Properties

Label 175.4.x.a.103.36
Level $175$
Weight $4$
Character 175.103
Analytic conductor $10.325$
Analytic rank $0$
Dimension $928$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(928\)
Relative dimension: \(58\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 103.36
Character \(\chi\) \(=\) 175.103
Dual form 175.4.x.a.17.36

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.48373 + 0.0777588i) q^{2} +(2.51040 + 3.10009i) q^{3} +(-5.76078 - 0.605482i) q^{4} +(4.25151 + 10.3404i) q^{5} +(3.48370 + 4.79490i) q^{6} +(-12.4178 + 13.7404i) q^{7} +(-20.2401 - 3.20572i) q^{8} +(2.30518 - 10.8450i) q^{9} +O(q^{10})\) \(q+(1.48373 + 0.0777588i) q^{2} +(2.51040 + 3.10009i) q^{3} +(-5.76078 - 0.605482i) q^{4} +(4.25151 + 10.3404i) q^{5} +(3.48370 + 4.79490i) q^{6} +(-12.4178 + 13.7404i) q^{7} +(-20.2401 - 3.20572i) q^{8} +(2.30518 - 10.8450i) q^{9} +(5.50401 + 15.6730i) q^{10} +(-33.2598 + 7.06959i) q^{11} +(-12.5848 - 19.3789i) q^{12} +(-13.9029 - 7.08390i) q^{13} +(-19.4931 + 19.4214i) q^{14} +(-21.3833 + 39.1387i) q^{15} +(15.5459 + 3.30438i) q^{16} +(-27.0101 - 70.3638i) q^{17} +(4.26355 - 15.9118i) q^{18} +(3.94372 + 37.5220i) q^{19} +(-18.2310 - 62.1432i) q^{20} +(-73.7702 - 4.00235i) q^{21} +(-49.8982 + 7.90310i) q^{22} +(-10.3465 + 197.422i) q^{23} +(-40.8728 - 70.7938i) q^{24} +(-88.8494 + 87.9249i) q^{25} +(-20.0773 - 11.5916i) q^{26} +(135.373 - 68.9761i) q^{27} +(79.8557 - 71.6366i) q^{28} +(-33.8927 + 46.6493i) q^{29} +(-34.7704 + 56.4085i) q^{30} +(-69.5763 + 156.271i) q^{31} +(181.162 + 48.5422i) q^{32} +(-105.412 - 85.3609i) q^{33} +(-34.6043 - 106.501i) q^{34} +(-194.876 - 69.9881i) q^{35} +(-19.8461 + 61.0800i) q^{36} +(48.0518 - 31.2052i) q^{37} +(2.93373 + 55.9790i) q^{38} +(-12.9413 - 60.8838i) q^{39} +(-52.9024 - 222.921i) q^{40} +(-17.8048 + 5.78515i) q^{41} +(-109.144 - 11.6747i) q^{42} +(1.93480 + 1.93480i) q^{43} +(195.883 - 20.5881i) q^{44} +(121.943 - 22.2711i) q^{45} +(-30.7026 + 292.116i) q^{46} +(535.324 + 205.492i) q^{47} +(28.7826 + 56.4891i) q^{48} +(-34.5968 - 341.251i) q^{49} +(-138.665 + 123.548i) q^{50} +(150.328 - 260.376i) q^{51} +(75.8025 + 49.2267i) q^{52} +(-334.880 + 271.180i) q^{53} +(206.221 - 91.8153i) q^{54} +(-214.507 - 313.865i) q^{55} +(295.385 - 238.299i) q^{56} +(-106.421 + 106.421i) q^{57} +(-53.9149 + 66.5793i) q^{58} +(-215.318 + 239.135i) q^{59} +(146.882 - 212.522i) q^{60} +(-355.420 + 320.022i) q^{61} +(-115.384 + 226.453i) q^{62} +(120.390 + 166.345i) q^{63} +(144.098 + 46.8202i) q^{64} +(14.1422 - 173.880i) q^{65} +(-149.765 - 134.849i) q^{66} +(720.020 - 276.390i) q^{67} +(112.995 + 421.704i) q^{68} +(-638.000 + 463.534i) q^{69} +(-283.701 - 118.997i) q^{70} +(617.275 + 448.477i) q^{71} +(-81.4231 + 212.115i) q^{72} +(20.1446 - 31.0199i) q^{73} +(73.7222 - 42.5635i) q^{74} +(-495.623 - 54.7141i) q^{75} -218.543i q^{76} +(315.874 - 544.792i) q^{77} +(-14.4670 - 91.3412i) q^{78} +(-294.996 - 662.573i) q^{79} +(31.9247 + 174.800i) q^{80} +(280.198 + 124.752i) q^{81} +(-26.8674 + 7.19909i) q^{82} +(227.885 - 1438.81i) q^{83} +(422.550 + 67.7231i) q^{84} +(612.759 - 578.449i) q^{85} +(2.72027 + 3.02116i) q^{86} +(-229.701 + 12.0381i) q^{87} +(695.845 - 36.4677i) q^{88} +(734.001 + 815.190i) q^{89} +(182.661 - 23.5621i) q^{90} +(269.979 - 103.065i) q^{91} +(179.139 - 1131.04i) q^{92} +(-659.119 + 176.610i) q^{93} +(778.296 + 346.520i) q^{94} +(-371.227 + 200.305i) q^{95} +(304.305 + 683.480i) q^{96} +(-96.4785 - 609.141i) q^{97} +(-24.7970 - 509.013i) q^{98} +377.000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 928 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 24 q^{7} + 84 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 928 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 24 q^{7} + 84 q^{8} - 10 q^{9} - 96 q^{10} - 6 q^{11} - 72 q^{12} - 20 q^{14} - 368 q^{15} - 1670 q^{16} + 120 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} - 880 q^{22} + 296 q^{23} + 32 q^{25} - 48 q^{26} + 226 q^{28} - 200 q^{29} - 38 q^{30} - 18 q^{31} - 964 q^{32} - 1092 q^{33} + 288 q^{35} + 7400 q^{36} - 392 q^{37} + 5424 q^{38} + 2430 q^{39} + 2172 q^{40} - 2098 q^{42} + 1560 q^{43} - 10 q^{44} - 4224 q^{45} - 6 q^{46} + 96 q^{47} + 6232 q^{50} - 16 q^{51} - 8928 q^{52} - 2384 q^{53} - 30 q^{54} + 244 q^{56} + 1556 q^{57} + 640 q^{58} + 4890 q^{59} + 3676 q^{60} - 18 q^{61} + 224 q^{63} - 9700 q^{64} - 1116 q^{65} - 2610 q^{66} - 2404 q^{67} - 13614 q^{68} - 1700 q^{70} - 24 q^{71} - 518 q^{72} - 4200 q^{73} - 16104 q^{75} - 722 q^{77} - 356 q^{78} - 10 q^{79} + 6414 q^{80} - 6810 q^{81} + 1692 q^{82} + 20620 q^{84} + 2712 q^{85} - 6 q^{86} + 9102 q^{87} + 1650 q^{88} + 20370 q^{89} - 12 q^{91} + 1612 q^{92} - 4604 q^{93} - 30 q^{94} + 1652 q^{95} - 2610 q^{96} - 19478 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.48373 + 0.0777588i 0.524577 + 0.0274919i 0.312787 0.949823i \(-0.398737\pi\)
0.211790 + 0.977315i \(0.432071\pi\)
\(3\) 2.51040 + 3.10009i 0.483128 + 0.596613i 0.959177 0.282806i \(-0.0912651\pi\)
−0.476050 + 0.879418i \(0.657932\pi\)
\(4\) −5.76078 0.605482i −0.720097 0.0756852i
\(5\) 4.25151 + 10.3404i 0.380266 + 0.924877i
\(6\) 3.48370 + 4.79490i 0.237035 + 0.326251i
\(7\) −12.4178 + 13.7404i −0.670498 + 0.741912i
\(8\) −20.2401 3.20572i −0.894495 0.141674i
\(9\) 2.30518 10.8450i 0.0853770 0.401667i
\(10\) 5.50401 + 15.6730i 0.174052 + 0.495623i
\(11\) −33.2598 + 7.06959i −0.911655 + 0.193778i −0.639784 0.768555i \(-0.720976\pi\)
−0.271872 + 0.962333i \(0.587643\pi\)
\(12\) −12.5848 19.3789i −0.302744 0.466185i
\(13\) −13.9029 7.08390i −0.296614 0.151132i 0.299351 0.954143i \(-0.403230\pi\)
−0.595964 + 0.803011i \(0.703230\pi\)
\(14\) −19.4931 + 19.4214i −0.372124 + 0.370756i
\(15\) −21.3833 + 39.1387i −0.368076 + 0.673705i
\(16\) 15.5459 + 3.30438i 0.242905 + 0.0516310i
\(17\) −27.0101 70.3638i −0.385348 1.00387i −0.979843 0.199768i \(-0.935981\pi\)
0.594495 0.804099i \(-0.297352\pi\)
\(18\) 4.26355 15.9118i 0.0558294 0.208358i
\(19\) 3.94372 + 37.5220i 0.0476185 + 0.453059i 0.992188 + 0.124749i \(0.0398125\pi\)
−0.944570 + 0.328310i \(0.893521\pi\)
\(20\) −18.2310 62.1432i −0.203829 0.694782i
\(21\) −73.7702 4.00235i −0.766570 0.0415897i
\(22\) −49.8982 + 7.90310i −0.483561 + 0.0765885i
\(23\) −10.3465 + 197.422i −0.0937993 + 1.78980i 0.396290 + 0.918126i \(0.370298\pi\)
−0.490089 + 0.871672i \(0.663036\pi\)
\(24\) −40.8728 70.7938i −0.347630 0.602114i
\(25\) −88.8494 + 87.9249i −0.710795 + 0.703399i
\(26\) −20.0773 11.5916i −0.151442 0.0874349i
\(27\) 135.373 68.9761i 0.964911 0.491647i
\(28\) 79.8557 71.6366i 0.538975 0.483501i
\(29\) −33.8927 + 46.6493i −0.217025 + 0.298709i −0.903623 0.428328i \(-0.859103\pi\)
0.686599 + 0.727036i \(0.259103\pi\)
\(30\) −34.7704 + 56.4085i −0.211606 + 0.343291i
\(31\) −69.5763 + 156.271i −0.403105 + 0.905390i 0.591941 + 0.805981i \(0.298362\pi\)
−0.995047 + 0.0994085i \(0.968305\pi\)
\(32\) 181.162 + 48.5422i 1.00079 + 0.268160i
\(33\) −105.412 85.3609i −0.556057 0.450286i
\(34\) −34.6043 106.501i −0.174547 0.537199i
\(35\) −194.876 69.9881i −0.941145 0.338004i
\(36\) −19.8461 + 61.0800i −0.0918800 + 0.282778i
\(37\) 48.0518 31.2052i 0.213504 0.138651i −0.433457 0.901174i \(-0.642706\pi\)
0.646961 + 0.762523i \(0.276040\pi\)
\(38\) 2.93373 + 55.9790i 0.0125241 + 0.238973i
\(39\) −12.9413 60.8838i −0.0531348 0.249980i
\(40\) −52.9024 222.921i −0.209115 0.881171i
\(41\) −17.8048 + 5.78515i −0.0678207 + 0.0220363i −0.342731 0.939434i \(-0.611352\pi\)
0.274910 + 0.961470i \(0.411352\pi\)
\(42\) −109.144 11.6747i −0.400981 0.0428915i
\(43\) 1.93480 + 1.93480i 0.00686173 + 0.00686173i 0.710529 0.703668i \(-0.248456\pi\)
−0.703668 + 0.710529i \(0.748456\pi\)
\(44\) 195.883 20.5881i 0.671147 0.0705403i
\(45\) 121.943 22.2711i 0.403959 0.0737773i
\(46\) −30.7026 + 292.116i −0.0984099 + 0.936308i
\(47\) 535.324 + 205.492i 1.66138 + 0.637746i 0.994239 0.107181i \(-0.0341826\pi\)
0.667146 + 0.744927i \(0.267516\pi\)
\(48\) 28.7826 + 56.4891i 0.0865503 + 0.169864i
\(49\) −34.5968 341.251i −0.100865 0.994900i
\(50\) −138.665 + 123.548i −0.392204 + 0.349446i
\(51\) 150.328 260.376i 0.412748 0.714900i
\(52\) 75.8025 + 49.2267i 0.202152 + 0.131279i
\(53\) −334.880 + 271.180i −0.867911 + 0.702820i −0.956023 0.293290i \(-0.905250\pi\)
0.0881128 + 0.996110i \(0.471916\pi\)
\(54\) 206.221 91.8153i 0.519686 0.231379i
\(55\) −214.507 313.865i −0.525893 0.769482i
\(56\) 295.385 238.299i 0.704866 0.568644i
\(57\) −106.421 + 106.421i −0.247295 + 0.247295i
\(58\) −53.9149 + 66.5793i −0.122058 + 0.150729i
\(59\) −215.318 + 239.135i −0.475120 + 0.527674i −0.932293 0.361704i \(-0.882195\pi\)
0.457173 + 0.889378i \(0.348862\pi\)
\(60\) 146.882 212.522i 0.316040 0.457275i
\(61\) −355.420 + 320.022i −0.746015 + 0.671715i −0.951744 0.306894i \(-0.900710\pi\)
0.205729 + 0.978609i \(0.434043\pi\)
\(62\) −115.384 + 226.453i −0.236351 + 0.463864i
\(63\) 120.390 + 166.345i 0.240757 + 0.332659i
\(64\) 144.098 + 46.8202i 0.281441 + 0.0914456i
\(65\) 14.1422 173.880i 0.0269865 0.331802i
\(66\) −149.765 134.849i −0.279315 0.251496i
\(67\) 720.020 276.390i 1.31290 0.503976i 0.401638 0.915798i \(-0.368441\pi\)
0.911264 + 0.411822i \(0.135108\pi\)
\(68\) 112.995 + 421.704i 0.201510 + 0.752047i
\(69\) −638.000 + 463.534i −1.11313 + 0.808739i
\(70\) −283.701 118.997i −0.484410 0.203183i
\(71\) 617.275 + 448.477i 1.03179 + 0.749639i 0.968666 0.248366i \(-0.0798937\pi\)
0.0631239 + 0.998006i \(0.479894\pi\)
\(72\) −81.4231 + 212.115i −0.133275 + 0.347194i
\(73\) 20.1446 31.0199i 0.0322979 0.0497344i −0.822153 0.569267i \(-0.807227\pi\)
0.854451 + 0.519532i \(0.173894\pi\)
\(74\) 73.7222 42.5635i 0.115811 0.0668636i
\(75\) −495.623 54.7141i −0.763062 0.0842379i
\(76\) 218.543i 0.329851i
\(77\) 315.874 544.792i 0.467497 0.806296i
\(78\) −14.4670 91.3412i −0.0210009 0.132594i
\(79\) −294.996 662.573i −0.420123 0.943611i −0.992343 0.123511i \(-0.960584\pi\)
0.572220 0.820100i \(-0.306082\pi\)
\(80\) 31.9247 + 174.800i 0.0446162 + 0.244291i
\(81\) 280.198 + 124.752i 0.384359 + 0.171128i
\(82\) −26.8674 + 7.19909i −0.0361830 + 0.00969520i
\(83\) 227.885 1438.81i 0.301368 1.90277i −0.114645 0.993407i \(-0.536573\pi\)
0.416013 0.909359i \(-0.363427\pi\)
\(84\) 422.550 + 67.7231i 0.548857 + 0.0879667i
\(85\) 612.759 578.449i 0.781918 0.738137i
\(86\) 2.72027 + 3.02116i 0.00341086 + 0.00378814i
\(87\) −229.701 + 12.0381i −0.283064 + 0.0148348i
\(88\) 695.845 36.4677i 0.842924 0.0441758i
\(89\) 734.001 + 815.190i 0.874201 + 0.970899i 0.999776 0.0211852i \(-0.00674397\pi\)
−0.125574 + 0.992084i \(0.540077\pi\)
\(90\) 182.661 23.5621i 0.213936 0.0275963i
\(91\) 269.979 103.065i 0.311006 0.118727i
\(92\) 179.139 1131.04i 0.203006 1.28173i
\(93\) −659.119 + 176.610i −0.734918 + 0.196921i
\(94\) 778.296 + 346.520i 0.853991 + 0.380221i
\(95\) −371.227 + 200.305i −0.400916 + 0.216324i
\(96\) 304.305 + 683.480i 0.323520 + 0.726639i
\(97\) −96.4785 609.141i −0.100989 0.637618i −0.985315 0.170748i \(-0.945382\pi\)
0.884326 0.466870i \(-0.154618\pi\)
\(98\) −24.7970 509.013i −0.0255600 0.524674i
\(99\) 377.000i 0.382726i
\(100\) 565.078 452.719i 0.565078 0.452719i
\(101\) 831.315 479.960i 0.819000 0.472850i −0.0310717 0.999517i \(-0.509892\pi\)
0.850071 + 0.526667i \(0.176559\pi\)
\(102\) 243.292 374.637i 0.236172 0.363672i
\(103\) −485.396 + 1264.50i −0.464344 + 1.20966i 0.478991 + 0.877820i \(0.341002\pi\)
−0.943336 + 0.331839i \(0.892331\pi\)
\(104\) 258.688 + 187.948i 0.243908 + 0.177209i
\(105\) −272.248 779.832i −0.253035 0.724798i
\(106\) −517.957 + 376.318i −0.474608 + 0.344823i
\(107\) −154.302 575.864i −0.139411 0.520289i −0.999941 0.0108887i \(-0.996534\pi\)
0.860530 0.509400i \(-0.170133\pi\)
\(108\) −821.619 + 315.390i −0.732040 + 0.281004i
\(109\) 1096.86 + 987.615i 0.963852 + 0.867856i 0.991281 0.131768i \(-0.0420653\pi\)
−0.0274287 + 0.999624i \(0.508732\pi\)
\(110\) −293.864 482.369i −0.254717 0.418110i
\(111\) 217.368 + 70.6272i 0.185871 + 0.0603932i
\(112\) −238.449 + 172.574i −0.201173 + 0.145595i
\(113\) −622.931 + 1222.57i −0.518588 + 1.01779i 0.472089 + 0.881551i \(0.343500\pi\)
−0.990677 + 0.136235i \(0.956500\pi\)
\(114\) −166.175 + 149.625i −0.136524 + 0.122927i
\(115\) −2085.42 + 732.355i −1.69101 + 0.593847i
\(116\) 223.493 248.215i 0.178887 0.198674i
\(117\) −108.874 + 134.448i −0.0860289 + 0.106237i
\(118\) −338.069 + 338.069i −0.263744 + 0.263744i
\(119\) 1302.23 + 502.634i 1.00316 + 0.387196i
\(120\) 558.268 723.623i 0.424689 0.550479i
\(121\) −159.693 + 71.1000i −0.119980 + 0.0534185i
\(122\) −552.231 + 447.188i −0.409809 + 0.331856i
\(123\) −62.6318 40.6736i −0.0459132 0.0298164i
\(124\) 495.433 858.114i 0.358800 0.621459i
\(125\) −1286.93 544.928i −0.920849 0.389919i
\(126\) 165.690 + 256.172i 0.117150 + 0.181124i
\(127\) −801.825 1573.67i −0.560240 1.09953i −0.981297 0.192499i \(-0.938341\pi\)
0.421057 0.907034i \(-0.361659\pi\)
\(128\) −1190.60 457.030i −0.822152 0.315595i
\(129\) −1.14093 + 10.8552i −0.000778705 + 0.00740889i
\(130\) 34.5038 256.890i 0.0232784 0.173314i
\(131\) −2101.58 + 220.885i −1.40165 + 0.147319i −0.774989 0.631975i \(-0.782244\pi\)
−0.626658 + 0.779294i \(0.715578\pi\)
\(132\) 555.570 + 555.570i 0.366335 + 0.366335i
\(133\) −564.539 411.752i −0.368058 0.268447i
\(134\) 1089.81 354.099i 0.702573 0.228280i
\(135\) 1288.78 + 1106.57i 0.821636 + 0.705467i
\(136\) 321.122 + 1510.76i 0.202470 + 0.952548i
\(137\) −65.4091 1248.08i −0.0407904 0.778326i −0.940076 0.340965i \(-0.889246\pi\)
0.899286 0.437362i \(-0.144087\pi\)
\(138\) −982.662 + 638.148i −0.606158 + 0.393643i
\(139\) −550.604 + 1694.59i −0.335983 + 1.03405i 0.630253 + 0.776390i \(0.282951\pi\)
−0.966236 + 0.257660i \(0.917049\pi\)
\(140\) 1080.26 + 521.179i 0.652134 + 0.314626i
\(141\) 706.838 + 2175.42i 0.422173 + 1.29932i
\(142\) 880.995 + 713.416i 0.520644 + 0.421609i
\(143\) 512.489 + 137.321i 0.299696 + 0.0803032i
\(144\) 71.6722 160.978i 0.0414770 0.0931588i
\(145\) −626.469 152.136i −0.358796 0.0871322i
\(146\) 32.3011 44.4587i 0.0183100 0.0252016i
\(147\) 971.056 963.931i 0.544839 0.540841i
\(148\) −295.710 + 150.672i −0.164238 + 0.0836833i
\(149\) 10.1382 + 5.85331i 0.00557420 + 0.00321827i 0.502785 0.864412i \(-0.332309\pi\)
−0.497210 + 0.867630i \(0.665642\pi\)
\(150\) −731.115 119.720i −0.397969 0.0651673i
\(151\) 526.267 + 911.522i 0.283623 + 0.491249i 0.972274 0.233844i \(-0.0751303\pi\)
−0.688652 + 0.725092i \(0.741797\pi\)
\(152\) 40.4636 772.091i 0.0215923 0.412005i
\(153\) −825.360 + 130.724i −0.436120 + 0.0690747i
\(154\) 511.034 783.760i 0.267404 0.410112i
\(155\) −1911.71 55.0626i −0.990661 0.0285338i
\(156\) 37.6876 + 358.574i 0.0193425 + 0.184031i
\(157\) −278.542 + 1039.53i −0.141593 + 0.528432i 0.858290 + 0.513164i \(0.171527\pi\)
−0.999883 + 0.0152681i \(0.995140\pi\)
\(158\) −386.173 1006.02i −0.194445 0.506546i
\(159\) −1681.37 357.386i −0.838623 0.178255i
\(160\) 268.264 + 2079.67i 0.132551 + 1.02758i
\(161\) −2584.18 2593.71i −1.26498 1.26965i
\(162\) 406.036 + 206.886i 0.196921 + 0.100336i
\(163\) 928.736 + 1430.13i 0.446283 + 0.687216i 0.988192 0.153221i \(-0.0489648\pi\)
−0.541909 + 0.840437i \(0.682298\pi\)
\(164\) 106.073 22.5464i 0.0505053 0.0107352i
\(165\) 434.510 1452.92i 0.205009 0.685512i
\(166\) 449.998 2117.08i 0.210401 0.989861i
\(167\) −3531.44 559.325i −1.63635 0.259173i −0.730545 0.682864i \(-0.760734\pi\)
−0.905806 + 0.423692i \(0.860734\pi\)
\(168\) 1480.29 + 317.494i 0.679801 + 0.145805i
\(169\) −1148.25 1580.44i −0.522646 0.719361i
\(170\) 954.147 810.613i 0.430469 0.365713i
\(171\) 416.017 + 43.7252i 0.186045 + 0.0195541i
\(172\) −9.97447 12.3174i −0.00442178 0.00546044i
\(173\) −2073.84 108.685i −0.911395 0.0477642i −0.409128 0.912477i \(-0.634167\pi\)
−0.502267 + 0.864713i \(0.667500\pi\)
\(174\) −341.750 −0.148897
\(175\) −104.810 2312.66i −0.0452734 0.998975i
\(176\) −540.415 −0.231450
\(177\) −1281.88 67.1804i −0.544361 0.0285287i
\(178\) 1025.67 + 1266.60i 0.431894 + 0.533344i
\(179\) 3751.92 + 394.343i 1.56666 + 0.164662i 0.847733 0.530424i \(-0.177967\pi\)
0.718926 + 0.695086i \(0.244634\pi\)
\(180\) −715.970 + 54.4647i −0.296473 + 0.0225531i
\(181\) 1339.07 + 1843.07i 0.549903 + 0.756876i 0.989999 0.141075i \(-0.0450557\pi\)
−0.440096 + 0.897951i \(0.645056\pi\)
\(182\) 408.590 131.928i 0.166410 0.0537314i
\(183\) −1884.35 298.451i −0.761174 0.120558i
\(184\) 842.293 3962.68i 0.337471 1.58768i
\(185\) 526.968 + 364.207i 0.209424 + 0.144741i
\(186\) −991.685 + 210.789i −0.390935 + 0.0830958i
\(187\) 1395.80 + 2149.34i 0.545833 + 0.840509i
\(188\) −2959.46 1507.92i −1.14809 0.584981i
\(189\) −733.278 + 2716.61i −0.282212 + 1.04553i
\(190\) −566.375 + 268.331i −0.216259 + 0.102457i
\(191\) −2018.43 429.031i −0.764653 0.162532i −0.190955 0.981599i \(-0.561158\pi\)
−0.573698 + 0.819067i \(0.694492\pi\)
\(192\) 216.597 + 564.254i 0.0814141 + 0.212091i
\(193\) −294.764 + 1100.07i −0.109936 + 0.410285i −0.998858 0.0477720i \(-0.984788\pi\)
0.888923 + 0.458057i \(0.151455\pi\)
\(194\) −95.7816 911.301i −0.0354470 0.337256i
\(195\) 574.545 392.666i 0.210995 0.144202i
\(196\) −7.31653 + 1986.82i −0.00266638 + 0.724059i
\(197\) −684.231 + 108.372i −0.247459 + 0.0391937i −0.278932 0.960311i \(-0.589980\pi\)
0.0314725 + 0.999505i \(0.489980\pi\)
\(198\) −29.3151 + 559.365i −0.0105219 + 0.200769i
\(199\) 587.990 + 1018.43i 0.209455 + 0.362786i 0.951543 0.307516i \(-0.0994978\pi\)
−0.742088 + 0.670302i \(0.766164\pi\)
\(200\) 2080.18 1494.78i 0.735456 0.528486i
\(201\) 2664.38 + 1538.28i 0.934978 + 0.539810i
\(202\) 1270.77 647.488i 0.442628 0.225530i
\(203\) −220.107 1044.98i −0.0761009 0.361297i
\(204\) −1023.66 + 1408.94i −0.351326 + 0.483558i
\(205\) −135.518 159.514i −0.0461708 0.0543462i
\(206\) −818.521 + 1838.43i −0.276840 + 0.621793i
\(207\) 2117.20 + 567.301i 0.710895 + 0.190484i
\(208\) −192.726 156.066i −0.0642458 0.0520252i
\(209\) −396.432 1220.09i −0.131205 0.403807i
\(210\) −343.303 1178.23i −0.112810 0.387169i
\(211\) −173.499 + 533.976i −0.0566075 + 0.174220i −0.975363 0.220608i \(-0.929196\pi\)
0.918755 + 0.394828i \(0.129196\pi\)
\(212\) 2093.36 1359.44i 0.678173 0.440411i
\(213\) 159.292 + 3039.47i 0.0512417 + 0.977751i
\(214\) −184.164 866.424i −0.0588280 0.276764i
\(215\) −11.7809 + 28.2325i −0.00373697 + 0.00895554i
\(216\) −2961.09 + 962.116i −0.932762 + 0.303073i
\(217\) −1283.24 2896.54i −0.401438 0.906130i
\(218\) 1550.64 + 1550.64i 0.481755 + 0.481755i
\(219\) 146.736 15.4225i 0.0452762 0.00475872i
\(220\) 1045.69 + 1937.98i 0.320456 + 0.593904i
\(221\) −122.930 + 1169.60i −0.0374170 + 0.355999i
\(222\) 317.023 + 121.694i 0.0958433 + 0.0367908i
\(223\) −883.850 1734.65i −0.265412 0.520901i 0.719384 0.694612i \(-0.244424\pi\)
−0.984797 + 0.173711i \(0.944424\pi\)
\(224\) −2916.62 + 1886.45i −0.869978 + 0.562695i
\(225\) 748.733 + 1166.26i 0.221847 + 0.345557i
\(226\) −1019.33 + 1765.52i −0.300020 + 0.519650i
\(227\) −483.242 313.821i −0.141295 0.0917578i 0.472056 0.881569i \(-0.343512\pi\)
−0.613351 + 0.789811i \(0.710179\pi\)
\(228\) 677.505 548.632i 0.196793 0.159360i
\(229\) −989.457 + 440.535i −0.285525 + 0.127124i −0.544502 0.838760i \(-0.683281\pi\)
0.258977 + 0.965883i \(0.416615\pi\)
\(230\) −3151.14 + 924.454i −0.903391 + 0.265029i
\(231\) 2481.88 388.408i 0.706907 0.110629i
\(232\) 835.536 835.536i 0.236447 0.236447i
\(233\) 1167.02 1441.14i 0.328128 0.405204i −0.586208 0.810160i \(-0.699380\pi\)
0.914336 + 0.404957i \(0.132713\pi\)
\(234\) −171.993 + 191.018i −0.0480494 + 0.0533643i
\(235\) 151.060 + 6409.14i 0.0419322 + 1.77909i
\(236\) 1385.19 1247.23i 0.382069 0.344017i
\(237\) 1313.48 2577.84i 0.359998 0.706535i
\(238\) 1893.07 + 847.031i 0.515587 + 0.230693i
\(239\) 4285.70 + 1392.51i 1.15991 + 0.376878i 0.824869 0.565324i \(-0.191249\pi\)
0.335044 + 0.942203i \(0.391249\pi\)
\(240\) −461.752 + 537.789i −0.124192 + 0.144642i
\(241\) 1850.42 + 1666.12i 0.494588 + 0.445329i 0.878290 0.478128i \(-0.158684\pi\)
−0.383702 + 0.923457i \(0.625351\pi\)
\(242\) −242.470 + 93.0754i −0.0644072 + 0.0247236i
\(243\) −745.058 2780.60i −0.196689 0.734055i
\(244\) 2241.26 1628.37i 0.588042 0.427237i
\(245\) 3381.59 1808.58i 0.881805 0.471615i
\(246\) −89.7658 65.2187i −0.0232653 0.0169032i
\(247\) 210.972 549.602i 0.0543476 0.141580i
\(248\) 1909.19 2939.90i 0.488846 0.752757i
\(249\) 5032.51 2905.52i 1.28081 0.739478i
\(250\) −1867.07 908.595i −0.472336 0.229858i
\(251\) 4497.64i 1.13103i −0.824738 0.565514i \(-0.808678\pi\)
0.824738 0.565514i \(-0.191322\pi\)
\(252\) −592.818 1031.17i −0.148191 0.257769i
\(253\) −1051.57 6639.37i −0.261311 1.64986i
\(254\) −1067.32 2397.25i −0.263661 0.592192i
\(255\) 3331.52 + 447.468i 0.818148 + 0.109888i
\(256\) −2838.31 1263.70i −0.692946 0.308519i
\(257\) 6444.68 1726.85i 1.56423 0.419135i 0.630233 0.776406i \(-0.282959\pi\)
0.934001 + 0.357271i \(0.116293\pi\)
\(258\) −2.53691 + 16.0174i −0.000612175 + 0.00386512i
\(259\) −167.925 + 1047.75i −0.0402872 + 0.251367i
\(260\) −186.751 + 993.119i −0.0445454 + 0.236887i
\(261\) 427.783 + 475.102i 0.101453 + 0.112675i
\(262\) −3135.34 + 164.316i −0.739321 + 0.0387462i
\(263\) 7484.44 392.243i 1.75479 0.0919647i 0.852402 0.522886i \(-0.175145\pi\)
0.902389 + 0.430922i \(0.141811\pi\)
\(264\) 1859.91 + 2065.63i 0.433596 + 0.481557i
\(265\) −4227.87 2309.88i −0.980059 0.535452i
\(266\) −805.604 654.825i −0.185695 0.150939i
\(267\) −684.526 + 4321.93i −0.156900 + 0.990628i
\(268\) −4315.22 + 1156.26i −0.983561 + 0.263544i
\(269\) −556.006 247.550i −0.126023 0.0561092i 0.342756 0.939424i \(-0.388639\pi\)
−0.468780 + 0.883315i \(0.655306\pi\)
\(270\) 1826.16 + 1742.06i 0.411617 + 0.392660i
\(271\) −367.698 825.863i −0.0824208 0.185120i 0.867634 0.497204i \(-0.165640\pi\)
−0.950055 + 0.312083i \(0.898973\pi\)
\(272\) −187.388 1183.12i −0.0417723 0.263740i
\(273\) 997.269 + 578.225i 0.221090 + 0.128190i
\(274\) 1856.90i 0.409413i
\(275\) 2333.52 3552.49i 0.511697 0.778994i
\(276\) 3956.04 2284.02i 0.862774 0.498123i
\(277\) −2567.17 + 3953.10i −0.556847 + 0.857469i −0.999225 0.0393596i \(-0.987468\pi\)
0.442378 + 0.896829i \(0.354135\pi\)
\(278\) −948.716 + 2471.49i −0.204677 + 0.533202i
\(279\) 1534.37 + 1114.79i 0.329249 + 0.239214i
\(280\) 3719.95 + 2041.28i 0.793962 + 0.435679i
\(281\) −222.644 + 161.761i −0.0472664 + 0.0343410i −0.611168 0.791501i \(-0.709300\pi\)
0.563901 + 0.825842i \(0.309300\pi\)
\(282\) 879.596 + 3282.70i 0.185742 + 0.693197i
\(283\) 6921.90 2657.07i 1.45394 0.558114i 0.502124 0.864795i \(-0.332552\pi\)
0.951812 + 0.306682i \(0.0992187\pi\)
\(284\) −3284.44 2957.32i −0.686252 0.617904i
\(285\) −1552.89 647.991i −0.322756 0.134680i
\(286\) 749.716 + 243.597i 0.155006 + 0.0503644i
\(287\) 141.607 316.484i 0.0291247 0.0650923i
\(288\) 944.052 1852.81i 0.193156 0.379089i
\(289\) −570.452 + 513.637i −0.116111 + 0.104547i
\(290\) −917.679 274.441i −0.185821 0.0555715i
\(291\) 1646.19 1828.28i 0.331620 0.368302i
\(292\) −134.830 + 166.502i −0.0270218 + 0.0333691i
\(293\) 139.803 139.803i 0.0278749 0.0278749i −0.693032 0.720907i \(-0.743726\pi\)
0.720907 + 0.693032i \(0.243726\pi\)
\(294\) 1515.74 1354.70i 0.300679 0.268734i
\(295\) −3388.19 1209.80i −0.668706 0.238771i
\(296\) −1072.61 + 477.556i −0.210622 + 0.0937749i
\(297\) −4014.86 + 3251.17i −0.784396 + 0.635191i
\(298\) 14.5872 + 9.47305i 0.00283562 + 0.00184147i
\(299\) 1542.36 2671.45i 0.298318 0.516703i
\(300\) 2822.05 + 615.287i 0.543103 + 0.118412i
\(301\) −50.6109 + 2.55897i −0.00969157 + 0.000490022i
\(302\) 709.958 + 1393.37i 0.135276 + 0.265495i
\(303\) 3574.86 + 1372.26i 0.677790 + 0.260179i
\(304\) −62.6783 + 596.344i −0.0118252 + 0.112509i
\(305\) −4820.24 2314.63i −0.904938 0.434541i
\(306\) −1234.77 + 129.780i −0.230678 + 0.0242452i
\(307\) 1044.09 + 1044.09i 0.194102 + 0.194102i 0.797466 0.603364i \(-0.206173\pi\)
−0.603364 + 0.797466i \(0.706173\pi\)
\(308\) −2149.54 + 2947.17i −0.397668 + 0.545228i
\(309\) −5138.60 + 1669.63i −0.946036 + 0.307386i
\(310\) −2832.18 230.350i −0.518893 0.0422033i
\(311\) −474.562 2232.64i −0.0865272 0.407079i −1.00000 0.000178665i \(-0.999943\pi\)
0.913473 0.406900i \(-0.133390\pi\)
\(312\) 66.7560 + 1273.78i 0.0121132 + 0.231133i
\(313\) 295.258 191.743i 0.0533194 0.0346260i −0.517704 0.855560i \(-0.673213\pi\)
0.571023 + 0.820934i \(0.306547\pi\)
\(314\) −494.114 + 1520.73i −0.0888040 + 0.273311i
\(315\) −1208.25 + 1952.10i −0.216117 + 0.349169i
\(316\) 1298.23 + 3995.55i 0.231112 + 0.711289i
\(317\) −3733.09 3023.00i −0.661423 0.535610i 0.238783 0.971073i \(-0.423251\pi\)
−0.900207 + 0.435463i \(0.856585\pi\)
\(318\) −2466.90 661.004i −0.435022 0.116564i
\(319\) 797.473 1791.15i 0.139968 0.314374i
\(320\) 128.491 + 1689.09i 0.0224465 + 0.295072i
\(321\) 1397.87 1924.00i 0.243058 0.334540i
\(322\) −3632.53 4049.30i −0.628674 0.700804i
\(323\) 2533.67 1290.97i 0.436462 0.222388i
\(324\) −1538.62 888.323i −0.263824 0.152319i
\(325\) 1858.12 593.014i 0.317138 0.101214i
\(326\) 1266.78 + 2194.14i 0.215217 + 0.372767i
\(327\) −308.140 + 5879.67i −0.0521107 + 0.994332i
\(328\) 378.917 60.0146i 0.0637872 0.0101029i
\(329\) −9471.09 + 4803.81i −1.58711 + 0.804993i
\(330\) 757.671 2121.95i 0.126389 0.353968i
\(331\) 873.528 + 8311.06i 0.145056 + 1.38011i 0.788695 + 0.614784i \(0.210757\pi\)
−0.643640 + 0.765329i \(0.722576\pi\)
\(332\) −2183.96 + 8150.66i −0.361026 + 1.34737i
\(333\) −227.653 593.056i −0.0374633 0.0975954i
\(334\) −5196.19 1104.49i −0.851267 0.180942i
\(335\) 5919.16 + 6270.25i 0.965369 + 1.02263i
\(336\) −1133.60 305.985i −0.184056 0.0496811i
\(337\) 6829.58 + 3479.85i 1.10395 + 0.562491i 0.908357 0.418195i \(-0.137337\pi\)
0.195592 + 0.980685i \(0.437337\pi\)
\(338\) −1580.80 2434.22i −0.254392 0.391729i
\(339\) −5353.89 + 1138.00i −0.857768 + 0.182324i
\(340\) −3880.21 + 2961.30i −0.618923 + 0.472350i
\(341\) 1209.32 5689.41i 0.192048 0.903516i
\(342\) 613.856 + 97.2252i 0.0970571 + 0.0153723i
\(343\) 5118.54 + 3762.21i 0.805758 + 0.592245i
\(344\) −32.9581 45.3630i −0.00516565 0.00710991i
\(345\) −7505.61 4626.48i −1.17127 0.721976i
\(346\) −3068.56 322.519i −0.476783 0.0501119i
\(347\) −5639.55 6964.26i −0.872469 1.07741i −0.996371 0.0851153i \(-0.972874\pi\)
0.123902 0.992294i \(-0.460459\pi\)
\(348\) 1330.55 + 69.7310i 0.204956 + 0.0107413i
\(349\) −1477.73 −0.226651 −0.113325 0.993558i \(-0.536150\pi\)
−0.113325 + 0.993558i \(0.536150\pi\)
\(350\) 24.3210 3439.50i 0.00371431 0.525283i
\(351\) −2370.71 −0.360510
\(352\) −6368.59 333.764i −0.964338 0.0505388i
\(353\) −4104.10 5068.15i −0.618809 0.764165i 0.367330 0.930091i \(-0.380272\pi\)
−0.986138 + 0.165926i \(0.946939\pi\)
\(354\) −1896.73 199.355i −0.284775 0.0299310i
\(355\) −2013.10 + 8289.60i −0.300969 + 1.23934i
\(356\) −3734.83 5140.55i −0.556027 0.765306i
\(357\) 1710.92 + 5298.86i 0.253646 + 0.785561i
\(358\) 5536.17 + 876.843i 0.817306 + 0.129449i
\(359\) 654.472 3079.05i 0.0962164 0.452663i −0.903494 0.428601i \(-0.859007\pi\)
0.999710 0.0240621i \(-0.00765994\pi\)
\(360\) −2539.53 + 59.8553i −0.371791 + 0.00876292i
\(361\) 5316.77 1130.11i 0.775152 0.164764i
\(362\) 1843.50 + 2838.74i 0.267658 + 0.412157i
\(363\) −621.311 316.574i −0.0898357 0.0457736i
\(364\) −1617.69 + 430.269i −0.232940 + 0.0619566i
\(365\) 406.405 + 76.4224i 0.0582800 + 0.0109593i
\(366\) −2772.65 589.344i −0.395980 0.0841681i
\(367\) 249.940 + 651.116i 0.0355498 + 0.0926104i 0.950206 0.311622i \(-0.100872\pi\)
−0.914656 + 0.404232i \(0.867539\pi\)
\(368\) −813.204 + 3034.92i −0.115193 + 0.429908i
\(369\) 21.6966 + 206.430i 0.00306093 + 0.0291228i
\(370\) 753.556 + 581.361i 0.105880 + 0.0816851i
\(371\) 432.344 7968.84i 0.0605018 1.11515i
\(372\) 3903.97 618.328i 0.544117 0.0861796i
\(373\) −682.453 + 13022.0i −0.0947348 + 1.80765i 0.377325 + 0.926081i \(0.376844\pi\)
−0.472060 + 0.881566i \(0.656490\pi\)
\(374\) 1903.85 + 3297.57i 0.263224 + 0.455917i
\(375\) −1541.38 5357.58i −0.212257 0.737771i
\(376\) −10176.3 5875.27i −1.39575 0.805835i
\(377\) 801.666 408.469i 0.109517 0.0558017i
\(378\) −1299.23 + 3973.69i −0.176786 + 0.540700i
\(379\) −4055.42 + 5581.80i −0.549638 + 0.756512i −0.989963 0.141327i \(-0.954863\pi\)
0.440325 + 0.897838i \(0.354863\pi\)
\(380\) 2259.84 929.139i 0.305071 0.125431i
\(381\) 2865.62 6436.28i 0.385328 0.865461i
\(382\) −2961.44 793.516i −0.396651 0.106282i
\(383\) −1601.73 1297.05i −0.213693 0.173045i 0.516498 0.856289i \(-0.327235\pi\)
−0.730191 + 0.683243i \(0.760569\pi\)
\(384\) −1572.06 4838.31i −0.208917 0.642979i
\(385\) 6976.33 + 950.096i 0.923498 + 0.125770i
\(386\) −522.890 + 1609.29i −0.0689492 + 0.212204i
\(387\) 25.4430 16.5229i 0.00334197 0.00217030i
\(388\) 186.967 + 3567.54i 0.0244634 + 0.466790i
\(389\) 2149.43 + 10112.3i 0.280156 + 1.31803i 0.862901 + 0.505374i \(0.168645\pi\)
−0.582745 + 0.812655i \(0.698021\pi\)
\(390\) 883.002 537.933i 0.114648 0.0698444i
\(391\) 14170.8 4604.38i 1.83286 0.595534i
\(392\) −393.710 + 7017.86i −0.0507279 + 0.904223i
\(393\) −5960.57 5960.57i −0.765067 0.765067i
\(394\) −1023.64 + 107.589i −0.130889 + 0.0137570i
\(395\) 5597.12 5867.33i 0.712966 0.747385i
\(396\) 228.267 2171.81i 0.0289667 0.275600i
\(397\) −2817.26 1081.45i −0.356157 0.136716i 0.173709 0.984797i \(-0.444425\pi\)
−0.529867 + 0.848081i \(0.677758\pi\)
\(398\) 793.225 + 1556.79i 0.0999014 + 0.196068i
\(399\) −140.753 2783.78i −0.0176603 0.349282i
\(400\) −1671.78 + 1073.28i −0.208973 + 0.134160i
\(401\) −98.4097 + 170.451i −0.0122552 + 0.0212267i −0.872088 0.489349i \(-0.837234\pi\)
0.859833 + 0.510576i \(0.170568\pi\)
\(402\) 3833.59 + 2489.56i 0.475627 + 0.308876i
\(403\) 2074.32 1679.75i 0.256400 0.207629i
\(404\) −5079.63 + 2261.60i −0.625547 + 0.278511i
\(405\) −98.7287 + 3427.75i −0.0121132 + 0.420559i
\(406\) −245.322 1567.58i −0.0299880 0.191620i
\(407\) −1377.58 + 1377.58i −0.167775 + 0.167775i
\(408\) −3877.34 + 4788.12i −0.470483 + 0.580998i
\(409\) −6825.67 + 7580.68i −0.825203 + 0.916480i −0.997648 0.0685386i \(-0.978166\pi\)
0.172446 + 0.985019i \(0.444833\pi\)
\(410\) −188.669 247.213i −0.0227260 0.0297781i
\(411\) 3704.96 3335.96i 0.444653 0.400367i
\(412\) 3561.89 6990.60i 0.425926 0.835928i
\(413\) −612.034 5928.09i −0.0729206 0.706301i
\(414\) 3097.23 + 1006.35i 0.367682 + 0.119467i
\(415\) 15846.7 3760.67i 1.87442 0.444829i
\(416\) −2174.82 1958.21i −0.256320 0.230791i
\(417\) −6635.61 + 2547.17i −0.779250 + 0.299126i
\(418\) −493.324 1841.11i −0.0577255 0.215435i
\(419\) −6355.45 + 4617.50i −0.741012 + 0.538377i −0.893028 0.450001i \(-0.851424\pi\)
0.152016 + 0.988378i \(0.451424\pi\)
\(420\) 1096.19 + 4657.28i 0.127353 + 0.541076i
\(421\) −8359.83 6073.77i −0.967774 0.703129i −0.0128312 0.999918i \(-0.504084\pi\)
−0.954943 + 0.296788i \(0.904084\pi\)
\(422\) −298.947 + 778.784i −0.0344846 + 0.0898355i
\(423\) 3462.58 5331.91i 0.398006 0.612875i
\(424\) 7647.33 4415.19i 0.875913 0.505708i
\(425\) 8586.57 + 3876.92i 0.980023 + 0.442490i
\(426\) 4522.13i 0.514314i
\(427\) 16.3091 8857.58i 0.00184837 1.00386i
\(428\) 540.226 + 3410.85i 0.0610112 + 0.385210i
\(429\) 860.847 + 1933.49i 0.0968813 + 0.217599i
\(430\) −19.6749 + 40.9733i −0.00220653 + 0.00459513i
\(431\) 7888.83 + 3512.33i 0.881651 + 0.392536i 0.797075 0.603881i \(-0.206380\pi\)
0.0845762 + 0.996417i \(0.473046\pi\)
\(432\) 2332.42 624.971i 0.259766 0.0696040i
\(433\) −930.877 + 5877.33i −0.103314 + 0.652301i 0.880627 + 0.473810i \(0.157122\pi\)
−0.983942 + 0.178491i \(0.942878\pi\)
\(434\) −1678.75 4397.46i −0.185674 0.486371i
\(435\) −1101.06 2324.03i −0.121360 0.256158i
\(436\) −5720.77 6353.55i −0.628383 0.697890i
\(437\) −7448.47 + 390.358i −0.815351 + 0.0427308i
\(438\) 218.915 11.4728i 0.0238817 0.00125158i
\(439\) 207.835 + 230.825i 0.0225955 + 0.0250949i 0.754337 0.656488i \(-0.227959\pi\)
−0.731741 + 0.681583i \(0.761292\pi\)
\(440\) 3335.48 + 7040.30i 0.361393 + 0.762803i
\(441\) −3780.62 411.441i −0.408230 0.0444273i
\(442\) −273.341 + 1725.81i −0.0294152 + 0.185720i
\(443\) 3298.94 883.948i 0.353809 0.0948028i −0.0775370 0.996989i \(-0.524706\pi\)
0.431346 + 0.902187i \(0.358039\pi\)
\(444\) −1209.45 538.480i −0.129274 0.0575566i
\(445\) −5308.82 + 11055.7i −0.565533 + 1.17773i
\(446\) −1176.51 2642.48i −0.124909 0.280549i
\(447\) 7.30526 + 46.1236i 0.000772991 + 0.00488047i
\(448\) −2432.70 + 1398.56i −0.256550 + 0.147490i
\(449\) 12404.4i 1.30379i −0.758311 0.651893i \(-0.773975\pi\)
0.758311 0.651893i \(-0.226025\pi\)
\(450\) 1020.23 + 1788.63i 0.106876 + 0.187370i
\(451\) 551.287 318.286i 0.0575590 0.0332317i
\(452\) 4328.81 6665.78i 0.450465 0.693655i
\(453\) −1504.66 + 3919.77i −0.156059 + 0.406549i
\(454\) −692.596 503.201i −0.0715973 0.0520185i
\(455\) 2213.56 + 2353.52i 0.228073 + 0.242494i
\(456\) 2495.13 1812.82i 0.256240 0.186169i
\(457\) −436.060 1627.40i −0.0446346 0.166579i 0.940011 0.341144i \(-0.110814\pi\)
−0.984646 + 0.174566i \(0.944148\pi\)
\(458\) −1502.34 + 576.694i −0.153275 + 0.0588366i
\(459\) −8509.88 7662.33i −0.865375 0.779187i
\(460\) 12457.1 2956.25i 1.26264 0.299643i
\(461\) 8710.55 + 2830.23i 0.880023 + 0.285937i 0.713967 0.700179i \(-0.246897\pi\)
0.166056 + 0.986116i \(0.446897\pi\)
\(462\) 3712.63 383.303i 0.373868 0.0385993i
\(463\) 6221.35 12210.1i 0.624472 1.22560i −0.334580 0.942367i \(-0.608595\pi\)
0.959052 0.283229i \(-0.0914055\pi\)
\(464\) −681.040 + 613.211i −0.0681389 + 0.0613526i
\(465\) −4628.48 6064.72i −0.461592 0.604827i
\(466\) 1843.59 2047.52i 0.183268 0.203540i
\(467\) −6921.83 + 8547.75i −0.685876 + 0.846987i −0.994559 0.104178i \(-0.966779\pi\)
0.308682 + 0.951165i \(0.400112\pi\)
\(468\) 708.603 708.603i 0.0699897 0.0699897i
\(469\) −5143.36 + 13325.5i −0.506393 + 1.31197i
\(470\) −274.236 + 9521.16i −0.0269139 + 0.934422i
\(471\) −3921.91 + 1746.15i −0.383677 + 0.170824i
\(472\) 5124.67 4149.87i 0.499750 0.404689i
\(473\) −78.0293 50.6728i −0.00758519 0.00492588i
\(474\) 2149.29 3722.68i 0.208270 0.360735i
\(475\) −3649.51 2987.05i −0.352529 0.288538i
\(476\) −7197.54 3684.04i −0.693064 0.354743i
\(477\) 2169.00 + 4256.90i 0.208200 + 0.408616i
\(478\) 6250.53 + 2399.35i 0.598102 + 0.229590i
\(479\) 1800.01 17125.9i 0.171700 1.63362i −0.481509 0.876441i \(-0.659911\pi\)
0.653209 0.757178i \(-0.273422\pi\)
\(480\) −5773.73 + 6052.46i −0.549028 + 0.575533i
\(481\) −889.115 + 93.4497i −0.0842830 + 0.00885850i
\(482\) 2615.96 + 2615.96i 0.247206 + 0.247206i
\(483\) 1553.41 14522.5i 0.146341 1.36810i
\(484\) 963.006 312.900i 0.0904401 0.0293858i
\(485\) 5888.61 3587.40i 0.551315 0.335867i
\(486\) −889.247 4183.58i −0.0829981 0.390475i
\(487\) 620.415 + 11838.2i 0.0577283 + 1.10152i 0.861885 + 0.507104i \(0.169284\pi\)
−0.804157 + 0.594417i \(0.797383\pi\)
\(488\) 8219.64 5337.90i 0.762471 0.495154i
\(489\) −2102.02 + 6469.36i −0.194390 + 0.598271i
\(490\) 5157.99 2420.48i 0.475540 0.223156i
\(491\) 4509.50 + 13878.8i 0.414482 + 1.27564i 0.912713 + 0.408601i \(0.133983\pi\)
−0.498231 + 0.867044i \(0.666017\pi\)
\(492\) 336.181 + 272.234i 0.0308053 + 0.0249456i
\(493\) 4197.87 + 1124.82i 0.383494 + 0.102757i
\(494\) 355.762 799.054i 0.0324018 0.0727756i
\(495\) −3898.34 + 1602.82i −0.353975 + 0.145538i
\(496\) −1598.01 + 2199.47i −0.144662 + 0.199111i
\(497\) −13827.4 + 2912.51i −1.24798 + 0.262865i
\(498\) 7692.81 3919.68i 0.692215 0.352701i
\(499\) 13716.4 + 7919.18i 1.23052 + 0.710443i 0.967139 0.254248i \(-0.0818280\pi\)
0.263384 + 0.964691i \(0.415161\pi\)
\(500\) 7083.75 + 3918.42i 0.633590 + 0.350474i
\(501\) −7131.38 12351.9i −0.635941 1.10148i
\(502\) 349.731 6673.26i 0.0310941 0.593311i
\(503\) −9208.67 + 1458.51i −0.816291 + 0.129288i −0.550599 0.834770i \(-0.685601\pi\)
−0.265692 + 0.964058i \(0.585601\pi\)
\(504\) −1903.44 3752.78i −0.168226 0.331671i
\(505\) 8497.34 + 6555.61i 0.748766 + 0.577665i
\(506\) −1043.98 9932.78i −0.0917202 0.872660i
\(507\) 2016.91 7527.23i 0.176675 0.659361i
\(508\) 3666.31 + 9551.06i 0.320209 + 0.834172i
\(509\) 15041.1 + 3197.08i 1.30979 + 0.278405i 0.809330 0.587354i \(-0.199831\pi\)
0.500461 + 0.865759i \(0.333164\pi\)
\(510\) 4908.27 + 922.976i 0.426160 + 0.0801374i
\(511\) 176.075 + 661.994i 0.0152428 + 0.0573090i
\(512\) 4977.46 + 2536.14i 0.429638 + 0.218912i
\(513\) 3121.99 + 4807.45i 0.268693 + 0.413751i
\(514\) 9696.42 2061.04i 0.832083 0.176865i
\(515\) −15139.1 + 356.821i −1.29536 + 0.0305309i
\(516\) 13.1452 61.8435i 0.00112149 0.00527618i
\(517\) −19257.5 3050.09i −1.63819 0.259464i
\(518\) −330.627 + 1541.52i −0.0280443 + 0.130754i
\(519\) −4869.25 6701.94i −0.411823 0.566826i
\(520\) −843.649 + 3474.01i −0.0711470 + 0.292972i
\(521\) −10296.2 1082.18i −0.865808 0.0910001i −0.338798 0.940859i \(-0.610020\pi\)
−0.527010 + 0.849859i \(0.676687\pi\)
\(522\) 597.770 + 738.185i 0.0501220 + 0.0618956i
\(523\) 7563.00 + 396.360i 0.632326 + 0.0331388i 0.365807 0.930691i \(-0.380793\pi\)
0.266519 + 0.963830i \(0.414126\pi\)
\(524\) 12240.5 1.02047
\(525\) 6906.34 6130.63i 0.574128 0.509643i
\(526\) 11135.4 0.923051
\(527\) 12875.1 + 674.755i 1.06423 + 0.0557738i
\(528\) −1356.66 1675.33i −0.111820 0.138086i
\(529\) −26768.1 2813.44i −2.20006 0.231235i
\(530\) −6093.38 3755.98i −0.499396 0.307829i
\(531\) 2097.08 + 2886.38i 0.171385 + 0.235891i
\(532\) 3002.87 + 2713.83i 0.244720 + 0.221164i
\(533\) 288.521 + 45.6972i 0.0234470 + 0.00371363i
\(534\) −1351.72 + 6359.33i −0.109540 + 0.515347i
\(535\) 5298.67 4043.85i 0.428190 0.326786i
\(536\) −15459.3 + 3285.98i −1.24578 + 0.264800i
\(537\) 8196.35 + 12621.3i 0.658656 + 1.01424i
\(538\) −805.711 410.530i −0.0645663 0.0328982i
\(539\) 3563.19 + 11105.3i 0.284745 + 0.887461i
\(540\) −6754.39 7155.02i −0.538264 0.570191i
\(541\) 1024.67 + 217.800i 0.0814305 + 0.0173086i 0.248447 0.968646i \(-0.420080\pi\)
−0.167016 + 0.985954i \(0.553413\pi\)
\(542\) −481.345 1253.95i −0.0381467 0.0993757i
\(543\) −2352.09 + 8778.10i −0.185889 + 0.693747i
\(544\) −1477.60 14058.4i −0.116455 1.10799i
\(545\) −5549.07 + 15540.8i −0.436140 + 1.22146i
\(546\) 1434.71 + 935.474i 0.112454 + 0.0733234i
\(547\) 18594.4 2945.06i 1.45345 0.230204i 0.620786 0.783980i \(-0.286813\pi\)
0.832666 + 0.553776i \(0.186813\pi\)
\(548\) −378.883 + 7229.52i −0.0295348 + 0.563558i
\(549\) 2651.33 + 4592.25i 0.206113 + 0.356999i
\(550\) 3738.54 5089.48i 0.289840 0.394575i
\(551\) −1884.04 1087.75i −0.145667 0.0841010i
\(552\) 14399.2 7336.74i 1.11027 0.565711i
\(553\) 12767.2 + 4174.33i 0.981767 + 0.320995i
\(554\) −4116.37 + 5665.70i −0.315682 + 0.434499i
\(555\) 193.826 + 2547.96i 0.0148242 + 0.194873i
\(556\) 4197.95 9428.75i 0.320203 0.719187i
\(557\) −5878.32 1575.09i −0.447168 0.119818i 0.0282060 0.999602i \(-0.491021\pi\)
−0.475374 + 0.879784i \(0.657687\pi\)
\(558\) 2189.91 + 1773.35i 0.166140 + 0.134538i
\(559\) −13.1935 40.6053i −0.000998255 0.00307231i
\(560\) −2798.26 1731.97i −0.211157 0.130695i
\(561\) −3159.13 + 9722.80i −0.237751 + 0.731724i
\(562\) −342.922 + 222.696i −0.0257389 + 0.0167151i
\(563\) 131.556 + 2510.23i 0.00984797 + 0.187910i 0.999124 + 0.0418514i \(0.0133256\pi\)
−0.989276 + 0.146059i \(0.953341\pi\)
\(564\) −2754.75 12960.1i −0.205667 0.967586i
\(565\) −15290.3 1243.61i −1.13853 0.0926002i
\(566\) 10476.8 3404.12i 0.778045 0.252802i
\(567\) −5193.58 + 2300.88i −0.384673 + 0.170420i
\(568\) −11056.0 11056.0i −0.816726 0.816726i
\(569\) 21956.1 2307.68i 1.61766 0.170023i 0.748007 0.663691i \(-0.231011\pi\)
0.869650 + 0.493668i \(0.164344\pi\)
\(570\) −2253.68 1082.19i −0.165608 0.0795230i
\(571\) −1611.02 + 15327.9i −0.118072 + 1.12338i 0.761681 + 0.647952i \(0.224374\pi\)
−0.879753 + 0.475431i \(0.842292\pi\)
\(572\) −2869.19 1101.38i −0.209732 0.0805087i
\(573\) −3737.05 7334.37i −0.272456 0.534726i
\(574\) 234.715 458.565i 0.0170676 0.0333452i
\(575\) −16439.0 18450.5i −1.19227 1.33816i
\(576\) 839.937 1454.81i 0.0607593 0.105238i
\(577\) −22259.5 14455.5i −1.60603 1.04296i −0.960136 0.279534i \(-0.909820\pi\)
−0.645889 0.763431i \(-0.723513\pi\)
\(578\) −886.335 + 717.740i −0.0637831 + 0.0516506i
\(579\) −4150.31 + 1847.84i −0.297894 + 0.132631i
\(580\) 3516.83 + 1255.73i 0.251773 + 0.0898992i
\(581\) 16939.9 + 20998.0i 1.20962 + 1.49939i
\(582\) 2584.67 2584.67i 0.184086 0.184086i
\(583\) 9220.90 11386.9i 0.655044 0.808912i
\(584\) −507.170 + 563.269i −0.0359364 + 0.0399114i
\(585\) −1853.13 554.196i −0.130970 0.0391679i
\(586\) 218.300 196.558i 0.0153889 0.0138562i
\(587\) −4838.23 + 9495.57i −0.340196 + 0.667673i −0.996201 0.0870838i \(-0.972245\pi\)
0.656005 + 0.754757i \(0.272245\pi\)
\(588\) −6177.68 + 4965.03i −0.433271 + 0.348222i
\(589\) −6137.98 1994.35i −0.429390 0.139517i
\(590\) −4933.08 2058.48i −0.344223 0.143638i
\(591\) −2053.66 1849.12i −0.142938 0.128702i
\(592\) 850.122 326.331i 0.0590199 0.0226556i
\(593\) −3082.73 11504.9i −0.213478 0.796711i −0.986697 0.162572i \(-0.948021\pi\)
0.773219 0.634140i \(-0.218646\pi\)
\(594\) −6209.76 + 4511.65i −0.428939 + 0.311642i
\(595\) 339.002 + 15602.6i 0.0233575 + 1.07503i
\(596\) −54.8600 39.8581i −0.00377039 0.00273935i
\(597\) −1681.13 + 4379.49i −0.115250 + 0.300236i
\(598\) 2496.18 3843.77i 0.170696 0.262849i
\(599\) 18622.0 10751.4i 1.27024 0.733372i 0.295205 0.955434i \(-0.404612\pi\)
0.975033 + 0.222062i \(0.0712786\pi\)
\(600\) 9856.07 + 2696.25i 0.670620 + 0.183456i
\(601\) 18331.4i 1.24418i 0.782944 + 0.622092i \(0.213717\pi\)
−0.782944 + 0.622092i \(0.786283\pi\)
\(602\) −75.2917 0.138632i −0.00509744 9.38574e-6i
\(603\) −1337.68 8445.76i −0.0903390 0.570378i
\(604\) −2479.80 5569.72i −0.167056 0.375213i
\(605\) −1414.14 1349.02i −0.0950298 0.0906534i
\(606\) 5197.41 + 2314.04i 0.348400 + 0.155118i
\(607\) 3207.82 859.532i 0.214500 0.0574750i −0.149969 0.988691i \(-0.547917\pi\)
0.364469 + 0.931216i \(0.381251\pi\)
\(608\) −1106.95 + 6988.99i −0.0738366 + 0.466186i
\(609\) 2686.98 3305.67i 0.178788 0.219955i
\(610\) −6971.93 3809.09i −0.462763 0.252829i
\(611\) −5986.90 6649.12i −0.396406 0.440253i
\(612\) 4833.87 253.332i 0.319277 0.0167326i
\(613\) −20420.0 + 1070.17i −1.34544 + 0.0705115i −0.711399 0.702788i \(-0.751938\pi\)
−0.634041 + 0.773300i \(0.718605\pi\)
\(614\) 1467.95 + 1630.33i 0.0964850 + 0.107157i
\(615\) 154.303 820.565i 0.0101172 0.0538022i
\(616\) −8139.78 + 10014.0i −0.532404 + 0.654995i
\(617\) 516.751 3262.63i 0.0337173 0.212883i −0.965077 0.261965i \(-0.915630\pi\)
0.998795 + 0.0490820i \(0.0156296\pi\)
\(618\) −7754.11 + 2077.71i −0.504719 + 0.135239i
\(619\) −9356.21 4165.65i −0.607524 0.270487i 0.0798311 0.996808i \(-0.474562\pi\)
−0.687356 + 0.726321i \(0.741229\pi\)
\(620\) 10979.6 + 1474.71i 0.711213 + 0.0955255i
\(621\) 12216.8 + 27439.3i 0.789440 + 1.77311i
\(622\) −530.513 3349.53i −0.0341988 0.215923i
\(623\) −20315.7 37.4066i −1.30647 0.00240556i
\(624\) 989.257i 0.0634647i
\(625\) 163.425 15624.1i 0.0104592 0.999945i
\(626\) 452.992 261.535i 0.0289220 0.0166981i
\(627\) 2787.19 4291.90i 0.177528 0.273369i
\(628\) 2234.04 5819.87i 0.141955 0.369806i
\(629\) −3493.60 2538.25i −0.221461 0.160901i
\(630\) −1944.50 + 2802.43i −0.122969 + 0.177225i
\(631\) −14579.7 + 10592.8i −0.919824 + 0.668291i −0.943480 0.331429i \(-0.892469\pi\)
0.0236565 + 0.999720i \(0.492469\pi\)
\(632\) 3846.74 + 14356.2i 0.242112 + 0.903576i
\(633\) −2090.93 + 802.632i −0.131291 + 0.0503977i
\(634\) −5303.82 4775.58i −0.332242 0.299152i
\(635\) 12863.5 14981.7i 0.803892 0.936269i
\(636\) 9469.59 + 3076.86i 0.590399 + 0.191832i
\(637\) −1936.39 + 4989.47i −0.120443 + 0.310345i
\(638\) 1322.51 2595.57i 0.0820669 0.161065i
\(639\) 6286.67 5660.54i 0.389197 0.350434i
\(640\) −335.969 14254.4i −0.0207505 0.880400i
\(641\) 3812.63 4234.36i 0.234930 0.260916i −0.614140 0.789197i \(-0.710497\pi\)
0.849069 + 0.528282i \(0.177163\pi\)
\(642\) 2223.67 2746.00i 0.136700 0.168810i
\(643\) 17959.1 17959.1i 1.10146 1.10146i 0.107225 0.994235i \(-0.465803\pi\)
0.994235 0.107225i \(-0.0341967\pi\)
\(644\) 13316.4 + 16506.5i 0.814814 + 1.01001i
\(645\) −117.098 + 34.3532i −0.00714842 + 0.00209714i
\(646\) 3859.66 1718.43i 0.235071 0.104661i
\(647\) −9123.72 + 7388.24i −0.554390 + 0.448936i −0.865122 0.501561i \(-0.832759\pi\)
0.310732 + 0.950498i \(0.399426\pi\)
\(648\) −5271.31 3423.23i −0.319563 0.207526i
\(649\) 5470.86 9475.81i 0.330894 0.573125i
\(650\) 2803.05 735.386i 0.169146 0.0443757i
\(651\) 5758.10 11249.7i 0.346663 0.677279i
\(652\) −4484.32 8800.98i −0.269355 0.528639i
\(653\) 16054.4 + 6162.71i 0.962110 + 0.369319i 0.788184 0.615439i \(-0.211021\pi\)
0.173926 + 0.984759i \(0.444355\pi\)
\(654\) −914.393 + 8699.86i −0.0546721 + 0.520171i
\(655\) −11218.9 20792.1i −0.669251 1.24033i
\(656\) −295.909 + 31.1013i −0.0176117 + 0.00185107i
\(657\) −289.975 289.975i −0.0172192 0.0172192i
\(658\) −14426.0 + 6391.09i −0.854690 + 0.378648i
\(659\) −21642.4 + 7032.04i −1.27931 + 0.415674i −0.868338 0.495972i \(-0.834812\pi\)
−0.410975 + 0.911647i \(0.634812\pi\)
\(660\) −3382.83 + 8106.85i −0.199510 + 0.478119i
\(661\) −4250.26 19995.9i −0.250100 1.17663i −0.906497 0.422212i \(-0.861254\pi\)
0.656397 0.754416i \(-0.272080\pi\)
\(662\) 649.818 + 12399.3i 0.0381509 + 0.727963i
\(663\) −3934.47 + 2555.08i −0.230471 + 0.149670i
\(664\) −9224.81 + 28391.1i −0.539145 + 1.65932i
\(665\) 1857.55 7588.14i 0.108320 0.442490i
\(666\) −291.659 897.635i −0.0169693 0.0522262i
\(667\) −8858.93 7173.82i −0.514271 0.416449i
\(668\) 20005.2 + 5360.36i 1.15872 + 0.310477i
\(669\) 3158.76 7094.70i 0.182548 0.410010i
\(670\) 8294.86 + 9763.61i 0.478296 + 0.562987i
\(671\) 9558.78 13156.5i 0.549945 0.756934i
\(672\) −13170.1 4306.04i −0.756022 0.247186i
\(673\) −12543.6 + 6391.29i −0.718456 + 0.366072i −0.774686 0.632346i \(-0.782092\pi\)
0.0562297 + 0.998418i \(0.482092\pi\)
\(674\) 9862.65 + 5694.20i 0.563642 + 0.325419i
\(675\) −5963.11 + 18031.2i −0.340030 + 1.02818i
\(676\) 5657.91 + 9799.79i 0.321911 + 0.557566i
\(677\) 583.749 11138.6i 0.0331393 0.632335i −0.930689 0.365811i \(-0.880792\pi\)
0.963828 0.266524i \(-0.0858750\pi\)
\(678\) −8032.20 + 1272.18i −0.454978 + 0.0720614i
\(679\) 9567.89 + 6238.54i 0.540769 + 0.352597i
\(680\) −14256.7 + 9743.54i −0.803997 + 0.549482i
\(681\) −240.259 2285.91i −0.0135194 0.128629i
\(682\) 2236.71 8347.50i 0.125583 0.468684i
\(683\) 2080.68 + 5420.35i 0.116566 + 0.303666i 0.979434 0.201764i \(-0.0646673\pi\)
−0.862868 + 0.505430i \(0.831334\pi\)
\(684\) −2370.11 503.782i −0.132490 0.0281617i
\(685\) 12627.6 5982.58i 0.704345 0.333697i
\(686\) 7301.96 + 5980.10i 0.406400 + 0.332830i
\(687\) −3849.64 1961.49i −0.213789 0.108931i
\(688\) 23.6849 + 36.4716i 0.00131247 + 0.00202102i
\(689\) 6576.82 1397.95i 0.363653 0.0772968i
\(690\) −10776.5 7448.07i −0.594573 0.410932i
\(691\) −7520.17 + 35379.6i −0.414010 + 1.94776i −0.115751 + 0.993278i \(0.536927\pi\)
−0.298259 + 0.954485i \(0.596406\pi\)
\(692\) 11881.1 + 1881.79i 0.652677 + 0.103374i
\(693\) −5180.13 4681.51i −0.283949 0.256617i
\(694\) −7826.02 10771.6i −0.428057 0.589170i
\(695\) −19863.7 + 1511.05i −1.08413 + 0.0824712i
\(696\) 4687.77 + 492.704i 0.255301 + 0.0268332i
\(697\) 887.977 + 1096.56i 0.0482561 + 0.0595913i
\(698\) −2192.55 114.907i −0.118896 0.00623106i
\(699\) 7397.36 0.400277
\(700\) −796.489 + 13386.2i −0.0430064 + 0.722785i
\(701\) −3875.87 −0.208830 −0.104415 0.994534i \(-0.533297\pi\)
−0.104415 + 0.994534i \(0.533297\pi\)
\(702\) −3517.48 184.343i −0.189115 0.00991109i
\(703\) 1360.38 + 1679.93i 0.0729840 + 0.0901278i
\(704\) −5123.66 538.518i −0.274297 0.0288298i
\(705\) −19489.7 + 16557.8i −1.04117 + 0.884545i
\(706\) −5695.28 7838.88i −0.303604 0.417875i
\(707\) −3728.26 + 17382.6i −0.198325 + 0.924670i
\(708\) 7343.93 + 1163.16i 0.389833 + 0.0617435i
\(709\) 666.296 3134.68i 0.0352938 0.166044i −0.956971 0.290184i \(-0.906284\pi\)
0.992265 + 0.124139i \(0.0396170\pi\)
\(710\) −3631.48 + 12143.0i −0.191953 + 0.641855i
\(711\) −7865.64 + 1671.89i −0.414887 + 0.0881869i
\(712\) −12243.0 18852.5i −0.644417 0.992316i
\(713\) −30131.5 15352.7i −1.58265 0.806402i
\(714\) 2126.51 + 7995.09i 0.111460 + 0.419060i
\(715\) 758.891 + 5883.18i 0.0396936 + 0.307718i
\(716\) −21375.2 4543.44i −1.11568 0.237146i
\(717\) 6441.94 + 16781.8i 0.335535 + 0.874099i
\(718\) 1210.48 4517.58i 0.0629175 0.234811i
\(719\) 2519.45 + 23970.9i 0.130681 + 1.24335i 0.841611 + 0.540083i \(0.181607\pi\)
−0.710931 + 0.703262i \(0.751726\pi\)
\(720\) 1969.30 + 56.7213i 0.101933 + 0.00293594i
\(721\) −11347.2 22371.8i −0.586118 1.15558i
\(722\) 7976.51 1263.36i 0.411157 0.0651208i
\(723\) −519.838 + 9919.10i −0.0267399 + 0.510228i
\(724\) −6598.14 11428.3i −0.338699 0.586644i
\(725\) −1090.29 7124.77i −0.0558515 0.364976i
\(726\) −897.239 518.021i −0.0458673 0.0264815i
\(727\) 14818.5 7550.40i 0.755966 0.385184i −0.0331322 0.999451i \(-0.510548\pi\)
0.789098 + 0.614267i \(0.210548\pi\)
\(728\) −5794.81 + 1220.58i −0.295013 + 0.0621395i
\(729\) 11617.3 15989.9i 0.590221 0.812370i
\(730\) 597.051 + 144.992i 0.0302710 + 0.00735120i
\(731\) 83.8808 188.399i 0.00424411 0.00953242i
\(732\) 10674.6 + 2860.25i 0.538994 + 0.144423i
\(733\) 883.006 + 715.044i 0.0444946 + 0.0360310i 0.651310 0.758812i \(-0.274220\pi\)
−0.606815 + 0.794843i \(0.707553\pi\)
\(734\) 320.213 + 985.514i 0.0161026 + 0.0495586i
\(735\) 14095.9 + 5942.99i 0.707396 + 0.298246i
\(736\) −11457.7 + 35263.2i −0.573826 + 1.76606i
\(737\) −21993.8 + 14282.9i −1.09926 + 0.713865i
\(738\) 16.1401 + 307.972i 0.000805050 + 0.0153613i
\(739\) 5774.52 + 27167.0i 0.287441 + 1.35230i 0.850538 + 0.525914i \(0.176277\pi\)
−0.563097 + 0.826391i \(0.690390\pi\)
\(740\) −2815.22 2417.19i −0.139851 0.120078i
\(741\) 2233.44 725.690i 0.110725 0.0359769i
\(742\) 1261.13 11790.0i 0.0623955 0.583320i
\(743\) 17044.7 + 17044.7i 0.841598 + 0.841598i 0.989067 0.147468i \(-0.0471124\pi\)
−0.147468 + 0.989067i \(0.547112\pi\)
\(744\) 13906.8 1461.66i 0.685279 0.0720257i
\(745\) −17.4230 + 129.719i −0.000856820 + 0.00637925i
\(746\) −2025.15 + 19268.0i −0.0993913 + 0.945645i
\(747\) −15078.6 5788.12i −0.738549 0.283502i
\(748\) −6739.48 13227.0i −0.329438 0.646559i
\(749\) 9828.70 + 5030.79i 0.479483 + 0.245422i
\(750\) −1870.38 8069.04i −0.0910623 0.392853i
\(751\) −10571.7 + 18310.7i −0.513670 + 0.889702i 0.486205 + 0.873845i \(0.338381\pi\)
−0.999874 + 0.0158569i \(0.994952\pi\)
\(752\) 7643.08 + 4963.47i 0.370631 + 0.240691i
\(753\) 13943.1 11290.9i 0.674786 0.546431i
\(754\) 1221.22 543.720i 0.0589842 0.0262614i
\(755\) −7188.11 + 9317.18i −0.346493 + 0.449122i
\(756\) 5869.11 15205.8i 0.282351 0.731521i
\(757\) 29177.9 29177.9i 1.40091 1.40091i 0.603684 0.797223i \(-0.293699\pi\)
0.797223 0.603684i \(-0.206301\pi\)
\(758\) −6451.16 + 7966.52i −0.309125 + 0.381738i
\(759\) 17942.8 19927.5i 0.858078 0.952992i
\(760\) 8155.79 2864.14i 0.389265 0.136702i
\(761\) −4913.21 + 4423.87i −0.234039 + 0.210730i −0.777802 0.628509i \(-0.783666\pi\)
0.543763 + 0.839239i \(0.316999\pi\)
\(762\) 4752.27 9326.86i 0.225927 0.443407i
\(763\) −27190.8 + 2807.26i −1.29013 + 0.133197i
\(764\) 11368.0 + 3693.68i 0.538323 + 0.174912i
\(765\) −4860.77 7978.81i −0.229