
\(593\) 3353.54 + 12515.6i 0.232232 + 0.866700i 0.979377 + 0.202040i \(0.0647570\pi\)
−0.747146 + 0.664660i \(0.768576\pi\)
\(594\) 10275.9 7465.85i 0.709804 0.515703i
\(595\) −207.695 1059.08i −0.0143103 0.0729712i
\(596\) 6788.72 + 4932.30i 0.466572 + 0.338985i
\(597\) −2204.98 + 5744.16i −0.151162 + 0.393791i
\(598\) 12000.1 18478.6i 0.820604 1.26362i
\(599\) 10130.3 5848.76i 0.691009 0.398955i −0.112981 0.993597i \(-0.536040\pi\)
0.803990 + 0.594643i \(0.202706\pi\)
\(600\) 3071.76 + 3990.66i 0.209007 + 0.271530i
\(601\) 3575.72i 0.242690i 0.992610 + 0.121345i \(0.0387207\pi\)
−0.992610 + 0.121345i \(0.961279\pi\)
\(602\) −27054.8 + 14568.8i −1.83168 + 0.986343i
\(603\) −2260.29 14270.9i −0.152647 0.963776i
\(604\) 6416.42 + 14411.5i 0.432252 + 0.970854i
\(605\) −2300.70 4364.89i −0.154606 0.293319i
\(606\) −11103.1 4943.40i −0.744276 0.331373i
\(607\) 6286.53 1684.47i 0.420367 0.112637i −0.0424340 0.999099i \(-0.513511\pi\)
0.462801 + 0.886462i \(0.346845\pi\)
\(608\) 2910.73 18377.6i 0.194154 1.22584i
\(609\) 1607.95 8511.46i 0.106991 0.566341i
\(610\) 1685.24 + 1820.31i 0.111858 + 0.120823i
\(611\) −7952.86 8832.54i −0.526576 0.584822i
\(612\) −1570.11 + 82.2858i −0.103706 + 0.00543497i
\(613\) 20669.8 1083.26i 1.36190 0.0713741i 0.642668 0.766145i \(-0.277828\pi\)
0.719231 + 0.694771i \(0.244494\pi\)
\(614\) −16067.4 17844.6i −1.05607 1.17288i
\(615\) −3956.38 + 7077.19i −0.259409 + 0.464032i
\(616\) 2237.76 11845.3i 0.146367 0.774774i
\(617\) −2032.48 + 12832.6i −0.132617 + 0.837311i 0.828262 + 0.560341i \(0.189330\pi\)
−0.960879 + 0.276969i \(0.910670\pi\)
\(618\) −12631.9 + 3384.72i −0.822218 + 0.220313i
\(619\) 12783.8 + 5691.70i 0.830086 + 0.369578i 0.777379 0.629032i \(-0.216549\pi\)
0.0527064 + 0.998610i \(0.483215\pi\)
\(620\) 15201.1 + 7482.04i 0.984662 + 0.484654i
\(621\) 4871.83 + 10942.3i 0.314814 + 0.707084i
\(622\) 2087.56 + 13180.4i 0.134572 + 0.849653i
\(623\) −6734.39 + 3626.40i −0.433078 + 0.233208i
\(624\) 194.763i 0.0124948i
\(625\) 15080.3 4089.76i 0.965137 0.261745i
\(626\) 372.859 215.270i 0.0238058 0.0137443i
\(627\) −2978.79 + 4586.94i −0.189731 + 0.292160i
\(628\) 3847.91 10024.2i 0.244504 0.636954i
\(629\) −1214.72 882.544i −0.0770016 0.0559449i
\(630\) −9378.69 + 20200.4i −0.593105 + 1.27747i
\(631\) 14962.9 10871.2i 0.944000 0.685856i −0.00538002 0.999986i \(-0.501713\pi\)
0.949380 + 0.314129i \(0.101713\pi\)
\(632\) −2058.33 7681.77i −0.129550 0.483488i
\(633\) 6261.18 2403.44i 0.393143 0.150913i
\(634\) −3816.19 3436.12i −0.239054 0.215245i
\(635\) 15941.1 9500.32i 0.996226 0.593714i
\(636\) 8466.74 + 2751.01i 0.527874 + 0.171517i
\(637\) −7525.15 10509.4i −0.468065 0.653688i
\(638\) 15640.4 30696.1i 0.970550 1.90481i
\(639\) 16816.0 15141.2i 1.04105 0.937366i
\(640\) −7584.73 + 24492.3i −0.468458 + 1.51273i
\(641\) −18245.1 + 20263.2i −1.12424 + 1.24860i −0.158987 + 0.987281i \(0.550823\pi\)
−0.965254 + 0.261315i \(0.915844\pi\)
\(642\) 5520.53 6817.28i 0.339373 0.419091i
\(643\) 10430.4 10430.4i 0.639711 0.639711i −0.310773 0.950484i \(-0.600588\pi\)
0.950484 + 0.310773i \(0.100588\pi\)
\(644\) 28016.2 + 11718.3i 1.71428 + 0.717026i
\(645\) −7505.98 289.216i −0.458214 0.0176556i
\(646\) 2156.14 959.977i 0.131319 0.0584672i
\(647\) −7541.93 + 6107.33i −0.458275 + 0.371104i −0.830481 0.557046i \(-0.811935\pi\)
0.372207 + 0.928150i \(0.378601\pi\)
\(648\) 8501.74 + 5521.09i 0.515401 + 0.334705i
\(649\) 4267.69 7391.85i 0.258122 0.447081i
\(650\) 19854.1 + 8188.62i 1.19806 + 0.494129i
\(651\) −92.0790 4051.26i −0.00554357 0.243904i
\(652\) 249.666 + 489.996i 0.0149964 + 0.0294321i
\(653\) 2456.09 + 942.803i 0.147188 + 0.0565004i 0.430847 0.902425i \(-0.358215\pi\)
−0.283658 + 0.958925i \(0.591548\pi\)
\(654\) −1210.63 + 11518.4i −0.0723846 + 0.688694i
\(655\) −4548.95 26353.7i −0.271362 1.57210i
\(656\) −1093.61 + 114.943i −0.0650891 + 0.00684114i
\(657\) −2650.30 2650.30i −0.157379 0.157379i
\(658\) 16284.8 21071.5i 0.964811 1.24841i
\(659\) 10653.1 3461.41i 0.629723 0.204609i 0.0232705 0.999729i \(-0.492592\pi\)
0.606452 + 0.795120i \(0.292592\pi\)
\(660\) 5186.01 5922.56i 0.305856 0.349296i
\(661\) 5341.55 + 25130.0i 0.314315 + 1.47874i 0.797554 + 0.603248i \(0.206127\pi\)
−0.483238 + 0.875489i \(0.660540\pi\)
\(662\) −825.558 15752.6i −0.0484686 0.924836i
\(663\) 304.124 197.500i 0.0178148 0.0115690i
\(664\) 4488.00 13812.7i 0.262302 0.807281i
\(665\) 1400.41 20517.8i 0.0816625 1.19646i
\(666\) 9574.75 + 29468.0i 0.557078 + 1.71451i
\(667\) 25247.7 + 20445.2i 1.46566 + 1.18687i
\(668\) −13567.5 3635.40i −0.785841 0.210566i
\(669\) −3321.62 + 7460.47i −0.191960 + 0.431149i
\(670\) −11590.4 28987.8i −0.668323 1.67148i
\(671\) 853.207 1174.34i 0.0490875 0.0675631i
\(672\) 6302.25 1145.54i 0.361778 0.0657594i
\(673\) 28190.4 14363.8i 1.61465 0.822707i 0.615245 0.788336i \(-0.289057\pi\)
0.999409 0.0343709i \(-0.0109428\pi\)
\(674\) −32867.5 18976.0i −1.87835 1.08447i
\(675\) −9611.81 + 6627.48i −0.548087 + 0.377914i
\(676\) −4966.71 8602.59i −0.282585 0.489451i
\(677\) −1006.65 + 19208.1i −0.0571475 + 1.09044i 0.808084 + 0.589067i \(0.200505\pi\)
−0.865232 + 0.501372i \(0.832829\pi\)
\(678\) 1634.95 258.951i 0.0926106 0.0146681i
\(679\) 5079.74 + 417.450i 0.287103 + 0.0235939i
\(680\) −1223.66 + 346.108i −0.0690075 + 0.0195186i
\(681\) −837.227 7965.69i −0.0471110 0.448232i
\(682\) 4171.40 15567.9i 0.234210 0.874082i
\(683\) −1345.79 3505.89i −0.0753954 0.196412i 0.890703 0.454586i \(-0.150213\pi\)
−0.966098 + 0.258174i \(0.916879\pi\)
\(684\) −29305.4 6229.06i −1.63819 0.348207i
\(685\) 749.733 89.3127i 0.0418187 0.00498170i
\(686\) 20152.9 20800.6i 1.12164 1.15768i
\(687\) 3030.26 + 1543.99i 0.168285 + 0.0857453i
\(688\) −554.849 854.393i −0.0307463 0.0473451i
\(689\) 13901.2 2954.80i 0.768643 0.163380i
\(690\) 7228.06 + 9664.27i 0.398794 + 0.533206i
\(691\) 5627.10 26473.4i 0.309790 1.45745i −0.497589 0.867413i \(-0.665781\pi\)
0.807378 0.590034i \(-0.200886\pi\)
\(692\) −37295.5 5907.03i −2.04879 0.324496i
\(693\) 12661.6 + 3086.10i 0.694048 + 0.169165i
\(694\) −13264.9 18257.6i −0.725546 0.998628i
\(695\) 13236.9 + 3351.08i 0.722454 + 0.182897i
\(696\) −10150.4 1066.85i −0.552802 0.0581018i
\(697\) −1288.47 1591.12i −0.0700203 0.0864679i
\(698\) 19531.7 + 1023.61i 1.05915 + 0.0555077i
\(699\) 9441.50 0.510888
\(700\) −6210.54 + 28942.1i −0.335338 + 1.56272i
\(701\) −12815.5 −0.690491 −0.345245 0.938512i \(-0.612204\pi\)
−0.345245 + 0.938512i \(0.612204\pi\)
\(702\) −16025.5 839.861i −0.861601 0.0451546i
\(703\) −18005.6 22235.1i −0.965996 1.19291i
\(704\) 24672.5 + 2593.18i 1.32085 + 0.138827i
\(705\) 6044.71 2416.90i 0.322918 0.129115i
\(706\) 10710.1 + 14741.2i 0.570936 + 0.785826i
\(707\) −7506.50 25666.9i −0.399308 1.36535i
\(708\) −6671.90 1056.73i −0.354160 0.0560935i
\(709\) 4102.88 19302.5i 0.217330 1.02246i −0.725252 0.688483i \(-0.758277\pi\)
0.942582 0.333974i \(-0.108390\pi\)
\(710\) 28187.5 39948.5i 1.48994 2.11161i
\(711\) 8409.73 1787.54i 0.443586 0.0942871i
\(712\) 4908.48 + 7558.40i 0.258361 + 0.397841i
\(713\) 13542.0 + 6900.01i 0.711294 + 0.362423i
\(714\) 557.260 + 591.308i 0.0292086 + 0.0309932i
\(715\) 2442.38 12327.5i 0.127748 0.644786i
\(716\) −12955.5 2753.78i −0.676215 0.143734i
\(717\) −1335.07 3477.98i −0.0695386 0.181154i
\(718\) 12163.0 45393.1i 0.632201 2.35941i
\(719\) 3525.63 + 33544.1i 0.182870 + 1.73990i 0.573373 + 0.819294i \(0.305635\pi\)
−0.390503 + 0.920602i \(0.627699\pi\)
\(720\) −692.935 255.041i −0.0358669 0.0132011i
\(721\) −23657.3 16379.9i −1.22198 0.846073i
\(722\) 13534.2 2143.60i 0.697631 0.110494i
\(723\) −536.644 + 10239.8i −0.0276044 + 0.526724i
\(724\) −662.860 1148.11i −0.0340262 0.0589352i
\(725\) −15068.0 + 27852.3i −0.771876 + 1.42677i
\(726\) 3217.00 + 1857.33i 0.164454 + 0.0949478i
\(727\) −2372.21 + 1208.70i −0.121018 + 0.0616619i −0.513452 0.858119i \(-0.671633\pi\)
0.392433 + 0.919780i \(0.371633\pi\)
\(728\) −11615.3 + 9851.19i −0.591335 + 0.501524i
\(729\) −3705.01 + 5099.50i −0.188234 + 0.259082i
\(730\) −6852.30 4316.22i −0.347418 0.218836i
\(731\) 771.492 1732.80i 0.0390351 0.0876743i
\(732\) −1109.65 297.330i −0.0560299 0.0150132i
\(733\) 26264.7 + 21268.7i 1.32348 + 1.07173i 0.991727 + 0.128363i \(0.0409723\pi\)
0.331750 + 0.943367i \(0.392361\pi\)
\(734\) 15038.7 + 46284.3i 0.756250 + 2.32750i
\(735\) 6825.75 1879.80i 0.342547 0.0943367i
\(736\) −7423.99 + 22848.7i −0.371810 + 1.14431i
\(737\) −15320.9 + 9949.48i −0.765741 + 0.497278i
\(738\) 2211.20 + 42192.3i 0.110292 + 2.10450i
\(739\) −2451.08 11531.4i −0.122009 0.574005i −0.996099 0.0882420i \(-0.971875\pi\)
0.874091 0.485763i \(-0.161458\pi\)
\(740\) 21082.6 + 35375.6i 1.04731 + 1.75734i
\(741\) 6571.80 2135.31i 0.325804 0.105860i
\(742\) 12084.3 + 29461.6i 0.597882 + 1.45764i
\(743\) 12667.3 + 12667.3i 0.625463 + 0.625463i 0.946923 0.321460i \(-0.104174\pi\)
−0.321460 + 0.946923i \(0.604174\pi\)
\(744\) −4748.61 + 499.099i −0.233995 + 0.0245939i
\(745\) −3240.23 + 6583.10i −0.159346 + 0.323740i
\(746\) 1997.08 19001.0i 0.0980139 0.932540i
\(747\) 14658.3 + 5626.78i 0.717962 + 0.275600i
\(748\) 902.466 + 1771.19i 0.0441142 + 0.0865790i
\(749\) 19296.5 438.580i 0.941359 0.0213957i
\(750\) −7965.31 + 8656.21i −0.387803 + 0.421440i
\(751\) −4859.13 + 8416.26i −0.236101 + 0.408940i −0.959592 0.281394i \(-0.909203\pi\)
0.723491 + 0.690334i \(0.242536\pi\)
\(752\) 740.471 + 480.867i 0.0359072 + 0.0233184i
\(753\) 1645.44 1332.45i 0.0796325 0.0644851i
\(754\) −39763.0 + 17703.6i −1.92053 + 0.855076i
\(755\) −11463.4 + 7672.15i −0.552576 + 0.369826i
\(756\) −2811.21 21938.8i −0.135242 1.05543i
\(757\) −2045.34 + 2045.34i −0.0982025 + 0.0982025i −0.754501 0.656299i \(-0.772121\pi\)
0.656299 + 0.754501i \(0.272121\pi\)
\(758\) 4366.84 5392.60i 0.209249 0.258401i
\(759\) 4725.28 5247.96i 0.225977 0.250973i
\(760\) −24229.8 + 335.544i −1.15645 + 0.0160151i
\(761\) 499.725 449.955i 0.0238042 0.0214334i −0.657143 0.753766i \(-0.728235\pi\)
0.680947 + 0.732333i \(0.261568\pi\)
\(762\) −6342.69 + 12448.2i −0.301537 + 0.591800i
\(763\) −21051.4 + 14361.4i −0.998836 + 0.681412i
\(764\) −53527.9 17392.3i −2.53478 0.823600i
\(765\) −304.425 1340.65i −0.0143876 0.0633610i