Properties

Label 175.4.x.a.103.7
Level $175$
Weight $4$
Character 175.103
Analytic conductor $10.325$
Analytic rank $0$
Dimension $928$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(928\)
Relative dimension: \(58\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 103.7
Character \(\chi\) \(=\) 175.103
Dual form 175.4.x.a.17.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.61688 - 0.241960i) q^{2} +(1.85463 + 2.29028i) q^{3} +(13.3008 + 1.39797i) q^{4} +(-10.3285 + 4.28033i) q^{5} +(-8.00844 - 11.0227i) q^{6} +(-16.5101 + 8.39150i) q^{7} +(-24.5397 - 3.88671i) q^{8} +(3.80790 - 17.9147i) q^{9} +O(q^{10})\) \(q+(-4.61688 - 0.241960i) q^{2} +(1.85463 + 2.29028i) q^{3} +(13.3008 + 1.39797i) q^{4} +(-10.3285 + 4.28033i) q^{5} +(-8.00844 - 11.0227i) q^{6} +(-16.5101 + 8.39150i) q^{7} +(-24.5397 - 3.88671i) q^{8} +(3.80790 - 17.9147i) q^{9} +(48.7213 - 17.2627i) q^{10} +(12.7772 - 2.71587i) q^{11} +(21.4664 + 33.0553i) q^{12} +(-54.2210 - 27.6270i) q^{13} +(78.2554 - 34.7478i) q^{14} +(-28.9588 - 15.7168i) q^{15} +(7.70166 + 1.63704i) q^{16} +(27.3739 + 71.3113i) q^{17} +(-21.9153 + 81.7888i) q^{18} +(3.44411 + 32.7686i) q^{19} +(-143.362 + 42.4930i) q^{20} +(-49.8390 - 22.2495i) q^{21} +(-59.6477 + 9.44726i) q^{22} +(0.176346 - 3.36488i) q^{23} +(-36.6104 - 63.4112i) q^{24} +(88.3575 - 88.4192i) q^{25} +(243.647 + 140.670i) q^{26} +(118.989 - 60.6281i) q^{27} +(-231.329 + 88.5333i) q^{28} +(-39.3855 + 54.2095i) q^{29} +(129.896 + 79.5693i) q^{30} +(111.099 - 249.532i) q^{31} +(156.831 + 42.0226i) q^{32} +(29.9170 + 24.2263i) q^{33} +(-109.127 - 335.859i) q^{34} +(134.607 - 157.341i) q^{35} +(75.6926 - 232.958i) q^{36} +(200.923 - 130.481i) q^{37} +(-7.97236 - 152.122i) q^{38} +(-37.2864 - 175.419i) q^{39} +(270.096 - 64.8941i) q^{40} +(354.793 - 115.279i) q^{41} +(224.717 + 114.782i) q^{42} +(-251.156 - 251.156i) q^{43} +(173.743 - 18.2612i) q^{44} +(37.3511 + 201.332i) q^{45} +(-1.62834 + 15.4926i) q^{46} +(402.326 + 154.439i) q^{47} +(10.5345 + 20.6750i) q^{48} +(202.165 - 277.089i) q^{49} +(-429.330 + 386.842i) q^{50} +(-112.554 + 194.950i) q^{51} +(-682.562 - 443.261i) q^{52} +(-455.405 + 368.779i) q^{53} +(-564.029 + 251.122i) q^{54} +(-120.344 + 82.7414i) q^{55} +(437.768 - 141.755i) q^{56} +(-68.6615 + 68.6615i) q^{57} +(194.955 - 240.749i) q^{58} +(302.357 - 335.802i) q^{59} +(-363.204 - 249.530i) q^{60} +(320.873 - 288.915i) q^{61} +(-573.306 + 1125.18i) q^{62} +(87.4630 + 327.728i) q^{63} +(-773.806 - 251.425i) q^{64} +(678.276 + 53.2623i) q^{65} +(-132.261 - 119.089i) q^{66} +(43.9444 - 16.8687i) q^{67} +(264.404 + 986.768i) q^{68} +(8.03357 - 5.83673i) q^{69} +(-659.532 + 693.853i) q^{70} +(-87.7166 - 63.7298i) q^{71} +(-163.074 + 424.823i) q^{72} +(4.65598 - 7.16958i) q^{73} +(-959.210 + 553.800i) q^{74} +(366.375 + 38.3782i) q^{75} +440.664i q^{76} +(-188.162 + 152.059i) q^{77} +(129.702 + 818.909i) q^{78} +(-80.1143 - 179.940i) q^{79} +(-86.5539 + 16.0575i) q^{80} +(-92.2157 - 41.0571i) q^{81} +(-1665.93 + 446.384i) q^{82} +(76.1803 - 480.983i) q^{83} +(-631.795 - 365.611i) q^{84} +(-587.968 - 619.373i) q^{85} +(1098.79 + 1220.33i) q^{86} +(-197.200 + 10.3348i) q^{87} +(-324.103 + 16.9855i) q^{88} +(-103.149 - 114.559i) q^{89} +(-123.731 - 938.564i) q^{90} +(1127.02 + 1.12781i) q^{91} +(7.04957 - 44.5092i) q^{92} +(777.545 - 208.343i) q^{93} +(-1820.12 - 810.371i) q^{94} +(-175.833 - 323.709i) q^{95} +(194.619 + 437.122i) q^{96} +(48.3098 + 305.016i) q^{97} +(-1000.42 + 1230.37i) q^{98} -239.241i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 928 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 24 q^{7} + 84 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 928 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 24 q^{7} + 84 q^{8} - 10 q^{9} - 96 q^{10} - 6 q^{11} - 72 q^{12} - 20 q^{14} - 368 q^{15} - 1670 q^{16} + 120 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} - 880 q^{22} + 296 q^{23} + 32 q^{25} - 48 q^{26} + 226 q^{28} - 200 q^{29} - 38 q^{30} - 18 q^{31} - 964 q^{32} - 1092 q^{33} + 288 q^{35} + 7400 q^{36} - 392 q^{37} + 5424 q^{38} + 2430 q^{39} + 2172 q^{40} - 2098 q^{42} + 1560 q^{43} - 10 q^{44} - 4224 q^{45} - 6 q^{46} + 96 q^{47} + 6232 q^{50} - 16 q^{51} - 8928 q^{52} - 2384 q^{53} - 30 q^{54} + 244 q^{56} + 1556 q^{57} + 640 q^{58} + 4890 q^{59} + 3676 q^{60} - 18 q^{61} + 224 q^{63} - 9700 q^{64} - 1116 q^{65} - 2610 q^{66} - 2404 q^{67} - 13614 q^{68} - 1700 q^{70} - 24 q^{71} - 518 q^{72} - 4200 q^{73} - 16104 q^{75} - 722 q^{77} - 356 q^{78} - 10 q^{79} + 6414 q^{80} - 6810 q^{81} + 1692 q^{82} + 20620 q^{84} + 2712 q^{85} - 6 q^{86} + 9102 q^{87} + 1650 q^{88} + 20370 q^{89} - 12 q^{91} + 1612 q^{92} - 4604 q^{93} - 30 q^{94} + 1652 q^{95} - 2610 q^{96} - 19478 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.61688 0.241960i −1.63231 0.0855459i −0.785998 0.618229i \(-0.787850\pi\)
−0.846315 + 0.532683i \(0.821184\pi\)
\(3\) 1.85463 + 2.29028i 0.356924 + 0.440764i 0.923705 0.383104i \(-0.125145\pi\)
−0.566781 + 0.823868i \(0.691812\pi\)
\(4\) 13.3008 + 1.39797i 1.66260 + 0.174747i
\(5\) −10.3285 + 4.28033i −0.923813 + 0.382845i
\(6\) −8.00844 11.0227i −0.544906 0.749998i
\(7\) −16.5101 + 8.39150i −0.891460 + 0.453099i
\(8\) −24.5397 3.88671i −1.08451 0.171770i
\(9\) 3.80790 17.9147i 0.141033 0.663509i
\(10\) 48.7213 17.2627i 1.54070 0.545894i
\(11\) 12.7772 2.71587i 0.350223 0.0744423i −0.0294412 0.999567i \(-0.509373\pi\)
0.379664 + 0.925124i \(0.376039\pi\)
\(12\) 21.4664 + 33.0553i 0.516401 + 0.795188i
\(13\) −54.2210 27.6270i −1.15678 0.589411i −0.233057 0.972463i \(-0.574873\pi\)
−0.923727 + 0.383052i \(0.874873\pi\)
\(14\) 78.2554 34.7478i 1.49390 0.663338i
\(15\) −28.9588 15.7168i −0.498475 0.270537i
\(16\) 7.70166 + 1.63704i 0.120338 + 0.0255787i
\(17\) 27.3739 + 71.3113i 0.390537 + 1.01738i 0.978087 + 0.208196i \(0.0667593\pi\)
−0.587550 + 0.809188i \(0.699907\pi\)
\(18\) −21.9153 + 81.7888i −0.286971 + 1.07099i
\(19\) 3.44411 + 32.7686i 0.0415860 + 0.395664i 0.995440 + 0.0953927i \(0.0304107\pi\)
−0.953854 + 0.300272i \(0.902923\pi\)
\(20\) −143.362 + 42.4930i −1.60284 + 0.475086i
\(21\) −49.8390 22.2495i −0.517893 0.231202i
\(22\) −59.6477 + 9.44726i −0.578042 + 0.0915529i
\(23\) 0.176346 3.36488i 0.00159873 0.0305055i −0.997714 0.0675826i \(-0.978471\pi\)
0.999312 + 0.0370771i \(0.0118047\pi\)
\(24\) −36.6104 63.4112i −0.311378 0.539323i
\(25\) 88.3575 88.4192i 0.706860 0.707354i
\(26\) 243.647 + 140.670i 1.83781 + 1.06106i
\(27\) 118.989 60.6281i 0.848130 0.432144i
\(28\) −231.329 + 88.5333i −1.56132 + 0.597544i
\(29\) −39.3855 + 54.2095i −0.252197 + 0.347119i −0.916279 0.400540i \(-0.868822\pi\)
0.664082 + 0.747659i \(0.268822\pi\)
\(30\) 129.896 + 79.5693i 0.790523 + 0.484244i
\(31\) 111.099 249.532i 0.643675 1.44572i −0.236767 0.971566i \(-0.576088\pi\)
0.880443 0.474152i \(-0.157245\pi\)
\(32\) 156.831 + 42.0226i 0.866375 + 0.232144i
\(33\) 29.9170 + 24.2263i 0.157814 + 0.127796i
\(34\) −109.127 335.859i −0.550446 1.69410i
\(35\) 134.607 157.341i 0.650076 0.759869i
\(36\) 75.6926 232.958i 0.350429 1.07851i
\(37\) 200.923 130.481i 0.892746 0.579756i −0.0147151 0.999892i \(-0.504684\pi\)
0.907461 + 0.420136i \(0.138017\pi\)
\(38\) −7.97236 152.122i −0.0340339 0.649405i
\(39\) −37.2864 175.419i −0.153092 0.720244i
\(40\) 270.096 64.8941i 1.06765 0.256517i
\(41\) 354.793 115.279i 1.35145 0.439112i 0.458269 0.888813i \(-0.348470\pi\)
0.893179 + 0.449701i \(0.148470\pi\)
\(42\) 224.717 + 114.782i 0.825585 + 0.421698i
\(43\) −251.156 251.156i −0.890720 0.890720i 0.103871 0.994591i \(-0.466877\pi\)
−0.994591 + 0.103871i \(0.966877\pi\)
\(44\) 173.743 18.2612i 0.595291 0.0625676i
\(45\) 37.3511 + 201.332i 0.123733 + 0.666952i
\(46\) −1.62834 + 15.4926i −0.00521924 + 0.0496578i
\(47\) 402.326 + 154.439i 1.24862 + 0.479302i 0.890761 0.454472i \(-0.150172\pi\)
0.357863 + 0.933774i \(0.383505\pi\)
\(48\) 10.5345 + 20.6750i 0.0316774 + 0.0621705i
\(49\) 202.165 277.089i 0.589403 0.807839i
\(50\) −429.330 + 386.842i −1.21433 + 1.09415i
\(51\) −112.554 + 194.950i −0.309035 + 0.535263i
\(52\) −682.562 443.261i −1.82028 1.18210i
\(53\) −455.405 + 368.779i −1.18028 + 0.955769i −0.999614 0.0277768i \(-0.991157\pi\)
−0.180662 + 0.983545i \(0.557824\pi\)
\(54\) −564.029 + 251.122i −1.42138 + 0.632840i
\(55\) −120.344 + 82.7414i −0.295041 + 0.202852i
\(56\) 437.768 141.755i 1.04463 0.338265i
\(57\) −68.6615 + 68.6615i −0.159552 + 0.159552i
\(58\) 194.955 240.749i 0.441358 0.545032i
\(59\) 302.357 335.802i 0.667179 0.740977i −0.310618 0.950535i \(-0.600536\pi\)
0.977796 + 0.209558i \(0.0672025\pi\)
\(60\) −363.204 249.530i −0.781491 0.536903i
\(61\) 320.873 288.915i 0.673502 0.606424i −0.259738 0.965679i \(-0.583636\pi\)
0.933239 + 0.359256i \(0.116969\pi\)
\(62\) −573.306 + 1125.18i −1.17435 + 2.30480i
\(63\) 87.4630 + 327.728i 0.174910 + 0.655394i
\(64\) −773.806 251.425i −1.51134 0.491064i
\(65\) 678.276 + 53.2623i 1.29430 + 0.101637i
\(66\) −132.261 119.089i −0.246670 0.222103i
\(67\) 43.9444 16.8687i 0.0801293 0.0307587i −0.317973 0.948100i \(-0.603002\pi\)
0.398102 + 0.917341i \(0.369669\pi\)
\(68\) 264.404 + 986.768i 0.471524 + 1.75975i
\(69\) 8.03357 5.83673i 0.0140164 0.0101835i
\(70\) −659.532 + 693.853i −1.12613 + 1.18473i
\(71\) −87.7166 63.7298i −0.146620 0.106526i 0.512057 0.858952i \(-0.328884\pi\)
−0.658677 + 0.752426i \(0.728884\pi\)
\(72\) −163.074 + 424.823i −0.266923 + 0.695359i
\(73\) 4.65598 7.16958i 0.00746495 0.0114950i −0.834918 0.550374i \(-0.814485\pi\)
0.842383 + 0.538879i \(0.181152\pi\)
\(74\) −959.210 + 553.800i −1.50684 + 0.869973i
\(75\) 366.375 + 38.3782i 0.564071 + 0.0590872i
\(76\) 440.664i 0.665100i
\(77\) −188.162 + 152.059i −0.278480 + 0.225048i
\(78\) 129.702 + 818.909i 0.188281 + 1.18876i
\(79\) −80.1143 179.940i −0.114096 0.256263i 0.847467 0.530848i \(-0.178126\pi\)
−0.961563 + 0.274584i \(0.911460\pi\)
\(80\) −86.5539 + 16.0575i −0.120963 + 0.0224410i
\(81\) −92.2157 41.0571i −0.126496 0.0563197i
\(82\) −1665.93 + 446.384i −2.24355 + 0.601157i
\(83\) 76.1803 480.983i 0.100745 0.636082i −0.884709 0.466143i \(-0.845643\pi\)
0.985455 0.169938i \(-0.0543569\pi\)
\(84\) −631.795 365.611i −0.820649 0.474898i
\(85\) −587.968 619.373i −0.750284 0.790358i
\(86\) 1098.79 + 1220.33i 1.37774 + 1.53013i
\(87\) −197.200 + 10.3348i −0.243013 + 0.0127357i
\(88\) −324.103 + 16.9855i −0.392608 + 0.0205757i
\(89\) −103.149 114.559i −0.122851 0.136440i 0.678581 0.734525i \(-0.262595\pi\)
−0.801433 + 0.598085i \(0.795928\pi\)
\(90\) −123.731 938.564i −0.144915 1.09926i
\(91\) 1127.02 + 1.12781i 1.29829 + 0.00129920i
\(92\) 7.04957 44.5092i 0.00798879 0.0504392i
\(93\) 777.545 208.343i 0.866964 0.232302i
\(94\) −1820.12 810.371i −1.99714 0.889185i
\(95\) −175.833 323.709i −0.189896 0.349599i
\(96\) 194.619 + 437.122i 0.206909 + 0.464725i
\(97\) 48.3098 + 305.016i 0.0505683 + 0.319275i 0.999986 + 0.00526010i \(0.00167435\pi\)
−0.949418 + 0.314015i \(0.898326\pi\)
\(98\) −1000.42 + 1230.37i −1.03120 + 1.26822i
\(99\) 239.241i 0.242875i
\(100\) 1298.84 1052.53i 1.29884 1.05253i
\(101\) −1089.84 + 629.222i −1.07370 + 0.619900i −0.929190 0.369603i \(-0.879494\pi\)
−0.144509 + 0.989503i \(0.546160\pi\)
\(102\) 566.820 872.826i 0.550230 0.847281i
\(103\) −557.845 + 1453.24i −0.533652 + 1.39021i 0.356393 + 0.934336i \(0.384007\pi\)
−0.890044 + 0.455874i \(0.849327\pi\)
\(104\) 1223.19 + 888.699i 1.15330 + 0.837924i
\(105\) 609.999 + 16.4777i 0.566951 + 0.0153148i
\(106\) 2191.78 1592.42i 2.00834 1.45915i
\(107\) −390.847 1458.66i −0.353127 1.31789i −0.882826 0.469701i \(-0.844362\pi\)
0.529699 0.848186i \(-0.322305\pi\)
\(108\) 1667.41 640.060i 1.48562 0.570276i
\(109\) 868.747 + 782.223i 0.763402 + 0.687370i 0.955823 0.293942i \(-0.0949673\pi\)
−0.192421 + 0.981312i \(0.561634\pi\)
\(110\) 575.636 352.888i 0.498952 0.305878i
\(111\) 671.477 + 218.176i 0.574178 + 0.186562i
\(112\) −140.892 + 37.6009i −0.118867 + 0.0317227i
\(113\) 971.566 1906.81i 0.808826 1.58741i −0.000464277 1.00000i \(-0.500148\pi\)
0.809290 0.587410i \(-0.199852\pi\)
\(114\) 333.615 300.388i 0.274087 0.246789i
\(115\) 12.5814 + 35.5092i 0.0102020 + 0.0287934i
\(116\) −599.643 + 665.971i −0.479961 + 0.533051i
\(117\) −701.398 + 866.154i −0.554224 + 0.684410i
\(118\) −1477.20 + 1477.20i −1.15243 + 1.15243i
\(119\) −1050.35 947.648i −0.809124 0.730006i
\(120\) 649.553 + 498.240i 0.494132 + 0.379024i
\(121\) −1060.05 + 471.964i −0.796431 + 0.354594i
\(122\) −1551.34 + 1256.25i −1.15124 + 0.932258i
\(123\) 922.032 + 598.774i 0.675909 + 0.438940i
\(124\) 1826.55 3163.67i 1.32281 2.29118i
\(125\) −534.140 + 1291.44i −0.382200 + 0.924080i
\(126\) −324.509 1534.24i −0.229441 1.08477i
\(127\) −412.103 808.798i −0.287939 0.565112i 0.701048 0.713114i \(-0.252716\pi\)
−0.988987 + 0.148002i \(0.952716\pi\)
\(128\) 2299.10 + 882.543i 1.58761 + 0.609426i
\(129\) 109.416 1041.02i 0.0746783 0.710517i
\(130\) −3118.63 410.022i −2.10401 0.276625i
\(131\) 909.530 95.5954i 0.606611 0.0637573i 0.203757 0.979022i \(-0.434685\pi\)
0.402854 + 0.915264i \(0.368018\pi\)
\(132\) 364.053 + 364.053i 0.240051 + 0.240051i
\(133\) −331.840 512.110i −0.216347 0.333877i
\(134\) −206.967 + 67.2478i −0.133427 + 0.0433532i
\(135\) −969.478 + 1135.51i −0.618069 + 0.723922i
\(136\) −394.580 1856.35i −0.248786 1.17045i
\(137\) −41.5153 792.159i −0.0258897 0.494005i −0.980545 0.196293i \(-0.937110\pi\)
0.954656 0.297712i \(-0.0962236\pi\)
\(138\) −38.5023 + 25.0037i −0.0237502 + 0.0154236i
\(139\) −253.295 + 779.563i −0.154563 + 0.475695i −0.998116 0.0613498i \(-0.980459\pi\)
0.843554 + 0.537045i \(0.180459\pi\)
\(140\) 2010.34 1904.59i 1.21360 1.14976i
\(141\) 392.459 + 1207.87i 0.234405 + 0.721423i
\(142\) 389.557 + 315.457i 0.230217 + 0.186426i
\(143\) −767.821 205.737i −0.449010 0.120312i
\(144\) 58.6542 131.740i 0.0339434 0.0762382i
\(145\) 174.760 728.488i 0.100090 0.417225i
\(146\) −23.2308 + 31.9745i −0.0131685 + 0.0181249i
\(147\) 1009.55 50.8825i 0.566438 0.0285491i
\(148\) 2854.86 1454.62i 1.58559 0.807901i
\(149\) 748.796 + 432.318i 0.411703 + 0.237697i 0.691521 0.722356i \(-0.256941\pi\)
−0.279818 + 0.960053i \(0.590274\pi\)
\(150\) −1682.22 265.836i −0.915686 0.144703i
\(151\) 393.087 + 680.847i 0.211848 + 0.366931i 0.952293 0.305186i \(-0.0987186\pi\)
−0.740445 + 0.672117i \(0.765385\pi\)
\(152\) 42.8443 817.517i 0.0228627 0.436246i
\(153\) 1381.76 218.849i 0.730123 0.115640i
\(154\) 905.511 656.509i 0.473819 0.343526i
\(155\) −79.4082 + 3052.84i −0.0411498 + 1.58200i
\(156\) −250.710 2385.34i −0.128672 1.22423i
\(157\) 673.396 2513.15i 0.342311 1.27752i −0.553411 0.832908i \(-0.686674\pi\)
0.895722 0.444614i \(-0.146659\pi\)
\(158\) 326.340 + 850.144i 0.164318 + 0.428062i
\(159\) −1689.21 359.053i −0.842537 0.179087i
\(160\) −1799.70 + 237.255i −0.889243 + 0.117229i
\(161\) 25.3250 + 57.0343i 0.0123968 + 0.0279188i
\(162\) 415.814 + 211.868i 0.201663 + 0.102753i
\(163\) −1950.51 3003.53i −0.937276 1.44328i −0.895962 0.444132i \(-0.853512\pi\)
−0.0413141 0.999146i \(-0.513154\pi\)
\(164\) 4880.20 1037.32i 2.32366 0.493908i
\(165\) −412.695 122.168i −0.194717 0.0576408i
\(166\) −468.094 + 2202.21i −0.218862 + 1.02967i
\(167\) 3366.99 + 533.278i 1.56015 + 0.247104i 0.876027 0.482262i \(-0.160185\pi\)
0.684124 + 0.729366i \(0.260185\pi\)
\(168\) 1136.56 + 739.706i 0.521948 + 0.339700i
\(169\) 885.300 + 1218.51i 0.402958 + 0.554625i
\(170\) 2564.71 + 3001.83i 1.15709 + 1.35429i
\(171\) 600.155 + 63.0789i 0.268392 + 0.0282091i
\(172\) −2989.48 3691.70i −1.32526 1.63657i
\(173\) −1807.56 94.7302i −0.794371 0.0416312i −0.349167 0.937060i \(-0.613536\pi\)
−0.445204 + 0.895429i \(0.646869\pi\)
\(174\) 912.950 0.397762
\(175\) −716.819 + 2201.26i −0.309637 + 0.950855i
\(176\) 102.851 0.0440494
\(177\) 1329.84 + 69.6939i 0.564728 + 0.0295961i
\(178\) 448.508 + 553.861i 0.188860 + 0.233223i
\(179\) 419.946 + 44.1381i 0.175353 + 0.0184304i 0.191798 0.981434i \(-0.438568\pi\)
−0.0164448 + 0.999865i \(0.505235\pi\)
\(180\) 215.343 + 2730.10i 0.0891708 + 1.13050i
\(181\) −2034.34 2800.03i −0.835423 1.14986i −0.986889 0.161398i \(-0.948400\pi\)
0.151467 0.988462i \(-0.451600\pi\)
\(182\) −5203.06 277.902i −2.11910 0.113184i
\(183\) 1256.80 + 199.057i 0.507678 + 0.0804084i
\(184\) −17.4058 + 81.8879i −0.00697377 + 0.0328090i
\(185\) −1516.74 + 2207.70i −0.602774 + 0.877369i
\(186\) −3640.24 + 773.757i −1.43503 + 0.305025i
\(187\) 543.432 + 836.812i 0.212512 + 0.327239i
\(188\) 5135.37 + 2616.60i 1.99221 + 1.01508i
\(189\) −1455.76 + 1999.47i −0.560271 + 0.769526i
\(190\) 733.475 + 1537.07i 0.280062 + 0.586899i
\(191\) −3139.06 667.228i −1.18919 0.252769i −0.429505 0.903065i \(-0.641312\pi\)
−0.759681 + 0.650295i \(0.774645\pi\)
\(192\) −859.292 2238.53i −0.322990 0.841417i
\(193\) −367.726 + 1372.37i −0.137148 + 0.511841i 0.862832 + 0.505490i \(0.168688\pi\)
−0.999980 + 0.00635124i \(0.997978\pi\)
\(194\) −149.239 1419.91i −0.0552305 0.525483i
\(195\) 1135.97 + 1652.22i 0.417170 + 0.606759i
\(196\) 3076.33 3402.89i 1.12111 1.24012i
\(197\) −2199.84 + 348.421i −0.795595 + 0.126010i −0.540983 0.841034i \(-0.681948\pi\)
−0.254612 + 0.967043i \(0.581948\pi\)
\(198\) −57.8869 + 1104.55i −0.0207770 + 0.396448i
\(199\) −1262.51 2186.74i −0.449734 0.778963i 0.548634 0.836062i \(-0.315148\pi\)
−0.998368 + 0.0571000i \(0.981815\pi\)
\(200\) −2511.93 + 1826.36i −0.888100 + 0.645716i
\(201\) 120.135 + 69.3597i 0.0421574 + 0.0243396i
\(202\) 5183.92 2641.34i 1.80564 0.920020i
\(203\) 195.358 1225.51i 0.0675442 0.423713i
\(204\) −1769.60 + 2435.65i −0.607338 + 0.835929i
\(205\) −3171.06 + 2709.30i −1.08037 + 0.923052i
\(206\) 2927.13 6574.44i 0.990013 2.22361i
\(207\) −59.6095 15.9723i −0.0200152 0.00536306i
\(208\) −372.365 301.535i −0.124129 0.100518i
\(209\) 133.001 + 409.335i 0.0440185 + 0.135475i
\(210\) −2812.30 223.671i −0.924131 0.0734989i
\(211\) −260.419 + 801.487i −0.0849667 + 0.261501i −0.984509 0.175332i \(-0.943900\pi\)
0.899543 + 0.436833i \(0.143900\pi\)
\(212\) −6572.80 + 4268.43i −2.12935 + 1.38282i
\(213\) −16.7228 319.091i −0.00537948 0.102647i
\(214\) 1451.55 + 6829.02i 0.463673 + 2.18141i
\(215\) 3669.11 + 1519.04i 1.16387 + 0.481851i
\(216\) −3155.61 + 1025.32i −0.994037 + 0.322982i
\(217\) 259.699 + 5052.08i 0.0812420 + 1.58045i
\(218\) −3821.63 3821.63i −1.18731 1.18731i
\(219\) 25.0555 2.63343i 0.00773101 0.000812562i
\(220\) −1716.35 + 932.291i −0.525984 + 0.285705i
\(221\) 485.878 4622.82i 0.147890 1.40708i
\(222\) −3047.34 1169.76i −0.921278 0.353646i
\(223\) −2056.53 4036.17i −0.617559 1.21203i −0.961956 0.273204i \(-0.911917\pi\)
0.344397 0.938824i \(-0.388083\pi\)
\(224\) −2941.92 + 622.248i −0.877523 + 0.185606i
\(225\) −1247.55 1919.59i −0.369645 0.568768i
\(226\) −4946.97 + 8568.41i −1.45605 + 2.52196i
\(227\) 1502.58 + 975.788i 0.439338 + 0.285310i 0.745294 0.666736i \(-0.232309\pi\)
−0.305955 + 0.952046i \(0.598976\pi\)
\(228\) −1009.24 + 817.269i −0.293152 + 0.237390i
\(229\) 5377.03 2394.01i 1.55163 0.690832i 0.561056 0.827778i \(-0.310395\pi\)
0.990579 + 0.136945i \(0.0437285\pi\)
\(230\) −49.4951 166.986i −0.0141896 0.0478726i
\(231\) −697.227 148.929i −0.198589 0.0424192i
\(232\) 1177.20 1177.20i 0.333135 0.333135i
\(233\) 3940.96 4866.68i 1.10807 1.36836i 0.185449 0.982654i \(-0.440626\pi\)
0.922623 0.385702i \(-0.126041\pi\)
\(234\) 3447.84 3829.22i 0.963216 1.06976i
\(235\) −4816.49 + 126.966i −1.33699 + 0.0352440i
\(236\) 4491.04 4043.75i 1.23874 1.11536i
\(237\) 263.529 517.206i 0.0722282 0.141756i
\(238\) 4620.06 + 4629.32i 1.25829 + 1.26082i
\(239\) −3398.23 1104.15i −0.919720 0.298835i −0.189368 0.981906i \(-0.560644\pi\)
−0.730352 + 0.683071i \(0.760644\pi\)
\(240\) −197.302 168.452i −0.0530657 0.0453063i
\(241\) 4365.46 + 3930.68i 1.16682 + 1.05061i 0.997886 + 0.0649850i \(0.0206999\pi\)
0.168937 + 0.985627i \(0.445967\pi\)
\(242\) 5008.31 1922.51i 1.33036 0.510677i
\(243\) −1010.22 3770.20i −0.266690 0.995301i
\(244\) 4671.78 3394.24i 1.22574 0.890550i
\(245\) −902.040 + 3727.26i −0.235221 + 0.971942i
\(246\) −4112.03 2987.56i −1.06574 0.774309i
\(247\) 718.552 1871.89i 0.185103 0.482209i
\(248\) −3696.19 + 5691.64i −0.946405 + 1.45734i
\(249\) 1242.87 717.572i 0.316321 0.182628i
\(250\) 2778.54 5833.18i 0.702920 1.47569i
\(251\) 470.782i 0.118388i −0.998246 0.0591942i \(-0.981147\pi\)
0.998246 0.0591942i \(-0.0188531\pi\)
\(252\) 705.176 + 4481.33i 0.176277 + 1.12023i
\(253\) −6.88538 43.4726i −0.00171099 0.0108028i
\(254\) 1706.93 + 3833.83i 0.421663 + 0.947071i
\(255\) 328.072 2495.32i 0.0805672 0.612795i
\(256\) −4454.85 1983.42i −1.08761 0.484235i
\(257\) 1893.10 507.253i 0.459487 0.123119i −0.0216483 0.999766i \(-0.506891\pi\)
0.481135 + 0.876647i \(0.340225\pi\)
\(258\) −757.043 + 4779.78i −0.182680 + 1.15340i
\(259\) −2222.33 + 3840.30i −0.533161 + 0.921332i
\(260\) 8947.18 + 1656.65i 2.13416 + 0.395157i
\(261\) 821.173 + 912.005i 0.194748 + 0.216290i
\(262\) −4222.32 + 221.282i −0.995632 + 0.0521789i
\(263\) −3533.85 + 185.201i −0.828542 + 0.0434220i −0.461891 0.886937i \(-0.652829\pi\)
−0.366651 + 0.930359i \(0.619496\pi\)
\(264\) −639.993 710.785i −0.149200 0.165704i
\(265\) 3125.17 5758.24i 0.724443 1.33481i
\(266\) 1408.15 + 2444.64i 0.324585 + 0.563498i
\(267\) 71.0677 448.704i 0.0162894 0.102847i
\(268\) 608.079 162.934i 0.138598 0.0371373i
\(269\) 1967.33 + 875.911i 0.445911 + 0.198532i 0.617393 0.786655i \(-0.288189\pi\)
−0.171482 + 0.985187i \(0.554856\pi\)
\(270\) 4750.71 5007.95i 1.07081 1.12879i
\(271\) 1517.74 + 3408.90i 0.340207 + 0.764118i 0.999921 + 0.0126006i \(0.00401099\pi\)
−0.659713 + 0.751517i \(0.729322\pi\)
\(272\) 94.0847 + 594.027i 0.0209732 + 0.132420i
\(273\) 2087.63 + 2583.29i 0.462817 + 0.572703i
\(274\) 3667.34i 0.808585i
\(275\) 888.822 1369.71i 0.194902 0.300352i
\(276\) 115.013 66.4027i 0.0250832 0.0144818i
\(277\) 4524.38 6966.93i 0.981385 1.51120i 0.126774 0.991932i \(-0.459538\pi\)
0.854611 0.519269i \(-0.173796\pi\)
\(278\) 1358.06 3537.86i 0.292988 0.763261i
\(279\) −4047.25 2940.50i −0.868468 0.630979i
\(280\) −3914.74 + 3337.92i −0.835538 + 0.712424i
\(281\) −2498.80 + 1815.49i −0.530484 + 0.385419i −0.820539 0.571591i \(-0.806327\pi\)
0.290055 + 0.957010i \(0.406327\pi\)
\(282\) −1519.68 5671.53i −0.320907 1.19764i
\(283\) 411.355 157.904i 0.0864046 0.0331676i −0.314782 0.949164i \(-0.601931\pi\)
0.401186 + 0.915996i \(0.368598\pi\)
\(284\) −1077.61 970.285i −0.225156 0.202732i
\(285\) 415.279 1003.07i 0.0863123 0.208479i
\(286\) 3495.15 + 1135.64i 0.722632 + 0.234797i
\(287\) −4890.30 + 4880.52i −1.00580 + 1.00379i
\(288\) 1350.02 2649.56i 0.276218 0.542107i
\(289\) −684.906 + 616.692i −0.139407 + 0.125523i
\(290\) −983.110 + 3321.05i −0.199070 + 0.672479i
\(291\) −608.975 + 676.336i −0.122676 + 0.136246i
\(292\) 71.9513 88.8525i 0.0144200 0.0178072i
\(293\) 1667.78 1667.78i 0.332535 0.332535i −0.521014 0.853548i \(-0.674446\pi\)
0.853548 + 0.521014i \(0.174446\pi\)
\(294\) −4673.29 9.35314i −0.927047 0.00185540i
\(295\) −1685.56 + 4762.53i −0.332669 + 0.939950i
\(296\) −5437.75 + 2421.04i −1.06778 + 0.475406i
\(297\) 1355.69 1097.81i 0.264865 0.214484i
\(298\) −3352.50 2177.14i −0.651694 0.423215i
\(299\) −102.523 + 177.575i −0.0198297 + 0.0343460i
\(300\) 4819.44 + 1022.65i 0.927502 + 0.196808i
\(301\) 6254.19 + 2039.03i 1.19763 + 0.390458i
\(302\) −1650.10 3238.50i −0.314412 0.617069i
\(303\) −3462.35 1329.07i −0.656458 0.251991i
\(304\) −27.1180 + 258.010i −0.00511619 + 0.0486773i
\(305\) −2077.50 + 4357.52i −0.390023 + 0.818068i
\(306\) −6432.37 + 676.070i −1.20168 + 0.126302i
\(307\) −6008.04 6008.04i −1.11693 1.11693i −0.992190 0.124738i \(-0.960191\pi\)
−0.124738 0.992190i \(-0.539809\pi\)
\(308\) −2715.28 + 1759.46i −0.502329 + 0.325502i
\(309\) −4362.91 + 1417.60i −0.803228 + 0.260985i
\(310\) 1105.28 14075.4i 0.202503 2.57880i
\(311\) 1905.88 + 8966.44i 0.347499 + 1.63486i 0.710950 + 0.703242i \(0.248265\pi\)
−0.363451 + 0.931613i \(0.618402\pi\)
\(312\) 233.196 + 4449.65i 0.0423145 + 0.807410i
\(313\) 755.458 490.600i 0.136425 0.0885954i −0.474622 0.880190i \(-0.657415\pi\)
0.611047 + 0.791594i \(0.290749\pi\)
\(314\) −3717.07 + 11440.0i −0.668046 + 2.05603i
\(315\) −2306.15 3010.58i −0.412498 0.538498i
\(316\) −814.036 2505.35i −0.144915 0.446002i
\(317\) 968.684 + 784.425i 0.171630 + 0.138983i 0.711287 0.702902i \(-0.248113\pi\)
−0.539657 + 0.841885i \(0.681446\pi\)
\(318\) 7712.02 + 2066.43i 1.35996 + 0.364401i
\(319\) −356.009 + 799.608i −0.0624848 + 0.140343i
\(320\) 9068.47 715.297i 1.58420 0.124957i
\(321\) 2615.86 3600.42i 0.454838 0.626031i
\(322\) −103.122 269.448i −0.0178471 0.0466328i
\(323\) −2242.49 + 1142.61i −0.386302 + 0.196831i
\(324\) −1169.15 675.009i −0.200471 0.115742i
\(325\) −7233.58 + 2353.13i −1.23461 + 0.401624i
\(326\) 8278.54 + 14338.9i 1.40646 + 2.43606i
\(327\) −180.304 + 3440.41i −0.0304918 + 0.581819i
\(328\) −9154.58 + 1449.94i −1.54109 + 0.244084i
\(329\) −7938.41 + 826.330i −1.33027 + 0.138471i
\(330\) 1875.80 + 663.888i 0.312908 + 0.110745i
\(331\) 1245.95 + 11854.4i 0.206899 + 1.96851i 0.245973 + 0.969277i \(0.420893\pi\)
−0.0390738 + 0.999236i \(0.512441\pi\)
\(332\) 1685.66 6290.98i 0.278653 1.03995i
\(333\) −1572.44 4096.35i −0.258767 0.674110i
\(334\) −15415.9 3276.76i −2.52551 0.536815i
\(335\) −381.678 + 362.325i −0.0622486 + 0.0590924i
\(336\) −347.419 252.946i −0.0564085 0.0410695i
\(337\) 8330.07 + 4244.38i 1.34649 + 0.686072i 0.970624 0.240601i \(-0.0773446\pi\)
0.375868 + 0.926673i \(0.377345\pi\)
\(338\) −3792.49 5839.92i −0.610308 0.939792i
\(339\) 6169.01 1311.26i 0.988362 0.210083i
\(340\) −6954.60 9060.14i −1.10931 1.44516i
\(341\) 741.831 3490.04i 0.117808 0.554241i
\(342\) −2755.58 436.441i −0.435686 0.0690059i
\(343\) −1012.57 + 6271.23i −0.159399 + 0.987214i
\(344\) 5187.13 + 7139.47i 0.812998 + 1.11900i
\(345\) −57.9919 + 94.6713i −0.00904980 + 0.0147737i
\(346\) 8322.36 + 874.716i 1.29310 + 0.135910i
\(347\) 4757.29 + 5874.77i 0.735979 + 0.908859i 0.998426 0.0560877i \(-0.0178627\pi\)
−0.262446 + 0.964947i \(0.584529\pi\)
\(348\) −2637.38 138.219i −0.406259 0.0212911i
\(349\) 4696.87 0.720394 0.360197 0.932876i \(-0.382709\pi\)
0.360197 + 0.932876i \(0.382709\pi\)
\(350\) 3842.08 9989.51i 0.586765 1.52560i
\(351\) −8126.69 −1.23581
\(352\) 2117.98 + 110.998i 0.320706 + 0.0168075i
\(353\) 3533.46 + 4363.46i 0.532768 + 0.657914i 0.970474 0.241204i \(-0.0775424\pi\)
−0.437706 + 0.899118i \(0.644209\pi\)
\(354\) −6122.84 643.537i −0.919281 0.0966203i
\(355\) 1178.77 + 282.780i 0.176233 + 0.0422772i
\(356\) −1211.82 1667.92i −0.180411 0.248314i
\(357\) 222.358 4163.14i 0.0329649 0.617189i
\(358\) −1928.16 305.390i −0.284655 0.0450849i
\(359\) −240.966 + 1133.66i −0.0354254 + 0.166663i −0.992304 0.123824i \(-0.960484\pi\)
0.956879 + 0.290487i \(0.0938174\pi\)
\(360\) −134.065 5085.81i −0.0196274 0.744571i
\(361\) 5647.20 1200.35i 0.823327 0.175003i
\(362\) 8714.81 + 13419.6i 1.26530 + 1.94840i
\(363\) −3046.93 1552.49i −0.440557 0.224475i
\(364\) 14988.8 + 1590.55i 2.15831 + 0.229032i
\(365\) −17.4013 + 93.9805i −0.00249541 + 0.0134772i
\(366\) −5754.32 1223.12i −0.821811 0.174681i
\(367\) 86.2499 + 224.689i 0.0122676 + 0.0319582i 0.939577 0.342336i \(-0.111218\pi\)
−0.927310 + 0.374295i \(0.877885\pi\)
\(368\) 6.86660 25.6265i 0.000972680 0.00363009i
\(369\) −714.183 6795.00i −0.100756 0.958628i
\(370\) 7536.79 9825.69i 1.05897 1.38058i
\(371\) 4424.15 9910.10i 0.619112 1.38681i
\(372\) 10633.3 1684.14i 1.48201 0.234728i
\(373\) 450.373 8593.63i 0.0625186 1.19293i −0.769673 0.638438i \(-0.779581\pi\)
0.832192 0.554487i \(-0.187086\pi\)
\(374\) −2306.48 3994.95i −0.318891 0.552336i
\(375\) −3948.39 + 1171.82i −0.543717 + 0.161366i
\(376\) −9272.71 5353.60i −1.27182 0.734285i
\(377\) 3633.16 1851.19i 0.496333 0.252894i
\(378\) 7204.87 8879.09i 0.980367 1.20818i
\(379\) 2050.14 2821.78i 0.277860 0.382441i −0.647164 0.762351i \(-0.724045\pi\)
0.925023 + 0.379910i \(0.124045\pi\)
\(380\) −1886.19 4551.41i −0.254630 0.614428i
\(381\) 1088.07 2443.85i 0.146309 0.328615i
\(382\) 14331.2 + 3840.04i 1.91950 + 0.514328i
\(383\) −2440.15 1975.99i −0.325550 0.263625i 0.452586 0.891721i \(-0.350501\pi\)
−0.778136 + 0.628095i \(0.783835\pi\)
\(384\) 2242.72 + 6902.38i 0.298042 + 0.917280i
\(385\) 1292.57 2375.94i 0.171105 0.314517i
\(386\) 2029.80 6247.09i 0.267654 0.823753i
\(387\) −5455.78 + 3543.02i −0.716622 + 0.465380i
\(388\) 216.156 + 4124.51i 0.0282827 + 0.539665i
\(389\) −24.2451 114.064i −0.00316010 0.0148671i 0.976539 0.215339i \(-0.0690857\pi\)
−0.979699 + 0.200472i \(0.935752\pi\)
\(390\) −4844.84 7902.97i −0.629046 1.02611i
\(391\) 244.782 79.5344i 0.0316602 0.0102870i
\(392\) −6038.04 + 6013.92i −0.777977 + 0.774870i
\(393\) 1905.78 + 1905.78i 0.244616 + 0.244616i
\(394\) 10240.7 1076.34i 1.30944 0.137628i
\(395\) 1597.67 + 1515.60i 0.203512 + 0.193058i
\(396\) 334.453 3182.11i 0.0424416 0.403805i
\(397\) −2119.80 813.716i −0.267984 0.102870i 0.220665 0.975350i \(-0.429177\pi\)
−0.488650 + 0.872480i \(0.662510\pi\)
\(398\) 5299.76 + 10401.4i 0.667470 + 1.30998i
\(399\) 557.434 1709.78i 0.0699413 0.214527i
\(400\) 825.244 536.330i 0.103156 0.0670412i
\(401\) 4713.79 8164.53i 0.587021 1.01675i −0.407599 0.913161i \(-0.633634\pi\)
0.994620 0.103589i \(-0.0330328\pi\)
\(402\) −537.864 349.293i −0.0667319 0.0433362i
\(403\) −12917.7 + 10460.5i −1.59672 + 1.29299i
\(404\) −15375.5 + 6845.60i −1.89346 + 0.843023i
\(405\) 1128.19 + 29.3457i 0.138421 + 0.00360049i
\(406\) −1198.47 + 5610.74i −0.146500 + 0.685853i
\(407\) 2212.86 2212.86i 0.269502 0.269502i
\(408\) 3519.76 4346.55i 0.427094 0.527417i
\(409\) 5203.24 5778.78i 0.629056 0.698637i −0.341400 0.939918i \(-0.610901\pi\)
0.970455 + 0.241281i \(0.0775676\pi\)
\(410\) 15295.9 11741.2i 1.84247 1.41429i
\(411\) 1737.27 1564.24i 0.208499 0.187733i
\(412\) −9451.39 + 18549.4i −1.13019 + 2.21812i
\(413\) −2174.06 + 8081.34i −0.259028 + 0.962849i
\(414\) 271.345 + 88.1654i 0.0322123 + 0.0104664i
\(415\) 1271.94 + 5293.93i 0.150451 + 0.626190i
\(416\) −7342.55 6611.26i −0.865380 0.779191i
\(417\) −2255.18 + 865.684i −0.264836 + 0.101661i
\(418\) −515.007 1922.03i −0.0602627 0.224903i
\(419\) −4290.97 + 3117.57i −0.500305 + 0.363493i −0.809133 0.587625i \(-0.800063\pi\)
0.308829 + 0.951118i \(0.400063\pi\)
\(420\) 8090.46 + 1071.93i 0.939938 + 0.124535i
\(421\) −9715.67 7058.85i −1.12473 0.817167i −0.139814 0.990178i \(-0.544650\pi\)
−0.984920 + 0.173011i \(0.944650\pi\)
\(422\) 1396.25 3637.36i 0.161063 0.419582i
\(423\) 4298.75 6619.49i 0.494119 0.760876i
\(424\) 12608.8 7279.71i 1.44420 0.833807i
\(425\) 8723.97 + 3880.51i 0.995706 + 0.442900i
\(426\) 1477.25i 0.168012i
\(427\) −2873.21 + 7462.63i −0.325630 + 0.845765i
\(428\) −3159.42 19947.8i −0.356814 2.25283i
\(429\) −952.829 2140.09i −0.107233 0.240849i
\(430\) −16572.3 7901.02i −1.85857 0.886095i
\(431\) −3648.19 1624.28i −0.407720 0.181528i 0.192620 0.981273i \(-0.438301\pi\)
−0.600340 + 0.799745i \(0.704968\pi\)
\(432\) 1015.67 272.147i 0.113116 0.0303094i
\(433\) −118.142 + 745.917i −0.0131121 + 0.0827864i −0.993377 0.114904i \(-0.963344\pi\)
0.980265 + 0.197690i \(0.0633440\pi\)
\(434\) 23.4041 23387.7i 0.00258855 2.58674i
\(435\) 1992.55 950.827i 0.219622 0.104801i
\(436\) 10461.5 + 11618.7i 1.14912 + 1.27623i
\(437\) 110.870 5.81044i 0.0121364 0.000636043i
\(438\) −116.315 + 6.09582i −0.0126889 + 0.000664999i
\(439\) 1440.65 + 1600.00i 0.156625 + 0.173950i 0.816350 0.577557i \(-0.195994\pi\)
−0.659725 + 0.751507i \(0.729327\pi\)
\(440\) 3274.81 1562.71i 0.354819 0.169316i
\(441\) −4194.15 4676.87i −0.452883 0.505007i
\(442\) −3361.78 + 21225.5i −0.361773 + 2.28414i
\(443\) −16695.9 + 4473.65i −1.79062 + 0.479796i −0.992452 0.122637i \(-0.960865\pi\)
−0.798170 + 0.602432i \(0.794198\pi\)
\(444\) 8626.20 + 3840.63i 0.922030 + 0.410514i
\(445\) 1555.73 + 741.711i 0.165727 + 0.0790123i
\(446\) 8518.17 + 19132.1i 0.904365 + 2.03124i
\(447\) 398.613 + 2516.74i 0.0421784 + 0.266304i
\(448\) 14885.4 2342.35i 1.56980 0.247022i
\(449\) 4468.40i 0.469659i 0.972037 + 0.234830i \(0.0754532\pi\)
−0.972037 + 0.234830i \(0.924547\pi\)
\(450\) 5295.33 + 9164.38i 0.554720 + 0.960029i
\(451\) 4220.16 2436.51i 0.440620 0.254392i
\(452\) 15588.3 24003.9i 1.62215 2.49789i
\(453\) −830.298 + 2163.00i −0.0861165 + 0.224341i
\(454\) −6701.13 4868.66i −0.692730 0.503298i
\(455\) −11645.3 + 4812.39i −1.19987 + 0.495843i
\(456\) 1951.80 1418.07i 0.200442 0.145630i
\(457\) 2652.58 + 9899.58i 0.271516 + 1.01331i 0.958140 + 0.286298i \(0.0924249\pi\)
−0.686625 + 0.727012i \(0.740908\pi\)
\(458\) −25404.4 + 9751.82i −2.59185 + 0.994918i
\(459\) 7580.67 + 6825.66i 0.770883 + 0.694106i
\(460\) 117.703 + 489.890i 0.0119302 + 0.0496549i
\(461\) −994.127 323.012i −0.100436 0.0326337i 0.258368 0.966047i \(-0.416815\pi\)
−0.358804 + 0.933413i \(0.616815\pi\)
\(462\) 3182.97 + 856.290i 0.320531 + 0.0862299i
\(463\) 4014.05 7878.01i 0.402913 0.790761i −0.597021 0.802225i \(-0.703649\pi\)
0.999934 + 0.0114644i \(0.00364930\pi\)
\(464\) −392.076 + 353.027i −0.0392278 + 0.0353209i
\(465\) −7139.13 + 5480.03i −0.711977 + 0.546516i
\(466\) −19372.5 + 21515.3i −1.92578 + 2.13879i
\(467\) 11375.5 14047.6i 1.12719 1.39196i 0.217808 0.975992i \(-0.430109\pi\)
0.909379 0.415969i \(-0.136557\pi\)
\(468\) −10540.0 + 10540.0i −1.04105 + 1.04105i
\(469\) −583.972 + 647.263i −0.0574953 + 0.0637267i
\(470\) 22267.9 + 579.215i 2.18541 + 0.0568451i
\(471\) 7004.71 3118.70i 0.685265 0.305100i
\(472\) −8724.92 + 7065.30i −0.850841 + 0.688997i
\(473\) −3891.17 2526.95i −0.378258 0.245644i
\(474\) −1341.83 + 2324.11i −0.130026 + 0.225211i
\(475\) 3201.68 + 2590.82i 0.309270 + 0.250263i
\(476\) −12645.8 14072.9i −1.21769 1.35510i
\(477\) 4872.45 + 9562.73i 0.467703 + 0.917919i
\(478\) 15422.0 + 5919.97i 1.47571 + 0.566471i
\(479\) −378.000 + 3596.43i −0.0360569 + 0.343059i 0.961590 + 0.274491i \(0.0885095\pi\)
−0.997646 + 0.0685673i \(0.978157\pi\)
\(480\) −3881.16 3681.80i −0.369062 0.350105i
\(481\) −14499.1 + 1523.91i −1.37443 + 0.144458i
\(482\) −19203.7 19203.7i −1.81474 1.81474i
\(483\) −83.6560 + 163.779i −0.00788091 + 0.0154290i
\(484\) −14759.3 + 4795.60i −1.38611 + 0.450375i
\(485\) −1804.54 2943.59i −0.168949 0.275591i
\(486\) 3751.83 + 17651.0i 0.350178 + 1.64746i
\(487\) 493.365 + 9413.97i 0.0459066 + 0.875950i 0.920416 + 0.390941i \(0.127850\pi\)
−0.874509 + 0.485009i \(0.838816\pi\)
\(488\) −8997.06 + 5842.76i −0.834586 + 0.541986i
\(489\) 3261.43 10037.6i 0.301609 0.928258i
\(490\) 5066.46 16990.0i 0.467100 1.56639i
\(491\) −4309.48 13263.2i −0.396098 1.21906i −0.928103 0.372323i \(-0.878561\pi\)
0.532005 0.846741i \(-0.321439\pi\)
\(492\) 11426.7 + 9253.17i 1.04707 + 0.847897i
\(493\) −4943.88 1324.71i −0.451646 0.121018i
\(494\) −3770.39 + 8468.44i −0.343397 + 0.771282i
\(495\) 1024.03 + 2471.01i 0.0929835 + 0.224371i
\(496\) 1264.14 1739.94i 0.114438 0.157511i
\(497\) 1983.00 + 316.110i 0.178973 + 0.0285301i
\(498\) −5911.81 + 3012.22i −0.531957 + 0.271046i
\(499\) −3045.84 1758.52i −0.273248 0.157760i 0.357115 0.934060i \(-0.383760\pi\)
−0.630363 + 0.776301i \(0.717094\pi\)
\(500\) −8909.91 + 16430.5i −0.796926 + 1.46959i
\(501\) 5023.16 + 8700.36i 0.447940 + 0.775856i
\(502\) −113.910 + 2173.54i −0.0101276 + 0.193247i
\(503\) −10487.4 + 1661.05i −0.929645 + 0.147241i −0.602850 0.797854i \(-0.705968\pi\)
−0.326794 + 0.945096i \(0.605968\pi\)
\(504\) −872.534 8382.29i −0.0771146 0.740827i
\(505\) 8563.22 11163.8i 0.754571 0.983732i
\(506\) 21.2703 + 202.373i 0.00186874 + 0.0177798i
\(507\) −1148.82 + 4287.47i −0.100633 + 0.375568i
\(508\) −4350.64 11333.8i −0.379977 0.989874i
\(509\) −4525.80 961.988i −0.394111 0.0837709i 0.00659344 0.999978i \(-0.497901\pi\)
−0.400704 + 0.916207i \(0.631235\pi\)
\(510\) −2118.43 + 11441.2i −0.183933 + 0.993381i
\(511\) −16.7070 + 157.441i −0.00144633 + 0.0136297i
\(512\) 2533.50 + 1290.88i 0.218684 + 0.111425i
\(513\) 2396.51 + 3690.30i 0.206254 + 0.317604i
\(514\) −8862.92 + 1883.87i −0.760558 + 0.161662i
\(515\) −458.611 17397.6i −0.0392404 1.48860i
\(516\) 2910.64 13693.5i 0.248321 1.16826i
\(517\) 5560.02 + 880.621i 0.472977 + 0.0749123i
\(518\) 11189.4 17192.5i 0.949102 1.45829i
\(519\) −3135.40 4315.50i −0.265180 0.364990i
\(520\) −16437.7 3943.30i −1.38623 0.332549i
\(521\) 13856.4 + 1456.37i 1.16518 + 0.122466i 0.667307 0.744783i \(-0.267447\pi\)
0.497875 + 0.867249i \(0.334114\pi\)
\(522\) −3570.59 4409.31i −0.299388 0.369713i
\(523\) 11126.9 + 583.134i 0.930294 + 0.0487546i 0.511459 0.859308i \(-0.329105\pi\)
0.418835 + 0.908062i \(0.362439\pi\)
\(524\) 12231.1 1.01969
\(525\) −6370.93 + 2440.81i −0.529619 + 0.202906i
\(526\) 16360.2 1.35615
\(527\) 20835.7 + 1091.95i 1.72223 + 0.0902583i
\(528\) 190.751 + 235.558i 0.0157223 + 0.0194154i
\(529\) 12089.1 + 1270.61i 0.993594 + 0.104431i
\(530\) −15821.8 + 25828.9i −1.29670 + 2.11686i
\(531\) −4864.46 6695.35i −0.397551 0.547182i
\(532\) −3697.83 7275.40i −0.301356 0.592911i
\(533\) −22422.0 3551.30i −1.82215 0.288600i
\(534\) −436.679 + 2054.41i −0.0353876 + 0.166485i
\(535\) 10280.4 + 13392.9i 0.830769 + 1.08229i
\(536\) −1143.95 + 243.153i −0.0921846 + 0.0195944i
\(537\) 677.756 + 1043.65i 0.0544643 + 0.0838677i
\(538\) −8870.97 4519.99i −0.710883 0.362213i
\(539\) 1830.56 4089.46i 0.146285 0.326801i
\(540\) −14482.3 + 13748.0i −1.15411 + 1.09559i
\(541\) −11418.0 2426.97i −0.907388 0.192871i −0.269500 0.963000i \(-0.586858\pi\)
−0.637888 + 0.770129i \(0.720192\pi\)
\(542\) −6182.40 16105.7i −0.489957 1.27638i
\(543\) 2639.90 9852.23i 0.208635 0.778637i
\(544\) 1296.37 + 12334.1i 0.102172 + 0.972097i
\(545\) −12321.1 4360.70i −0.968397 0.342737i
\(546\) −9013.28 12431.9i −0.706470 0.974422i
\(547\) −12031.6 + 1905.62i −0.940467 + 0.148955i −0.607801 0.794089i \(-0.707948\pi\)
−0.332666 + 0.943045i \(0.607948\pi\)
\(548\) 555.229 10594.4i 0.0432814 0.825859i
\(549\) −3954.00 6848.52i −0.307382 0.532400i
\(550\) −4435.00 + 6108.74i −0.343834 + 0.473595i
\(551\) −1912.01 1103.90i −0.147830 0.0853499i
\(552\) −219.827 + 112.008i −0.0169501 + 0.00863652i
\(553\) 2832.66 + 2298.54i 0.217824 + 0.176752i
\(554\) −22574.2 + 31070.8i −1.73120 + 2.38280i
\(555\) −7869.24 + 620.705i −0.601857 + 0.0474729i
\(556\) −4458.85 + 10014.7i −0.340103 + 0.763883i
\(557\) 1877.95 + 503.196i 0.142857 + 0.0382784i 0.329539 0.944142i \(-0.393107\pi\)
−0.186682 + 0.982420i \(0.559773\pi\)
\(558\) 17974.2 + 14555.2i 1.36363 + 1.10425i
\(559\) 6679.25 + 20556.6i 0.505371 + 1.55537i
\(560\) 1294.27 991.427i 0.0976656 0.0748133i
\(561\) −908.666 + 2796.59i −0.0683849 + 0.210467i
\(562\) 11975.9 7777.27i 0.898887 0.583744i
\(563\) 879.401 + 16780.0i 0.0658301 + 1.25611i 0.809321 + 0.587367i \(0.199835\pi\)
−0.743491 + 0.668746i \(0.766831\pi\)
\(564\) 3531.47 + 16614.3i 0.263656 + 1.24040i
\(565\) −1873.09 + 23853.2i −0.139472 + 1.77612i
\(566\) −1937.38 + 629.493i −0.143877 + 0.0467483i
\(567\) 1867.02 95.9730i 0.138285 0.00710844i
\(568\) 1904.84 + 1904.84i 0.140714 + 0.140714i
\(569\) −14184.9 + 1490.89i −1.04510 + 0.109844i −0.611485 0.791256i \(-0.709428\pi\)
−0.433611 + 0.901100i \(0.642761\pi\)
\(570\) −2160.00 + 4530.56i −0.158723 + 0.332920i
\(571\) −2331.26 + 22180.5i −0.170859 + 1.62561i 0.487650 + 0.873039i \(0.337854\pi\)
−0.658509 + 0.752573i \(0.728813\pi\)
\(572\) −9925.04 3809.87i −0.725501 0.278494i
\(573\) −4293.66 8426.78i −0.313037 0.614370i
\(574\) 23758.8 21349.5i 1.72765 1.55246i
\(575\) −281.939 312.905i −0.0204481 0.0226940i
\(576\) −7450.79 + 12905.1i −0.538975 + 0.933532i
\(577\) −16923.0 10990.0i −1.22100 0.792925i −0.237070 0.971493i \(-0.576187\pi\)
−0.983928 + 0.178568i \(0.942854\pi\)
\(578\) 3311.34 2681.47i 0.238294 0.192966i
\(579\) −3825.10 + 1703.05i −0.274553 + 0.122239i
\(580\) 3342.86 9445.19i 0.239318 0.676190i
\(581\) 2778.43 + 8580.34i 0.198397 + 0.612689i
\(582\) 2975.21 2975.21i 0.211901 0.211901i
\(583\) −4817.22 + 5948.77i −0.342210 + 0.422595i
\(584\) −142.123 + 157.843i −0.0100703 + 0.0111842i
\(585\) 3536.99 11948.3i 0.249977 0.844449i
\(586\) −8103.46 + 7296.39i −0.571247 + 0.514353i
\(587\) −2525.67 + 4956.91i −0.177591 + 0.348541i −0.962593 0.270952i \(-0.912662\pi\)
0.785002 + 0.619493i \(0.212662\pi\)
\(588\) 13499.0 + 734.548i 0.946752 + 0.0515174i
\(589\) 8559.44 + 2781.13i 0.598787 + 0.194558i
\(590\) 8934.39 21580.2i 0.623429 1.50583i
\(591\) −4877.87 4392.05i −0.339507 0.305694i
\(592\) 1761.05 676.002i 0.122261 0.0469316i
\(593\) 1511.37 + 5640.52i 0.104662 + 0.390605i 0.998307 0.0581710i \(-0.0185269\pi\)
−0.893644 + 0.448776i \(0.851860\pi\)
\(594\) −6524.67 + 4740.45i −0.450691 + 0.327446i
\(595\) 14904.9 + 5291.95i 1.02696 + 0.364620i
\(596\) 9355.24 + 6796.98i 0.642963 + 0.467140i
\(597\) 2666.74 6947.09i 0.182818 0.476257i
\(598\) 516.303 795.037i 0.0353064 0.0543670i
\(599\) 17009.7 9820.57i 1.16026 0.669879i 0.208897 0.977938i \(-0.433013\pi\)
0.951367 + 0.308058i \(0.0996793\pi\)
\(600\) −8841.57 2365.78i −0.601593 0.160971i
\(601\) 18645.0i 1.26547i −0.774370 0.632733i \(-0.781933\pi\)
0.774370 0.632733i \(-0.218067\pi\)
\(602\) −28381.4 10927.2i −1.92150 0.739801i
\(603\) −134.862 851.487i −0.00910782 0.0575045i
\(604\) 4276.58 + 9605.36i 0.288099 + 0.647081i
\(605\) 8928.60 9412.07i 0.599999 0.632488i
\(606\) 15663.7 + 6973.91i 1.04999 + 0.467485i
\(607\) 3965.85 1062.64i 0.265187 0.0710567i −0.123775 0.992310i \(-0.539500\pi\)
0.388963 + 0.921254i \(0.372834\pi\)
\(608\) −836.878 + 5283.84i −0.0558222 + 0.352448i
\(609\) 3169.07 1825.44i 0.210865 0.121462i
\(610\) 10645.9 19615.5i 0.706622 1.30198i
\(611\) −17547.9 19488.9i −1.16188 1.29040i
\(612\) 18684.5 979.214i 1.23411 0.0646771i
\(613\) 5936.54 311.121i 0.391149 0.0204993i 0.144252 0.989541i \(-0.453922\pi\)
0.246897 + 0.969042i \(0.420589\pi\)
\(614\) 26284.7 + 29192.1i 1.72763 + 1.91872i
\(615\) −12086.2 2237.86i −0.792459 0.146731i
\(616\) 5208.44 3000.15i 0.340672 0.196233i
\(617\) 475.192 3000.24i 0.0310057 0.195762i −0.967323 0.253545i \(-0.918403\pi\)
0.998329 + 0.0577833i \(0.0184032\pi\)
\(618\) 20486.0 5489.21i 1.33344 0.357295i
\(619\) −9358.89 4166.85i −0.607699 0.270565i 0.0797302 0.996816i \(-0.474594\pi\)
−0.687429 + 0.726251i \(0.741261\pi\)
\(620\) −5323.99 + 40494.3i −0.344865 + 2.62305i
\(621\) −183.023 411.077i −0.0118268 0.0265635i
\(622\) −6629.67 41858.1i −0.427372 2.69832i
\(623\) 2664.32 + 1025.80i 0.171338 + 0.0659673i
\(624\) 1412.05i 0.0905888i
\(625\) −10.9109 15625.0i −0.000698296 1.00000i
\(626\) −3606.56 + 2082.25i −0.230267 + 0.132945i
\(627\) −690.823 + 1063.77i −0.0440013 + 0.0677561i
\(628\) 12470.0 32485.6i 0.792371 2.06420i
\(629\) 14804.8 + 10756.3i 0.938486 + 0.681850i
\(630\) 9918.77 + 14457.5i 0.627259 + 0.914285i
\(631\) −5191.06 + 3771.52i −0.327500 + 0.237943i −0.739369 0.673300i \(-0.764876\pi\)
0.411869 + 0.911243i \(0.364876\pi\)
\(632\) 1266.61 + 4727.05i 0.0797199 + 0.297519i
\(633\) −2318.61 + 890.030i −0.145587 + 0.0558855i
\(634\) −4282.49 3855.98i −0.268264 0.241546i
\(635\) 7718.35 + 6589.76i 0.482352 + 0.411822i
\(636\) −21966.0 7137.19i −1.36951 0.444981i
\(637\) −18616.7 + 9438.81i −1.15796 + 0.587094i
\(638\) 1837.12 3605.55i 0.114001 0.223739i
\(639\) −1475.72 + 1328.74i −0.0913592 + 0.0822602i
\(640\) −27524.0 + 725.548i −1.69997 + 0.0448122i
\(641\) 16067.4 17844.7i 0.990055 1.09957i −0.00497419 0.999988i \(-0.501583\pi\)
0.995030 0.0995802i \(-0.0317500\pi\)
\(642\) −12948.3 + 15989.8i −0.795992 + 0.982968i
\(643\) 19156.4 19156.4i 1.17489 1.17489i 0.193859 0.981029i \(-0.437900\pi\)
0.981029 0.193859i \(-0.0621003\pi\)
\(644\) 257.110 + 794.007i 0.0157323 + 0.0485843i
\(645\) 3325.81 + 11220.5i 0.203029 + 0.684974i
\(646\) 10629.8 4732.68i 0.647403 0.288243i
\(647\) −10076.0 + 8159.35i −0.612252 + 0.495792i −0.884565 0.466417i \(-0.845545\pi\)
0.272313 + 0.962209i \(0.412211\pi\)
\(648\) 2103.37 + 1365.94i 0.127513 + 0.0828077i
\(649\) 2951.27 5111.75i 0.178501 0.309174i
\(650\) 33965.9 9113.85i 2.04962 0.549961i
\(651\) −11089.0 + 9964.52i −0.667608 + 0.599909i
\(652\) −21744.6 42676.2i −1.30611 2.56339i
\(653\) 30709.4 + 11788.2i 1.84036 + 0.706447i 0.980683 + 0.195602i \(0.0626662\pi\)
0.859673 + 0.510844i \(0.170667\pi\)
\(654\) 1664.88 15840.3i 0.0995444 0.947102i
\(655\) −8984.94 + 4880.45i −0.535985 + 0.291138i
\(656\) 2921.21 307.032i 0.173863 0.0182737i
\(657\) −110.712 110.712i −0.00657424 0.00657424i
\(658\) 36850.6 1894.28i 2.18326 0.112229i
\(659\) −15103.9 + 4907.56i −0.892816 + 0.290093i −0.719269 0.694732i \(-0.755523\pi\)
−0.173547 + 0.984826i \(0.555523\pi\)
\(660\) −5318.40 2201.87i −0.313665 0.129860i
\(661\) 2221.23 + 10450.1i 0.130705 + 0.614918i 0.993922 + 0.110085i \(0.0351124\pi\)
−0.863217 + 0.504833i \(0.831554\pi\)
\(662\) −2884.10 55031.9i −0.169326 3.23093i
\(663\) 11488.7 7460.83i 0.672976 0.437036i
\(664\) −3738.88 + 11507.1i −0.218519 + 0.672533i
\(665\) 5619.43 + 3868.96i 0.327687 + 0.225612i
\(666\) 6268.62 + 19292.8i 0.364721 + 1.12250i
\(667\) 175.463 + 142.087i 0.0101858 + 0.00824834i
\(668\) 44038.2 + 11800.0i 2.55073 + 0.683467i
\(669\) 5429.85 12195.6i 0.313797 0.704799i
\(670\) 1849.83 1580.46i 0.106664 0.0911321i
\(671\) 3315.19 4562.97i 0.190732 0.262521i
\(672\) −6881.29 5583.77i −0.395017 0.320534i
\(673\) 7357.26 3748.71i 0.421399 0.214714i −0.230415 0.973093i \(-0.574008\pi\)
0.651814 + 0.758379i \(0.274008\pi\)
\(674\) −37431.9 21611.3i −2.13921 1.23507i
\(675\) 5152.91 15877.9i 0.293831 0.905393i
\(676\) 10071.8 + 17444.8i 0.573042 + 0.992537i
\(677\) 1165.74 22243.7i 0.0661790 1.26277i −0.740612 0.671933i \(-0.765464\pi\)
0.806791 0.590837i \(-0.201202\pi\)
\(678\) −28798.8 + 4561.29i −1.63129 + 0.258371i
\(679\) −3357.15 4630.45i −0.189743 0.261709i
\(680\) 12021.2 + 17484.5i 0.677932 + 0.986028i
\(681\) 551.908 + 5251.05i 0.0310560 + 0.295478i
\(682\) −4269.39 + 15933.6i −0.239712 + 0.894617i
\(683\) −2037.50 5307.87i −0.114148 0.297365i 0.864591 0.502476i \(-0.167578\pi\)
−0.978739 + 0.205112i \(0.934244\pi\)
\(684\) 7894.38 + 1678.00i 0.441300 + 0.0938012i
\(685\) 3819.50 + 8004.14i 0.213044 + 0.446456i
\(686\) 6192.31 28708.5i 0.344641 1.59781i
\(687\) 15455.4 + 7874.90i 0.858309 + 0.437330i
\(688\) −1523.17 2345.47i −0.0844043 0.129971i
\(689\) 34880.7 7414.13i 1.92866 0.409950i
\(690\) 290.648 423.054i 0.0160359 0.0233412i
\(691\) 3926.85 18474.4i 0.216186 1.01707i −0.727469 0.686141i \(-0.759303\pi\)
0.943654 0.330933i \(-0.107363\pi\)
\(692\) −23909.6 3786.91i −1.31345 0.208030i
\(693\) 2007.59 + 3949.89i 0.110046 + 0.216514i
\(694\) −20542.4 28274.2i −1.12360 1.54650i
\(695\) −720.618 9135.93i −0.0393304 0.498627i
\(696\) 4879.41 + 512.846i 0.265738 + 0.0279302i
\(697\) 17932.8 + 22145.1i 0.974537 + 1.20345i
\(698\) −21684.9 1136.45i −1.17591 0.0616267i
\(699\) 18455.1 0.998620
\(700\) −12611.6 + 28276.5i −0.680962 + 1.52679i
\(701\) 16828.3 0.906700 0.453350 0.891333i \(-0.350229\pi\)
0.453350 + 0.891333i \(0.350229\pi\)
\(702\) 37519.9 + 1966.34i 2.01723 + 0.105719i
\(703\) 4967.68 + 6134.58i 0.266515 + 0.329118i
\(704\) −10569.9 1110.94i −0.565863 0.0594745i
\(705\) −9223.60 10795.6i −0.492739 0.576719i
\(706\) −15257.8 21000.5i −0.813362 1.11950i
\(707\) 12713.3 19533.9i 0.676284 1.03911i
\(708\) 17590.5 + 2786.07i 0.933747 + 0.147891i
\(709\) 3109.40 14628.6i 0.164705 0.774877i −0.815792 0.578345i \(-0.803699\pi\)
0.980497 0.196532i \(-0.0629679\pi\)
\(710\) −5373.81 1590.77i −0.284050 0.0840855i
\(711\) −3528.64 + 750.036i −0.186124 + 0.0395620i
\(712\) 2085.99 + 3212.15i 0.109798 + 0.169073i
\(713\) −820.055 417.839i −0.0430733 0.0219470i
\(714\) −2033.92 + 19166.9i −0.106607 + 1.00463i
\(715\) 8811.09 1161.57i 0.460862 0.0607554i
\(716\) 5523.93 + 1174.15i 0.288322 + 0.0612848i
\(717\) −3773.64 9830.68i −0.196554 0.512041i
\(718\) 1386.81 5175.65i 0.0720826 0.269016i
\(719\) 1533.01 + 14585.6i 0.0795154 + 0.756538i 0.959533 + 0.281597i \(0.0908641\pi\)
−0.880017 + 0.474941i \(0.842469\pi\)
\(720\) −41.9233 + 1611.74i −0.00216998 + 0.0834248i
\(721\) −2984.77 28674.2i −0.154173 1.48111i
\(722\) −26362.9 + 4175.47i −1.35890 + 0.215228i
\(723\) −906.030 + 17288.1i −0.0466053 + 0.889282i
\(724\) −23144.1 40086.7i −1.18804 2.05775i
\(725\) 1313.16 + 8272.25i 0.0672681 + 0.423757i
\(726\) 13691.7 + 7904.88i 0.699924 + 0.404101i
\(727\) −749.434 + 381.855i −0.0382324 + 0.0194804i −0.473002 0.881061i \(-0.656830\pi\)
0.434770 + 0.900542i \(0.356830\pi\)
\(728\) −27652.5 4408.09i −1.40779 0.224416i
\(729\) 5159.23 7101.07i 0.262116 0.360772i
\(730\) 103.079 429.686i 0.00522620 0.0217855i
\(731\) 11035.2 24785.4i 0.558345 1.25406i
\(732\) 16438.2 + 4404.60i 0.830017 + 0.222402i
\(733\) 12703.6 + 10287.2i 0.640134 + 0.518371i 0.893537 0.448990i \(-0.148216\pi\)
−0.253402 + 0.967361i \(0.581550\pi\)
\(734\) −343.839 1058.23i −0.0172907 0.0532152i
\(735\) −10209.4 + 4846.76i −0.512353 + 0.243232i
\(736\) 169.058 520.306i 0.00846678 0.0260581i
\(737\) 515.671 334.881i 0.0257734 0.0167374i
\(738\) 1653.18 + 31544.5i 0.0824584 + 1.57340i
\(739\) 1655.09 + 7786.59i 0.0823864 + 0.387597i 0.999950 0.00999138i \(-0.00318041\pi\)
−0.917564 + 0.397589i \(0.869847\pi\)
\(740\) −23260.2 + 27243.9i −1.15549 + 1.35339i
\(741\) 5619.80 1825.99i 0.278608 0.0905253i
\(742\) −22823.6 + 44683.3i −1.12922 + 2.21075i
\(743\) −13112.2 13112.2i −0.647428 0.647428i 0.304943 0.952371i \(-0.401363\pi\)
−0.952371 + 0.304943i \(0.901363\pi\)
\(744\) −19890.5 + 2090.58i −0.980136 + 0.103016i
\(745\) −9584.44 1260.11i −0.471338 0.0619691i
\(746\) −4158.63 + 39566.7i −0.204100 + 1.94188i
\(747\) −8326.61 3196.29i −0.407838 0.156554i
\(748\) 6058.26 + 11890.0i 0.296139 + 0.581205i
\(749\) 18693.3 + 20802.8i 0.911931 + 1.01484i
\(750\) 18512.8 4454.78i 0.901321 0.216887i
\(751\) 13587.5 23534.3i 0.660208 1.14351i −0.320353 0.947298i \(-0.603801\pi\)
0.980561 0.196215i \(-0.0628652\pi\)
\(752\) 2845.76 + 1848.06i 0.137997 + 0.0896166i
\(753\) 1078.22 873.126i 0.0521813 0.0422556i
\(754\) −17221.8 + 7667.63i −0.831804 + 0.370343i
\(755\) −6974.27 5349.61i −0.336185 0.257871i
\(756\) −22158.1 + 24559.6i −1.06598 + 1.18151i
\(757\) −4319.52 + 4319.52i −0.207392 + 0.207392i −0.803158 0.595766i \(-0.796849\pi\)
0.595766 + 0.803158i \(0.296849\pi\)
\(758\) −10148.0 + 12531.8i −0.486270 + 0.600493i
\(759\) 86.7944 96.3949i 0.00415077 0.00460990i
\(760\) 3056.73 + 8627.15i 0.145894 + 0.411762i
\(761\) −2602.12 + 2342.96i −0.123951 + 0.111606i −0.728775 0.684753i \(-0.759910\pi\)
0.604824 + 0.796359i \(0.293243\pi\)
\(762\) −5614.81 + 11019.7i −0.266933 + 0.523886i
\(763\) −20907.1 5624.47i −0.991989 0.266867i
\(764\) −40819.4 13263.0i −1.93297 0.628062i
\(765\) −13334.8 + 8174.80i −0.630224 + 0.386353i