Properties

Label 175.4.x.a.103.27
Level $175$
Weight $4$
Character 175.103
Analytic conductor $10.325$
Analytic rank $0$
Dimension $928$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(928\)
Relative dimension: \(58\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 103.27
Character \(\chi\) \(=\) 175.103
Dual form 175.4.x.a.17.27

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.570569 - 0.0299022i) q^{2} +(1.41700 + 1.74985i) q^{3} +(-7.63152 - 0.802105i) q^{4} +(-10.8302 - 2.77628i) q^{5} +(-0.756170 - 1.04078i) q^{6} +(18.4956 - 0.955975i) q^{7} +(8.84486 + 1.40089i) q^{8} +(4.55954 - 21.4509i) q^{9} +O(q^{10})\) \(q+(-0.570569 - 0.0299022i) q^{2} +(1.41700 + 1.74985i) q^{3} +(-7.63152 - 0.802105i) q^{4} +(-10.8302 - 2.77628i) q^{5} +(-0.756170 - 1.04078i) q^{6} +(18.4956 - 0.955975i) q^{7} +(8.84486 + 1.40089i) q^{8} +(4.55954 - 21.4509i) q^{9} +(6.09633 + 1.90790i) q^{10} +(-42.9973 + 9.13936i) q^{11} +(-9.41028 - 14.4906i) q^{12} +(63.7457 + 32.4801i) q^{13} +(-10.5816 - 0.00760935i) q^{14} +(-10.4882 - 22.8851i) q^{15} +(55.0423 + 11.6996i) q^{16} +(44.2617 + 115.306i) q^{17} +(-3.24296 + 12.1029i) q^{18} +(-2.03508 - 19.3625i) q^{19} +(80.4237 + 29.8742i) q^{20} +(27.8810 + 31.0098i) q^{21} +(24.8062 - 3.92892i) q^{22} +(-5.56252 + 106.139i) q^{23} +(10.0818 + 17.4622i) q^{24} +(109.585 + 60.1351i) q^{25} +(-35.4001 - 20.4383i) q^{26} +(98.1645 - 50.0173i) q^{27} +(-141.916 - 7.53985i) q^{28} +(-0.465140 + 0.640210i) q^{29} +(5.29995 + 13.3711i) q^{30} +(2.69447 - 6.05188i) q^{31} +(-100.255 - 26.8633i) q^{32} +(-76.9196 - 62.2882i) q^{33} +(-21.8065 - 67.1134i) q^{34} +(-202.964 - 40.9955i) q^{35} +(-52.0021 + 160.046i) q^{36} +(305.530 - 198.414i) q^{37} +(0.582170 + 11.1085i) q^{38} +(33.4924 + 157.569i) q^{39} +(-91.9020 - 39.7277i) q^{40} +(-113.102 + 36.7490i) q^{41} +(-14.9808 - 18.5269i) q^{42} +(18.9499 + 18.9499i) q^{43} +(335.466 - 35.2589i) q^{44} +(-108.934 + 219.658i) q^{45} +(6.34760 - 60.3934i) q^{46} +(525.773 + 201.825i) q^{47} +(57.5222 + 112.894i) q^{48} +(341.172 - 35.3626i) q^{49} +(-60.7273 - 37.5880i) q^{50} +(-139.049 + 240.839i) q^{51} +(-460.424 - 299.003i) q^{52} +(-109.920 + 89.0115i) q^{53} +(-57.5053 + 25.6030i) q^{54} +(491.041 + 20.3919i) q^{55} +(164.930 + 17.4548i) q^{56} +(30.9976 - 30.9976i) q^{57} +(0.284538 - 0.351375i) q^{58} +(499.333 - 554.566i) q^{59} +(61.6850 + 183.061i) q^{60} +(-430.518 + 387.640i) q^{61} +(-1.71835 + 3.37244i) q^{62} +(63.8247 - 401.106i) q^{63} +(-371.743 - 120.787i) q^{64} +(-600.202 - 528.740i) q^{65} +(42.0253 + 37.8398i) q^{66} +(-389.339 + 149.453i) q^{67} +(-245.297 - 915.461i) q^{68} +(-193.609 + 140.665i) q^{69} +(114.579 + 29.4598i) q^{70} +(107.906 + 78.3987i) q^{71} +(70.3788 - 183.343i) q^{72} +(-245.145 + 377.490i) q^{73} +(-180.259 + 104.073i) q^{74} +(50.0539 + 276.967i) q^{75} +149.397i q^{76} +(-786.523 + 210.142i) q^{77} +(-14.3980 - 90.9056i) q^{78} +(-50.0942 - 112.513i) q^{79} +(-563.635 - 279.521i) q^{80} +(-314.302 - 139.936i) q^{81} +(65.6313 - 17.5858i) q^{82} +(-23.6211 + 149.138i) q^{83} +(-187.901 - 259.015i) q^{84} +(-159.240 - 1371.66i) q^{85} +(-10.2456 - 11.3788i) q^{86} +(-1.77937 + 0.0932529i) q^{87} +(-393.109 + 20.6020i) q^{88} +(393.551 + 437.083i) q^{89} +(68.7228 - 122.073i) q^{90} +(1210.06 + 539.798i) q^{91} +(127.585 - 805.542i) q^{92} +(14.4079 - 3.86059i) q^{93} +(-293.955 - 130.877i) q^{94} +(-31.7154 + 215.348i) q^{95} +(-95.0549 - 213.497i) q^{96} +(-221.254 - 1396.94i) q^{97} +(-195.720 + 9.97499i) q^{98} +964.004i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 928 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 24 q^{7} + 84 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 928 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 24 q^{7} + 84 q^{8} - 10 q^{9} - 96 q^{10} - 6 q^{11} - 72 q^{12} - 20 q^{14} - 368 q^{15} - 1670 q^{16} + 120 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} - 880 q^{22} + 296 q^{23} + 32 q^{25} - 48 q^{26} + 226 q^{28} - 200 q^{29} - 38 q^{30} - 18 q^{31} - 964 q^{32} - 1092 q^{33} + 288 q^{35} + 7400 q^{36} - 392 q^{37} + 5424 q^{38} + 2430 q^{39} + 2172 q^{40} - 2098 q^{42} + 1560 q^{43} - 10 q^{44} - 4224 q^{45} - 6 q^{46} + 96 q^{47} + 6232 q^{50} - 16 q^{51} - 8928 q^{52} - 2384 q^{53} - 30 q^{54} + 244 q^{56} + 1556 q^{57} + 640 q^{58} + 4890 q^{59} + 3676 q^{60} - 18 q^{61} + 224 q^{63} - 9700 q^{64} - 1116 q^{65} - 2610 q^{66} - 2404 q^{67} - 13614 q^{68} - 1700 q^{70} - 24 q^{71} - 518 q^{72} - 4200 q^{73} - 16104 q^{75} - 722 q^{77} - 356 q^{78} - 10 q^{79} + 6414 q^{80} - 6810 q^{81} + 1692 q^{82} + 20620 q^{84} + 2712 q^{85} - 6 q^{86} + 9102 q^{87} + 1650 q^{88} + 20370 q^{89} - 12 q^{91} + 1612 q^{92} - 4604 q^{93} - 30 q^{94} + 1652 q^{95} - 2610 q^{96} - 19478 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.570569 0.0299022i −0.201727 0.0105720i −0.0487949 0.998809i \(-0.515538\pi\)
−0.152932 + 0.988237i \(0.548871\pi\)
\(3\) 1.41700 + 1.74985i 0.272701 + 0.336758i 0.895037 0.445993i \(-0.147149\pi\)
−0.622335 + 0.782751i \(0.713816\pi\)
\(4\) −7.63152 0.802105i −0.953940 0.100263i
\(5\) −10.8302 2.77628i −0.968679 0.248318i
\(6\) −0.756170 1.04078i −0.0514508 0.0708160i
\(7\) 18.4956 0.955975i 0.998667 0.0516178i
\(8\) 8.84486 + 1.40089i 0.390891 + 0.0619111i
\(9\) 4.55954 21.4509i 0.168872 0.794479i
\(10\) 6.09633 + 1.90790i 0.192783 + 0.0603332i
\(11\) −42.9973 + 9.13936i −1.17856 + 0.250511i −0.755228 0.655462i \(-0.772474\pi\)
−0.423334 + 0.905974i \(0.639140\pi\)
\(12\) −9.41028 14.4906i −0.226376 0.348589i
\(13\) 63.7457 + 32.4801i 1.35999 + 0.692950i 0.973360 0.229284i \(-0.0736385\pi\)
0.386632 + 0.922234i \(0.373639\pi\)
\(14\) −10.5816 0.00760935i −0.202003 0.000145263i
\(15\) −10.4882 22.8851i −0.180537 0.393927i
\(16\) 55.0423 + 11.6996i 0.860035 + 0.182806i
\(17\) 44.2617 + 115.306i 0.631473 + 1.64504i 0.757358 + 0.653000i \(0.226490\pi\)
−0.125885 + 0.992045i \(0.540177\pi\)
\(18\) −3.24296 + 12.1029i −0.0424652 + 0.158482i
\(19\) −2.03508 19.3625i −0.0245726 0.233792i −0.999914 0.0130923i \(-0.995832\pi\)
0.975342 0.220700i \(-0.0708342\pi\)
\(20\) 80.4237 + 29.8742i 0.899164 + 0.334003i
\(21\) 27.8810 + 31.0098i 0.289720 + 0.322233i
\(22\) 24.8062 3.92892i 0.240396 0.0380749i
\(23\) −5.56252 + 106.139i −0.0504289 + 0.962241i 0.849876 + 0.526982i \(0.176677\pi\)
−0.900305 + 0.435259i \(0.856657\pi\)
\(24\) 10.0818 + 17.4622i 0.0857475 + 0.148519i
\(25\) 109.585 + 60.1351i 0.876676 + 0.481081i
\(26\) −35.4001 20.4383i −0.267020 0.154164i
\(27\) 98.1645 50.0173i 0.699695 0.356513i
\(28\) −141.916 7.53985i −0.957844 0.0508892i
\(29\) −0.465140 + 0.640210i −0.00297842 + 0.00409945i −0.810504 0.585734i \(-0.800806\pi\)
0.807525 + 0.589833i \(0.200806\pi\)
\(30\) 5.29995 + 13.3711i 0.0322544 + 0.0813741i
\(31\) 2.69447 6.05188i 0.0156110 0.0350629i −0.905572 0.424193i \(-0.860558\pi\)
0.921183 + 0.389130i \(0.127224\pi\)
\(32\) −100.255 26.8633i −0.553838 0.148400i
\(33\) −76.9196 62.2882i −0.405757 0.328575i
\(34\) −21.8065 67.1134i −0.109993 0.338525i
\(35\) −202.964 40.9955i −0.980205 0.197986i
\(36\) −52.0021 + 160.046i −0.240750 + 0.740954i
\(37\) 305.530 198.414i 1.35754 0.881594i 0.358878 0.933384i \(-0.383159\pi\)
0.998658 + 0.0517902i \(0.0164927\pi\)
\(38\) 0.582170 + 11.1085i 0.00248528 + 0.0474219i
\(39\) 33.4924 + 157.569i 0.137515 + 0.646956i
\(40\) −91.9020 39.7277i −0.363274 0.157037i
\(41\) −113.102 + 36.7490i −0.430818 + 0.139981i −0.516395 0.856350i \(-0.672727\pi\)
0.0855774 + 0.996332i \(0.472727\pi\)
\(42\) −14.9808 18.5269i −0.0550376 0.0680658i
\(43\) 18.9499 + 18.9499i 0.0672053 + 0.0672053i 0.739911 0.672705i \(-0.234868\pi\)
−0.672705 + 0.739911i \(0.734868\pi\)
\(44\) 335.466 35.2589i 1.14939 0.120806i
\(45\) −108.934 + 219.658i −0.360866 + 0.727661i
\(46\) 6.34760 60.3934i 0.0203457 0.193576i
\(47\) 525.773 + 201.825i 1.63174 + 0.626367i 0.990065 0.140608i \(-0.0449056\pi\)
0.641677 + 0.766975i \(0.278239\pi\)
\(48\) 57.5222 + 112.894i 0.172971 + 0.339475i
\(49\) 341.172 35.3626i 0.994671 0.103098i
\(50\) −60.7273 37.5880i −0.171763 0.106315i
\(51\) −139.049 + 240.839i −0.381778 + 0.661259i
\(52\) −460.424 299.003i −1.22787 0.797390i
\(53\) −109.920 + 89.0115i −0.284881 + 0.230692i −0.761100 0.648635i \(-0.775340\pi\)
0.476219 + 0.879327i \(0.342007\pi\)
\(54\) −57.5053 + 25.6030i −0.144916 + 0.0645208i
\(55\) 491.041 + 20.3919i 1.20385 + 0.0499934i
\(56\) 164.930 + 17.4548i 0.393566 + 0.0416516i
\(57\) 30.9976 30.9976i 0.0720305 0.0720305i
\(58\) 0.284538 0.351375i 0.000644167 0.000795480i
\(59\) 499.333 554.566i 1.10182 1.22370i 0.129126 0.991628i \(-0.458783\pi\)
0.972699 0.232072i \(-0.0745506\pi\)
\(60\) 61.6850 + 183.061i 0.132725 + 0.393884i
\(61\) −430.518 + 387.640i −0.903642 + 0.813643i −0.983076 0.183197i \(-0.941355\pi\)
0.0794343 + 0.996840i \(0.474689\pi\)
\(62\) −1.71835 + 3.37244i −0.00351984 + 0.00690808i
\(63\) 63.8247 401.106i 0.127637 0.802137i
\(64\) −371.743 120.787i −0.726061 0.235911i
\(65\) −600.202 528.740i −1.14532 1.00896i
\(66\) 42.0253 + 37.8398i 0.0783782 + 0.0705721i
\(67\) −389.339 + 149.453i −0.709930 + 0.272517i −0.686418 0.727207i \(-0.740818\pi\)
−0.0235120 + 0.999724i \(0.507485\pi\)
\(68\) −245.297 915.461i −0.437450 1.63259i
\(69\) −193.609 + 140.665i −0.337794 + 0.245422i
\(70\) 114.579 + 29.4598i 0.195640 + 0.0503018i
\(71\) 107.906 + 78.3987i 0.180368 + 0.131045i 0.674306 0.738452i \(-0.264443\pi\)
−0.493938 + 0.869497i \(0.664443\pi\)
\(72\) 70.3788 183.343i 0.115198 0.300100i
\(73\) −245.145 + 377.490i −0.393042 + 0.605231i −0.978692 0.205333i \(-0.934172\pi\)
0.585651 + 0.810564i \(0.300839\pi\)
\(74\) −180.259 + 104.073i −0.283171 + 0.163489i
\(75\) 50.0539 + 276.967i 0.0770630 + 0.426419i
\(76\) 149.397i 0.225488i
\(77\) −786.523 + 210.142i −1.16406 + 0.311012i
\(78\) −14.3980 90.9056i −0.0209007 0.131962i
\(79\) −50.0942 112.513i −0.0713423 0.160237i 0.874354 0.485288i \(-0.161285\pi\)
−0.945697 + 0.325051i \(0.894619\pi\)
\(80\) −563.635 279.521i −0.787704 0.390643i
\(81\) −314.302 139.936i −0.431141 0.191956i
\(82\) 65.6313 17.5858i 0.0883873 0.0236833i
\(83\) −23.6211 + 149.138i −0.0312380 + 0.197229i −0.998372 0.0570382i \(-0.981834\pi\)
0.967134 + 0.254267i \(0.0818343\pi\)
\(84\) −187.901 259.015i −0.244068 0.336439i
\(85\) −159.240 1371.66i −0.203201 1.75033i
\(86\) −10.2456 11.3788i −0.0128466 0.0142676i
\(87\) −1.77937 + 0.0932529i −0.00219274 + 0.000114917i
\(88\) −393.109 + 20.6020i −0.476199 + 0.0249565i
\(89\) 393.551 + 437.083i 0.468723 + 0.520570i 0.930433 0.366461i \(-0.119431\pi\)
−0.461710 + 0.887031i \(0.652764\pi\)
\(90\) 68.7228 122.073i 0.0804891 0.142973i
\(91\) 1210.06 + 539.798i 1.39395 + 0.621827i
\(92\) 127.585 805.542i 0.144584 0.912864i
\(93\) 14.4079 3.86059i 0.0160648 0.00430456i
\(94\) −293.955 130.877i −0.322544 0.143606i
\(95\) −31.7154 + 215.348i −0.0342519 + 0.232571i
\(96\) −95.0549 213.497i −0.101057 0.226978i
\(97\) −221.254 1396.94i −0.231598 1.46225i −0.779866 0.625947i \(-0.784713\pi\)
0.548268 0.836303i \(-0.315287\pi\)
\(98\) −195.720 + 9.97499i −0.201742 + 0.0102819i
\(99\) 964.004i 0.978647i
\(100\) −788.062 546.820i −0.788062 0.546820i
\(101\) −901.246 + 520.335i −0.887895 + 0.512626i −0.873253 0.487267i \(-0.837994\pi\)
−0.0146414 + 0.999893i \(0.504661\pi\)
\(102\) 86.5384 133.257i 0.0840057 0.129357i
\(103\) −81.5408 + 212.421i −0.0780044 + 0.203209i −0.967037 0.254635i \(-0.918045\pi\)
0.889033 + 0.457844i \(0.151378\pi\)
\(104\) 518.321 + 376.582i 0.488707 + 0.355067i
\(105\) −215.864 413.246i −0.200630 0.384083i
\(106\) 65.3786 47.5003i 0.0599069 0.0435249i
\(107\) 19.9339 + 74.3944i 0.0180101 + 0.0672148i 0.974346 0.225055i \(-0.0722562\pi\)
−0.956336 + 0.292270i \(0.905589\pi\)
\(108\) −789.264 + 302.970i −0.703213 + 0.269938i
\(109\) 1293.43 + 1164.61i 1.13659 + 1.02339i 0.999461 + 0.0328337i \(0.0104532\pi\)
0.137126 + 0.990554i \(0.456214\pi\)
\(110\) −279.563 26.3182i −0.242321 0.0228122i
\(111\) 780.128 + 253.479i 0.667086 + 0.216749i
\(112\) 1029.22 + 163.772i 0.868325 + 0.138169i
\(113\) −368.461 + 723.145i −0.306742 + 0.602015i −0.991993 0.126292i \(-0.959693\pi\)
0.685251 + 0.728307i \(0.259693\pi\)
\(114\) −18.6132 + 16.7594i −0.0152920 + 0.0137689i
\(115\) 354.915 1134.06i 0.287791 0.919580i
\(116\) 4.06324 4.51269i 0.00325226 0.00361200i
\(117\) 987.379 1219.31i 0.780198 0.963465i
\(118\) −301.487 + 301.487i −0.235204 + 0.235204i
\(119\) 928.876 + 2090.33i 0.715545 + 1.61026i
\(120\) −60.7076 217.108i −0.0461818 0.165160i
\(121\) 549.313 244.570i 0.412707 0.183749i
\(122\) 257.231 208.302i 0.190890 0.154580i
\(123\) −224.570 145.838i −0.164624 0.106908i
\(124\) −25.4172 + 44.0238i −0.0184075 + 0.0318827i
\(125\) −1019.87 955.510i −0.729757 0.683707i
\(126\) −48.4103 + 226.950i −0.0342281 + 0.160463i
\(127\) 235.353 + 461.906i 0.164442 + 0.322736i 0.958493 0.285115i \(-0.0920317\pi\)
−0.794051 + 0.607851i \(0.792032\pi\)
\(128\) 983.679 + 377.599i 0.679263 + 0.260745i
\(129\) −6.30744 + 60.0113i −0.00430495 + 0.0409589i
\(130\) 326.646 + 319.630i 0.220375 + 0.215642i
\(131\) −57.5461 + 6.04834i −0.0383803 + 0.00403394i −0.123699 0.992320i \(-0.539476\pi\)
0.0853188 + 0.996354i \(0.472809\pi\)
\(132\) 537.052 + 537.052i 0.354124 + 0.354124i
\(133\) −56.1500 356.174i −0.0366077 0.232212i
\(134\) 226.614 73.6313i 0.146093 0.0474684i
\(135\) −1202.00 + 269.163i −0.766308 + 0.171599i
\(136\) 229.958 + 1081.87i 0.144991 + 0.682129i
\(137\) 88.0247 + 1679.61i 0.0548939 + 1.04744i 0.877729 + 0.479157i \(0.159058\pi\)
−0.822835 + 0.568280i \(0.807609\pi\)
\(138\) 114.674 74.4699i 0.0707367 0.0459370i
\(139\) 809.659 2491.87i 0.494060 1.52056i −0.324356 0.945935i \(-0.605148\pi\)
0.818416 0.574626i \(-0.194852\pi\)
\(140\) 1516.04 + 475.657i 0.915206 + 0.287145i
\(141\) 391.856 + 1206.01i 0.234044 + 0.720313i
\(142\) −59.2238 47.9585i −0.0349996 0.0283422i
\(143\) −3037.74 813.961i −1.77643 0.475992i
\(144\) 501.934 1127.36i 0.290471 0.652409i
\(145\) 6.81494 5.64222i 0.00390310 0.00323145i
\(146\) 151.160 208.054i 0.0856855 0.117936i
\(147\) 545.319 + 546.890i 0.305967 + 0.306848i
\(148\) −2490.81 + 1269.13i −1.38340 + 0.704877i
\(149\) 660.628 + 381.414i 0.363227 + 0.209709i 0.670495 0.741914i \(-0.266082\pi\)
−0.307269 + 0.951623i \(0.599415\pi\)
\(150\) −20.2772 159.526i −0.0110375 0.0868347i
\(151\) 513.497 + 889.403i 0.276741 + 0.479329i 0.970573 0.240808i \(-0.0774124\pi\)
−0.693832 + 0.720137i \(0.744079\pi\)
\(152\) 9.12468 174.109i 0.00486914 0.0929087i
\(153\) 2675.23 423.715i 1.41359 0.223891i
\(154\) 455.049 96.3817i 0.238110 0.0504329i
\(155\) −45.9832 + 58.0622i −0.0238288 + 0.0300882i
\(156\) −129.211 1229.36i −0.0663150 0.630945i
\(157\) 294.475 1099.00i 0.149692 0.558659i −0.849809 0.527090i \(-0.823283\pi\)
0.999502 0.0315686i \(-0.0100503\pi\)
\(158\) 25.2178 + 65.6946i 0.0126976 + 0.0330784i
\(159\) −311.513 66.2141i −0.155375 0.0330259i
\(160\) 1011.20 + 569.271i 0.499640 + 0.281280i
\(161\) −1.41552 + 1968.42i −0.000692909 + 0.963562i
\(162\) 175.146 + 89.2415i 0.0849432 + 0.0432807i
\(163\) 892.629 + 1374.53i 0.428933 + 0.660499i 0.985377 0.170386i \(-0.0545014\pi\)
−0.556444 + 0.830885i \(0.687835\pi\)
\(164\) 892.616 189.731i 0.425010 0.0903386i
\(165\) 660.121 + 888.142i 0.311457 + 0.419041i
\(166\) 17.9371 84.3872i 0.00838666 0.0394561i
\(167\) −1696.28 268.665i −0.786002 0.124491i −0.249484 0.968379i \(-0.580261\pi\)
−0.536519 + 0.843888i \(0.680261\pi\)
\(168\) 203.162 + 313.335i 0.0932994 + 0.143895i
\(169\) 1717.20 + 2363.52i 0.781611 + 1.07579i
\(170\) 49.8418 + 787.389i 0.0224864 + 0.355235i
\(171\) −424.622 44.6296i −0.189893 0.0199585i
\(172\) −129.417 159.816i −0.0573716 0.0708481i
\(173\) 1006.34 + 52.7399i 0.442257 + 0.0231777i 0.272165 0.962251i \(-0.412260\pi\)
0.170091 + 0.985428i \(0.445594\pi\)
\(174\) 1.01804 0.000443549
\(175\) 2084.32 + 1007.47i 0.900340 + 0.435187i
\(176\) −2473.60 −1.05940
\(177\) 1677.96 + 87.9381i 0.712560 + 0.0373437i
\(178\) −211.478 261.154i −0.0890504 0.109968i
\(179\) −4116.44 432.655i −1.71887 0.180660i −0.806834 0.590778i \(-0.798821\pi\)
−0.912032 + 0.410118i \(0.865488\pi\)
\(180\) 1007.52 1588.95i 0.417202 0.657963i
\(181\) −392.398 540.090i −0.161142 0.221793i 0.720809 0.693133i \(-0.243770\pi\)
−0.881951 + 0.471340i \(0.843770\pi\)
\(182\) −674.283 344.176i −0.274622 0.140176i
\(183\) −1288.35 204.055i −0.520425 0.0824272i
\(184\) −197.889 + 930.994i −0.0792857 + 0.373010i
\(185\) −3859.79 + 1300.61i −1.53393 + 0.516881i
\(186\) −8.33615 + 1.77190i −0.00328621 + 0.000698506i
\(187\) −2956.96 4553.32i −1.15633 1.78060i
\(188\) −3850.56 1961.96i −1.49378 0.761121i
\(189\) 1767.79 1018.94i 0.680360 0.392154i
\(190\) 24.5352 121.923i 0.00936828 0.0465537i
\(191\) 2917.79 + 620.196i 1.10536 + 0.234952i 0.724223 0.689566i \(-0.242199\pi\)
0.381139 + 0.924518i \(0.375532\pi\)
\(192\) −315.401 821.647i −0.118553 0.308840i
\(193\) −885.392 + 3304.33i −0.330217 + 1.23239i 0.578745 + 0.815509i \(0.303543\pi\)
−0.908962 + 0.416879i \(0.863124\pi\)
\(194\) 84.4690 + 803.669i 0.0312604 + 0.297423i
\(195\) 74.7287 1799.48i 0.0274432 0.660840i
\(196\) −2632.03 3.78545i −0.959194 0.00137954i
\(197\) 4551.41 720.872i 1.64606 0.260711i 0.736549 0.676384i \(-0.236454\pi\)
0.909514 + 0.415674i \(0.136454\pi\)
\(198\) 28.8259 550.031i 0.0103463 0.197419i
\(199\) 590.950 + 1023.55i 0.210509 + 0.364612i 0.951874 0.306490i \(-0.0991545\pi\)
−0.741365 + 0.671102i \(0.765821\pi\)
\(200\) 885.018 + 685.402i 0.312901 + 0.242326i
\(201\) −813.212 469.508i −0.285371 0.164759i
\(202\) 529.782 269.937i 0.184531 0.0940234i
\(203\) −7.99100 + 12.2857i −0.00276285 + 0.00424773i
\(204\) 1254.33 1726.44i 0.430494 0.592523i
\(205\) 1326.94 83.9952i 0.452084 0.0286170i
\(206\) 52.8765 118.763i 0.0178839 0.0401679i
\(207\) 2251.42 + 603.267i 0.755965 + 0.202560i
\(208\) 3128.71 + 2533.58i 1.04296 + 0.844576i
\(209\) 264.464 + 813.935i 0.0875279 + 0.269383i
\(210\) 110.808 + 242.240i 0.0364118 + 0.0796007i
\(211\) 1590.24 4894.24i 0.518845 1.59684i −0.257330 0.966324i \(-0.582843\pi\)
0.776175 0.630517i \(-0.217157\pi\)
\(212\) 910.253 591.126i 0.294889 0.191503i
\(213\) 15.7176 + 299.910i 0.00505613 + 0.0964766i
\(214\) −9.14912 43.0432i −0.00292253 0.0137494i
\(215\) −152.620 257.840i −0.0484121 0.0817886i
\(216\) 938.321 304.879i 0.295577 0.0960388i
\(217\) 44.0503 114.509i 0.0137803 0.0358220i
\(218\) −703.165 703.165i −0.218460 0.218460i
\(219\) −1007.92 + 105.937i −0.310999 + 0.0326873i
\(220\) −3731.03 549.488i −1.14339 0.168393i
\(221\) −923.643 + 8787.87i −0.281135 + 2.67483i
\(222\) −437.537 167.955i −0.132277 0.0507765i
\(223\) 1360.25 + 2669.65i 0.408472 + 0.801672i 0.999989 0.00462079i \(-0.00147085\pi\)
−0.591517 + 0.806292i \(0.701471\pi\)
\(224\) −1879.96 401.011i −0.560760 0.119615i
\(225\) 1789.61 2076.50i 0.530254 0.615260i
\(226\) 231.856 401.586i 0.0682426 0.118200i
\(227\) 1448.94 + 940.950i 0.423653 + 0.275123i 0.738807 0.673917i \(-0.235390\pi\)
−0.315154 + 0.949041i \(0.602056\pi\)
\(228\) −261.422 + 211.696i −0.0759348 + 0.0614907i
\(229\) 2062.12 918.116i 0.595061 0.264938i −0.0870301 0.996206i \(-0.527738\pi\)
0.682091 + 0.731268i \(0.261071\pi\)
\(230\) −236.414 + 636.447i −0.0677770 + 0.182461i
\(231\) −1482.22 1078.52i −0.422176 0.307193i
\(232\) −5.01096 + 5.01096i −0.00141804 + 0.00141804i
\(233\) −628.450 + 776.071i −0.176700 + 0.218206i −0.857799 0.513985i \(-0.828169\pi\)
0.681099 + 0.732191i \(0.261502\pi\)
\(234\) −599.828 + 666.176i −0.167572 + 0.186108i
\(235\) −5133.88 3645.49i −1.42510 1.01194i
\(236\) −4255.49 + 3831.66i −1.17377 + 1.05686i
\(237\) 125.898 247.088i 0.0345061 0.0677220i
\(238\) −467.482 1220.45i −0.127321 0.332396i
\(239\) −4887.18 1587.94i −1.32270 0.429772i −0.439279 0.898351i \(-0.644766\pi\)
−0.883422 + 0.468579i \(0.844766\pi\)
\(240\) −309.550 1382.35i −0.0832557 0.371794i
\(241\) −175.211 157.760i −0.0468312 0.0421670i 0.645383 0.763859i \(-0.276698\pi\)
−0.692214 + 0.721692i \(0.743365\pi\)
\(242\) −320.734 + 123.118i −0.0851966 + 0.0327039i
\(243\) −970.397 3621.57i −0.256177 0.956065i
\(244\) 3596.43 2612.96i 0.943599 0.685565i
\(245\) −3793.12 564.207i −0.989118 0.147126i
\(246\) 123.772 + 89.9255i 0.0320789 + 0.0233067i
\(247\) 499.167 1300.37i 0.128588 0.334983i
\(248\) 32.3102 49.7534i 0.00827299 0.0127393i
\(249\) −294.440 + 169.995i −0.0749372 + 0.0432650i
\(250\) 553.332 + 575.680i 0.139983 + 0.145637i
\(251\) 2871.71i 0.722155i −0.932536 0.361077i \(-0.882409\pi\)
0.932536 0.361077i \(-0.117591\pi\)
\(252\) −808.808 + 3009.85i −0.202183 + 0.752393i
\(253\) −730.871 4614.54i −0.181619 1.14669i
\(254\) −120.473 270.587i −0.0297604 0.0668430i
\(255\) 2174.55 2222.29i 0.534023 0.545745i
\(256\) 2306.68 + 1027.00i 0.563155 + 0.250733i
\(257\) −1941.71 + 520.280i −0.471287 + 0.126281i −0.486642 0.873601i \(-0.661779\pi\)
0.0153559 + 0.999882i \(0.495112\pi\)
\(258\) 5.39330 34.0520i 0.00130144 0.00821698i
\(259\) 5461.27 3961.85i 1.31022 0.950492i
\(260\) 4156.35 + 4516.52i 0.991408 + 1.07732i
\(261\) 11.6123 + 12.8967i 0.00275396 + 0.00305858i
\(262\) 33.0149 1.73024i 0.00778498 0.000407994i
\(263\) −2647.54 + 138.752i −0.620738 + 0.0325315i −0.360113 0.932909i \(-0.617262\pi\)
−0.260625 + 0.965440i \(0.583929\pi\)
\(264\) −593.084 658.687i −0.138264 0.153558i
\(265\) 1437.57 658.839i 0.333243 0.152725i
\(266\) 21.3870 + 204.901i 0.00492978 + 0.0472304i
\(267\) −207.167 + 1308.00i −0.0474847 + 0.299806i
\(268\) 3091.13 828.265i 0.704554 0.188785i
\(269\) −7174.07 3194.10i −1.62606 0.723969i −0.627554 0.778573i \(-0.715944\pi\)
−0.998508 + 0.0546036i \(0.982610\pi\)
\(270\) 693.872 117.634i 0.156399 0.0265147i
\(271\) −2716.52 6101.40i −0.608918 1.36765i −0.910221 0.414124i \(-0.864088\pi\)
0.301303 0.953529i \(-0.402579\pi\)
\(272\) 1087.24 + 6864.53i 0.242365 + 1.53023i
\(273\) 770.093 + 2882.32i 0.170726 + 0.638995i
\(274\) 960.966i 0.211876i
\(275\) −5261.44 1584.11i −1.15373 0.347366i
\(276\) 1590.36 918.196i 0.346842 0.200250i
\(277\) −1776.39 + 2735.40i −0.385317 + 0.593336i −0.977105 0.212758i \(-0.931756\pi\)
0.591788 + 0.806094i \(0.298422\pi\)
\(278\) −536.479 + 1397.57i −0.115740 + 0.301514i
\(279\) −117.533 85.3927i −0.0252205 0.0183237i
\(280\) −1737.76 646.930i −0.370896 0.138077i
\(281\) 1620.85 1177.62i 0.344099 0.250002i −0.402290 0.915512i \(-0.631786\pi\)
0.746389 + 0.665510i \(0.231786\pi\)
\(282\) −187.518 699.828i −0.0395977 0.147781i
\(283\) 4349.96 1669.79i 0.913704 0.350738i 0.144325 0.989530i \(-0.453899\pi\)
0.769379 + 0.638792i \(0.220566\pi\)
\(284\) −760.607 684.853i −0.158921 0.143094i
\(285\) −421.767 + 249.651i −0.0876608 + 0.0518879i
\(286\) 1708.90 + 555.256i 0.353320 + 0.114801i
\(287\) −2056.75 + 787.817i −0.423018 + 0.162033i
\(288\) −1033.36 + 2028.09i −0.211429 + 0.414952i
\(289\) −7685.25 + 6919.83i −1.56427 + 1.40847i
\(290\) −4.05711 + 3.01549i −0.000821523 + 0.000610606i
\(291\) 2130.92 2366.63i 0.429267 0.476750i
\(292\) 2173.62 2684.19i 0.435621 0.537947i
\(293\) 1802.69 1802.69i 0.359435 0.359435i −0.504170 0.863605i \(-0.668201\pi\)
0.863605 + 0.504170i \(0.168201\pi\)
\(294\) −294.789 328.345i −0.0584777 0.0651342i
\(295\) −6947.49 + 4619.75i −1.37118 + 0.911769i
\(296\) 2980.33 1326.93i 0.585230 0.260561i
\(297\) −3763.69 + 3047.77i −0.735324 + 0.595454i
\(298\) −365.529 237.377i −0.0710554 0.0461439i
\(299\) −3802.00 + 6585.25i −0.735368 + 1.27370i
\(300\) −159.830 2153.83i −0.0307593 0.414505i
\(301\) 368.604 + 332.373i 0.0705847 + 0.0636467i
\(302\) −266.390 522.821i −0.0507584 0.0996190i
\(303\) −2187.57 839.729i −0.414761 0.159212i
\(304\) 114.518 1089.56i 0.0216054 0.205562i
\(305\) 5738.77 3002.96i 1.07738 0.563768i
\(306\) −1539.07 + 161.763i −0.287526 + 0.0302202i
\(307\) −1927.82 1927.82i −0.358393 0.358393i 0.504827 0.863220i \(-0.331556\pi\)
−0.863220 + 0.504827i \(0.831556\pi\)
\(308\) 6170.92 972.830i 1.14163 0.179974i
\(309\) −487.247 + 158.316i −0.0897040 + 0.0291466i
\(310\) 27.9728 31.7535i 0.00512499 0.00581767i
\(311\) −2076.26 9768.03i −0.378565 1.78101i −0.593973 0.804485i \(-0.702441\pi\)
0.215408 0.976524i \(-0.430892\pi\)
\(312\) 75.4986 + 1440.60i 0.0136996 + 0.261403i
\(313\) 3414.63 2217.49i 0.616634 0.400447i −0.198183 0.980165i \(-0.563504\pi\)
0.814817 + 0.579718i \(0.196837\pi\)
\(314\) −200.881 + 618.247i −0.0361030 + 0.111114i
\(315\) −1804.81 + 4166.85i −0.322825 + 0.745318i
\(316\) 292.047 + 898.829i 0.0519903 + 0.160010i
\(317\) −1183.07 958.028i −0.209614 0.169742i 0.518764 0.854917i \(-0.326392\pi\)
−0.728378 + 0.685175i \(0.759726\pi\)
\(318\) 175.759 + 47.0946i 0.0309940 + 0.00830483i
\(319\) 14.1487 31.7784i 0.00248330 0.00557758i
\(320\) 3690.70 + 2340.20i 0.644738 + 0.408816i
\(321\) −101.932 + 140.298i −0.0177237 + 0.0243946i
\(322\) 59.6679 1123.08i 0.0103266 0.194369i
\(323\) 2142.53 1091.67i 0.369082 0.188057i
\(324\) 2286.36 + 1320.03i 0.392037 + 0.226342i
\(325\) 5032.35 + 7392.67i 0.858907 + 1.26176i
\(326\) −468.205 810.955i −0.0795444 0.137775i
\(327\) −205.100 + 3913.55i −0.0346852 + 0.661834i
\(328\) −1051.85 + 166.597i −0.177069 + 0.0280450i
\(329\) 9917.41 + 3230.25i 1.66190 + 0.541305i
\(330\) −350.087 526.485i −0.0583990 0.0878244i
\(331\) 756.622 + 7198.78i 0.125643 + 1.19541i 0.857694 + 0.514161i \(0.171896\pi\)
−0.732051 + 0.681250i \(0.761437\pi\)
\(332\) 299.890 1119.20i 0.0495740 0.185013i
\(333\) −2863.08 7458.58i −0.471159 1.22741i
\(334\) 959.813 + 204.015i 0.157241 + 0.0334227i
\(335\) 4631.53 537.688i 0.755365 0.0876926i
\(336\) 1171.83 + 2033.04i 0.190264 + 0.330094i
\(337\) −9811.04 4998.98i −1.58588 0.808046i −0.585883 0.810396i \(-0.699252\pi\)
−0.999997 + 0.00234961i \(0.999252\pi\)
\(338\) −909.105 1399.90i −0.146298 0.225280i
\(339\) −1787.50 + 379.945i −0.286382 + 0.0608725i
\(340\) 115.029 + 10595.6i 0.0183480 + 1.69008i
\(341\) −60.5447 + 284.840i −0.00961490 + 0.0452345i
\(342\) 240.942 + 38.1614i 0.0380954 + 0.00603372i
\(343\) 6276.37 980.204i 0.988024 0.154303i
\(344\) 141.062 + 194.156i 0.0221092 + 0.0304307i
\(345\) 2487.35 985.914i 0.388157 0.153855i
\(346\) −572.607 60.1835i −0.0889698 0.00935111i
\(347\) −1549.46 1913.42i −0.239709 0.296016i 0.643067 0.765810i \(-0.277662\pi\)
−0.882776 + 0.469794i \(0.844328\pi\)
\(348\) 13.6541 + 0.715581i 0.00210327 + 0.000110228i
\(349\) 2336.71 0.358399 0.179200 0.983813i \(-0.442649\pi\)
0.179200 + 0.983813i \(0.442649\pi\)
\(350\) −1159.12 637.158i −0.177022 0.0973072i
\(351\) 7882.14 1.19862
\(352\) 4556.23 + 238.782i 0.689908 + 0.0361566i
\(353\) 3233.77 + 3993.37i 0.487581 + 0.602112i 0.960255 0.279125i \(-0.0900445\pi\)
−0.472674 + 0.881237i \(0.656711\pi\)
\(354\) −954.761 100.349i −0.143347 0.0150664i
\(355\) −950.988 1148.65i −0.142178 0.171729i
\(356\) −2652.81 3651.28i −0.394940 0.543588i
\(357\) −2341.55 + 4587.38i −0.347137 + 0.680084i
\(358\) 2335.77 + 369.950i 0.344831 + 0.0546159i
\(359\) 308.543 1451.58i 0.0453600 0.213402i −0.949630 0.313372i \(-0.898541\pi\)
0.994990 + 0.0999699i \(0.0318746\pi\)
\(360\) −1271.23 + 1790.24i −0.186110 + 0.262095i
\(361\) 6338.35 1347.26i 0.924093 0.196422i
\(362\) 207.740 + 319.892i 0.0301618 + 0.0464452i
\(363\) 1206.34 + 614.658i 0.174425 + 0.0888738i
\(364\) −8801.65 5090.08i −1.26740 0.732947i
\(365\) 3702.98 3407.69i 0.531021 0.488675i
\(366\) 728.992 + 154.952i 0.104112 + 0.0221297i
\(367\) 2419.23 + 6302.30i 0.344094 + 0.896397i 0.991004 + 0.133830i \(0.0427277\pi\)
−0.646910 + 0.762567i \(0.723939\pi\)
\(368\) −1547.96 + 5777.06i −0.219274 + 0.818343i
\(369\) 272.609 + 2593.70i 0.0384592 + 0.365915i
\(370\) 2241.17 626.673i 0.314899 0.0880518i
\(371\) −1947.94 + 1751.40i −0.272593 + 0.245089i
\(372\) −113.051 + 17.9055i −0.0157565 + 0.00249558i
\(373\) 396.484 7565.37i 0.0550380 1.05019i −0.821914 0.569611i \(-0.807094\pi\)
0.876952 0.480577i \(-0.159573\pi\)
\(374\) 1550.99 + 2686.40i 0.214438 + 0.371418i
\(375\) 226.848 3138.56i 0.0312383 0.432199i
\(376\) 4367.66 + 2521.67i 0.599055 + 0.345865i
\(377\) −50.4448 + 25.7029i −0.00689135 + 0.00351132i
\(378\) −1039.12 + 528.515i −0.141393 + 0.0719151i
\(379\) −2876.68 + 3959.40i −0.389881 + 0.536625i −0.958168 0.286205i \(-0.907606\pi\)
0.568287 + 0.822830i \(0.307606\pi\)
\(380\) 414.769 1618.00i 0.0559926 0.218425i
\(381\) −474.770 + 1066.35i −0.0638404 + 0.143388i
\(382\) −1646.26 441.113i −0.220497 0.0590819i
\(383\) 302.314 + 244.809i 0.0403329 + 0.0326609i 0.649275 0.760554i \(-0.275072\pi\)
−0.608942 + 0.793215i \(0.708406\pi\)
\(384\) 733.130 + 2256.34i 0.0974281 + 0.299853i
\(385\) 9101.58 92.2639i 1.20483 0.0122135i
\(386\) 603.984 1858.87i 0.0796424 0.245114i
\(387\) 492.895 320.090i 0.0647423 0.0420441i
\(388\) 568.010 + 10838.3i 0.0743205 + 1.41812i
\(389\) −1838.41 8649.04i −0.239617 1.12731i −0.919224 0.393734i \(-0.871183\pi\)
0.679607 0.733576i \(-0.262150\pi\)
\(390\) −96.4465 + 1024.50i −0.0125225 + 0.133019i
\(391\) −12484.7 + 4056.51i −1.61477 + 0.524672i
\(392\) 3067.16 + 165.167i 0.395191 + 0.0212811i
\(393\) −92.1263 92.1263i −0.0118248 0.0118248i
\(394\) −2618.45 + 275.210i −0.334811 + 0.0351900i
\(395\) 230.159 + 1357.61i 0.0293179 + 0.172934i
\(396\) 773.233 7356.82i 0.0981222 0.933571i
\(397\) −7675.32 2946.28i −0.970310 0.372467i −0.178978 0.983853i \(-0.557279\pi\)
−0.791333 + 0.611386i \(0.790612\pi\)
\(398\) −306.571 601.679i −0.0386106 0.0757775i
\(399\) 543.686 602.952i 0.0682164 0.0756525i
\(400\) 5328.22 + 4592.07i 0.666028 + 0.574008i
\(401\) −3643.84 + 6311.31i −0.453777 + 0.785965i −0.998617 0.0525752i \(-0.983257\pi\)
0.544840 + 0.838540i \(0.316590\pi\)
\(402\) 449.954 + 292.204i 0.0558251 + 0.0362532i
\(403\) 368.326 298.265i 0.0455277 0.0368676i
\(404\) 7295.24 3248.05i 0.898396 0.399992i
\(405\) 3015.44 + 2388.12i 0.369971 + 0.293004i
\(406\) 4.92679 6.77090i 0.000602247 0.000827670i
\(407\) −11323.6 + 11323.6i −1.37909 + 1.37909i
\(408\) −1567.25 + 1935.40i −0.190173 + 0.234844i
\(409\) 4798.98 5329.81i 0.580182 0.644358i −0.379584 0.925157i \(-0.623933\pi\)
0.959766 + 0.280800i \(0.0905996\pi\)
\(410\) −759.620 + 8.24668i −0.0914999 + 0.000993352i
\(411\) −2814.33 + 2534.03i −0.337763 + 0.304123i
\(412\) 792.665 1555.69i 0.0947859 0.186028i
\(413\) 8705.30 10734.4i 1.03719 1.27894i
\(414\) −1266.55 411.528i −0.150357 0.0488538i
\(415\) 669.870 1549.61i 0.0792352 0.183295i
\(416\) −5518.33 4968.72i −0.650380 0.585605i
\(417\) 5507.68 2114.20i 0.646792 0.248280i
\(418\) −126.556 472.314i −0.0148088 0.0552671i
\(419\) −960.252 + 697.664i −0.111960 + 0.0813439i −0.642357 0.766406i \(-0.722043\pi\)
0.530396 + 0.847750i \(0.322043\pi\)
\(420\) 1315.90 + 3326.84i 0.152879 + 0.386508i
\(421\) 1910.49 + 1388.05i 0.221168 + 0.160688i 0.692852 0.721080i \(-0.256354\pi\)
−0.471684 + 0.881768i \(0.656354\pi\)
\(422\) −1053.69 + 2744.95i −0.121547 + 0.316640i
\(423\) 6726.63 10358.1i 0.773191 1.19061i
\(424\) −1096.92 + 633.309i −0.125640 + 0.0725382i
\(425\) −2083.52 + 15297.4i −0.237801 + 1.74596i
\(426\) 171.589i 0.0195153i
\(427\) −7592.10 + 7581.19i −0.860439 + 0.859202i
\(428\) −92.4540 583.732i −0.0104414 0.0659246i
\(429\) −2880.17 6468.96i −0.324139 0.728029i
\(430\) 79.3702 + 151.679i 0.00890132 + 0.0170108i
\(431\) 2254.25 + 1003.66i 0.251933 + 0.112168i 0.528818 0.848735i \(-0.322635\pi\)
−0.276885 + 0.960903i \(0.589302\pi\)
\(432\) 5988.38 1604.58i 0.666935 0.178705i
\(433\) −2518.04 + 15898.3i −0.279467 + 1.76448i 0.304313 + 0.952572i \(0.401573\pi\)
−0.583780 + 0.811912i \(0.698427\pi\)
\(434\) −28.5578 + 64.0180i −0.00315857 + 0.00708055i
\(435\) 19.5298 + 3.93009i 0.00215260 + 0.000433180i
\(436\) −8936.69 9925.20i −0.981628 1.09021i
\(437\) 2066.44 108.297i 0.226204 0.0118548i
\(438\) 578.255 30.3050i 0.0630824 0.00330601i
\(439\) −10865.3 12067.1i −1.18126 1.31192i −0.939886 0.341488i \(-0.889069\pi\)
−0.241373 0.970433i \(-0.577598\pi\)
\(440\) 4314.62 + 868.257i 0.467481 + 0.0940740i
\(441\) 797.026 7479.70i 0.0860626 0.807656i
\(442\) 789.779 4986.47i 0.0849908 0.536611i
\(443\) 14941.6 4003.58i 1.60247 0.429381i 0.656684 0.754166i \(-0.271959\pi\)
0.945788 + 0.324785i \(0.105292\pi\)
\(444\) −5750.25 2560.18i −0.614628 0.273650i
\(445\) −3048.76 5826.29i −0.324775 0.620657i
\(446\) −696.289 1563.89i −0.0739243 0.166037i
\(447\) 268.693 + 1696.46i 0.0284312 + 0.179507i
\(448\) −6991.07 1878.64i −0.737270 0.198119i
\(449\) 16645.9i 1.74959i 0.484490 + 0.874797i \(0.339005\pi\)
−0.484490 + 0.874797i \(0.660995\pi\)
\(450\) −1083.19 + 1131.27i −0.113471 + 0.118508i
\(451\) 4527.21 2613.79i 0.472679 0.272901i
\(452\) 3391.95 5223.15i 0.352974 0.543532i
\(453\) −828.695 + 2158.82i −0.0859503 + 0.223908i
\(454\) −798.581 580.203i −0.0825534 0.0599786i
\(455\) −11606.5 9205.57i −1.19588 0.948492i
\(456\) 317.594 230.746i 0.0326156 0.0236966i
\(457\) 3496.18 + 13047.9i 0.357865 + 1.33557i 0.876841 + 0.480781i \(0.159647\pi\)
−0.518976 + 0.854789i \(0.673687\pi\)
\(458\) −1204.04 + 462.186i −0.122840 + 0.0471540i
\(459\) 10112.2 + 9105.08i 1.02832 + 0.925902i
\(460\) −3618.18 + 8369.93i −0.366736 + 0.848370i
\(461\) −6477.18 2104.56i −0.654387 0.212623i −0.0370395 0.999314i \(-0.511793\pi\)
−0.617347 + 0.786691i \(0.711793\pi\)
\(462\) 813.457 + 659.693i 0.0819165 + 0.0664323i
\(463\) −1270.84 + 2494.17i −0.127562 + 0.250354i −0.945951 0.324311i \(-0.894868\pi\)
0.818389 + 0.574665i \(0.194868\pi\)
\(464\) −33.0926 + 29.7967i −0.00331096 + 0.00298120i
\(465\) −166.758 + 1.81038i −0.0166306 + 0.000180547i
\(466\) 381.780 424.010i 0.0379520 0.0421499i
\(467\) 1524.30 1882.36i 0.151041 0.186520i −0.696009 0.718033i \(-0.745043\pi\)
0.847051 + 0.531512i \(0.178376\pi\)
\(468\) −8513.22 + 8513.22i −0.840862 + 0.840862i
\(469\) −7058.17 + 3136.42i −0.694917 + 0.308799i
\(470\) 2820.22 + 2233.52i 0.276781 + 0.219201i
\(471\) 2340.34 1041.99i 0.228954 0.101937i
\(472\) 5193.42 4205.55i 0.506455 0.410119i
\(473\) −987.984 641.604i −0.0960413 0.0623700i
\(474\) −79.2218 + 137.216i −0.00767675 + 0.0132965i
\(475\) 941.351 2244.21i 0.0909308 0.216782i
\(476\) −5412.07 16697.5i −0.521138 1.60783i
\(477\) 1408.19 + 2763.74i 0.135172 + 0.265289i
\(478\) 2740.99 + 1052.17i 0.262280 + 0.100680i
\(479\) 1760.31 16748.3i 0.167914 1.59759i −0.508493 0.861066i \(-0.669797\pi\)
0.676407 0.736528i \(-0.263536\pi\)
\(480\) 436.732 + 2576.10i 0.0415292 + 0.244963i
\(481\) 25920.7 2724.38i 2.45714 0.258256i
\(482\) 95.2524 + 95.2524i 0.00900130 + 0.00900130i
\(483\) −3446.44 + 2786.77i −0.324676 + 0.262531i
\(484\) −4388.27 + 1425.83i −0.412121 + 0.133906i
\(485\) −1482.09 + 15743.4i −0.138759 + 1.47396i
\(486\) 445.385 + 2095.37i 0.0415701 + 0.195572i
\(487\) −727.404 13879.7i −0.0676834 1.29148i −0.795605 0.605816i \(-0.792847\pi\)
0.727922 0.685660i \(-0.240487\pi\)
\(488\) −4350.91 + 2825.51i −0.403599 + 0.262100i
\(489\) −1140.36 + 3509.67i −0.105458 + 0.324566i
\(490\) 2147.37 + 435.342i 0.197976 + 0.0401362i
\(491\) −3663.58 11275.3i −0.336731 1.03635i −0.965863 0.259053i \(-0.916589\pi\)
0.629132 0.777299i \(-0.283411\pi\)
\(492\) 1596.83 + 1293.09i 0.146323 + 0.118490i
\(493\) −94.4078 25.2965i −0.00862457 0.00231095i
\(494\) −323.693 + 727.027i −0.0294811 + 0.0662155i
\(495\) 2676.34 10440.3i 0.243016 0.947994i
\(496\) 219.114 301.585i 0.0198357 0.0273015i
\(497\) 2070.74 + 1346.87i 0.186892 + 0.121560i
\(498\) 173.081 88.1893i 0.0155742 0.00793546i
\(499\) −15961.4 9215.30i −1.43192 0.826720i −0.434654 0.900598i \(-0.643129\pi\)
−0.997267 + 0.0738773i \(0.976463\pi\)
\(500\) 7016.71 + 8110.03i 0.627593 + 0.725383i
\(501\) −1933.51 3348.93i −0.172421 0.298641i
\(502\) −85.8706 + 1638.51i −0.00763465 + 0.145678i
\(503\) −4328.36 + 685.544i −0.383682 + 0.0607692i −0.345296 0.938494i \(-0.612222\pi\)
−0.0383856 + 0.999263i \(0.512222\pi\)
\(504\) 1126.43 3458.32i 0.0995535 0.305646i
\(505\) 11205.2 3133.20i 0.987379 0.276090i
\(506\) 279.027 + 2654.77i 0.0245144 + 0.233239i
\(507\) −1702.53 + 6353.94i −0.149136 + 0.556584i
\(508\) −1425.60 3713.82i −0.124510 0.324359i
\(509\) 146.780 + 31.1990i 0.0127817 + 0.00271684i 0.214298 0.976768i \(-0.431254\pi\)
−0.201516 + 0.979485i \(0.564587\pi\)
\(510\) −1307.18 + 1202.94i −0.113496 + 0.104446i
\(511\) −4173.22 + 7216.25i −0.361277 + 0.624712i
\(512\) −8795.97 4481.77i −0.759240 0.386852i
\(513\) −1168.23 1798.92i −0.100543 0.154823i
\(514\) 1123.44 238.794i 0.0964060 0.0204917i
\(515\) 1472.84 2074.17i 0.126022 0.177474i
\(516\) 96.2707 452.918i 0.00821334 0.0386407i
\(517\) −24451.4 3872.72i −2.08002 0.329443i
\(518\) −3234.50 + 2097.20i −0.274355 + 0.177888i
\(519\) 1333.69 + 1835.67i 0.112799 + 0.155254i
\(520\) −4568.00 5517.45i −0.385231 0.465300i
\(521\) 16080.6 + 1690.14i 1.35221 + 0.142123i 0.752764 0.658290i \(-0.228720\pi\)
0.599449 + 0.800413i \(0.295387\pi\)
\(522\) −6.23996 7.70571i −0.000523210 0.000646111i
\(523\) 5590.85 + 293.004i 0.467439 + 0.0244975i 0.284602 0.958646i \(-0.408139\pi\)
0.182837 + 0.983143i \(0.441472\pi\)
\(524\) 444.016 0.0370170
\(525\) 1190.55 + 5074.82i 0.0989710 + 0.421873i
\(526\) 1514.75 0.125563
\(527\) 817.079 + 42.8213i 0.0675380 + 0.00353951i
\(528\) −3505.08 4328.41i −0.288900 0.356761i
\(529\) 865.760 + 90.9950i 0.0711564 + 0.00747884i
\(530\) −839.934 + 332.927i −0.0688385 + 0.0272857i
\(531\) −9619.23 13239.7i −0.786137 1.08203i
\(532\) 142.820 + 2763.19i 0.0116392 + 0.225187i
\(533\) −8403.37 1330.96i −0.682909 0.108162i
\(534\) 157.315 740.109i 0.0127485 0.0599769i
\(535\) −9.34779 861.045i −0.000755402 0.0695818i
\(536\) −3653.02 + 776.473i −0.294378 + 0.0625719i
\(537\) −5075.90 7816.20i −0.407898 0.628108i
\(538\) 3997.79 + 2036.98i 0.320366 + 0.163235i
\(539\) −14346.3 + 4638.60i −1.14645 + 0.370684i
\(540\) 9388.98 1090.00i 0.748217 0.0868628i
\(541\) −17369.6 3692.02i −1.38036 0.293406i −0.542854 0.839827i \(-0.682656\pi\)
−0.837510 + 0.546421i \(0.815990\pi\)
\(542\) 1367.52 + 3562.50i 0.108376 + 0.282329i
\(543\) 389.047 1451.94i 0.0307469 0.114749i
\(544\) −1339.98 12749.0i −0.105609 1.00480i
\(545\) −10774.8 16203.8i −0.846862 1.27357i
\(546\) −353.204 1667.59i −0.0276845 0.130707i
\(547\) 21946.2 3475.93i 1.71545 0.271700i 0.780158 0.625583i \(-0.215139\pi\)
0.935290 + 0.353882i \(0.115139\pi\)
\(548\) 675.463 12888.6i 0.0526539 1.00470i
\(549\) 6352.28 + 11002.5i 0.493823 + 0.855326i
\(550\) 2954.64 + 1061.18i 0.229066 + 0.0822703i
\(551\) 13.3426 + 7.70338i 0.00103161 + 0.000595599i
\(552\) −1909.50 + 972.941i −0.147235 + 0.0750201i
\(553\) −1034.08 2033.11i −0.0795183 0.156341i
\(554\) 1095.35 1507.61i 0.0840014 0.115618i
\(555\) −7745.18 4911.07i −0.592369 0.375610i
\(556\) −8177.67 + 18367.4i −0.623760 + 1.40099i
\(557\) −16385.2 4390.41i −1.24644 0.333981i −0.425477 0.904969i \(-0.639894\pi\)
−0.820959 + 0.570988i \(0.806560\pi\)
\(558\) 64.5072 + 52.2369i 0.00489392 + 0.00396302i
\(559\) 592.480 + 1823.47i 0.0448287 + 0.137969i
\(560\) −10692.0 4631.08i −0.806818 0.349462i
\(561\) 3777.60 11626.3i 0.284297 0.874975i
\(562\) −960.019 + 623.444i −0.0720569 + 0.0467943i
\(563\) −204.600 3904.00i −0.0153159 0.292245i −0.995539 0.0943500i \(-0.969923\pi\)
0.980223 0.197895i \(-0.0634106\pi\)
\(564\) −2023.11 9517.98i −0.151043 0.710602i
\(565\) 5998.14 6808.82i 0.446626 0.506990i
\(566\) −2531.88 + 822.658i −0.188026 + 0.0610934i
\(567\) −5946.97 2287.73i −0.440475 0.169446i
\(568\) 844.590 + 844.590i 0.0623912 + 0.0623912i
\(569\) 12671.5 1331.83i 0.933596 0.0981249i 0.374499 0.927227i \(-0.377815\pi\)
0.559097 + 0.829102i \(0.311148\pi\)
\(570\) 248.112 129.831i 0.0182321 0.00954041i
\(571\) −1467.68 + 13964.0i −0.107566 + 1.02343i 0.798991 + 0.601343i \(0.205368\pi\)
−0.906557 + 0.422083i \(0.861299\pi\)
\(572\) 22529.7 + 8648.35i 1.64688 + 0.632178i
\(573\) 3049.26 + 5984.50i 0.222311 + 0.436311i
\(574\) 1197.08 388.002i 0.0870470 0.0282141i
\(575\) −6992.26 + 11296.7i −0.507126 + 0.819314i
\(576\) −4285.96 + 7423.50i −0.310038 + 0.537001i
\(577\) 7614.74 + 4945.07i 0.549403 + 0.356787i 0.789296 0.614013i \(-0.210446\pi\)
−0.239893 + 0.970799i \(0.577112\pi\)
\(578\) 4591.88 3718.43i 0.330445 0.267589i
\(579\) −7036.66 + 3132.92i −0.505067 + 0.224870i
\(580\) −56.5340 + 37.5924i −0.00404732 + 0.00269128i
\(581\) −294.314 + 2780.97i −0.0210159 + 0.198579i
\(582\) −1286.60 + 1286.60i −0.0916348 + 0.0916348i
\(583\) 3912.76 4831.85i 0.277959 0.343250i
\(584\) −2697.09 + 2995.43i −0.191107 + 0.212246i
\(585\) −14078.6 + 10464.1i −0.995007 + 0.739550i
\(586\) −1082.46 + 974.656i −0.0763075 + 0.0687076i
\(587\) −4296.64 + 8432.63i −0.302115 + 0.592933i −0.991295 0.131656i \(-0.957971\pi\)
0.689181 + 0.724589i \(0.257971\pi\)
\(588\) −3722.95 4611.01i −0.261109 0.323392i
\(589\) −122.663 39.8556i −0.00858104 0.00278815i
\(590\) 4102.16 2428.14i 0.286243 0.169432i
\(591\) 7710.75 + 6942.79i 0.536680 + 0.483229i
\(592\) 19138.4 7346.55i 1.32869 0.510036i
\(593\) −302.257 1128.04i −0.0209312 0.0781165i 0.954670 0.297666i \(-0.0962080\pi\)
−0.975601 + 0.219549i \(0.929541\pi\)
\(594\) 2238.58 1626.42i 0.154630 0.112345i
\(595\) −4256.52 25217.4i −0.293278 1.73750i
\(596\) −4735.66 3440.66i −0.325470 0.236468i
\(597\) −953.689 + 2484.44i −0.0653800 + 0.170321i
\(598\) 2366.21 3643.65i 0.161809 0.249164i
\(599\) −6656.79 + 3843.30i −0.454072 + 0.262158i −0.709548 0.704657i \(-0.751101\pi\)
0.255477 + 0.966815i \(0.417768\pi\)
\(600\) 54.7192 + 2519.86i 0.00372317 + 0.171455i
\(601\) 12530.0i 0.850429i 0.905093 + 0.425214i \(0.139801\pi\)
−0.905093 + 0.425214i \(0.860199\pi\)
\(602\) −200.375 200.664i −0.0135659 0.0135855i
\(603\) 1430.71 + 9033.12i 0.0966217 + 0.610045i
\(604\) −3205.37 7199.38i −0.215935 0.484998i
\(605\) −6628.14 + 1123.68i −0.445409 + 0.0755112i
\(606\) 1223.05 + 544.536i 0.0819851 + 0.0365021i
\(607\) −9732.41 + 2607.79i −0.650784 + 0.174377i −0.569084 0.822280i \(-0.692702\pi\)
−0.0817009 + 0.996657i \(0.526035\pi\)
\(608\) −316.113 + 1995.86i −0.0210857 + 0.133130i
\(609\) −32.8213 + 3.42580i −0.00218389 + 0.000227948i
\(610\) −3364.16 + 1541.79i −0.223296 + 0.102337i
\(611\) 26960.5 + 29942.7i 1.78511 + 1.98257i
\(612\) −20755.9 + 1087.77i −1.37093 + 0.0718474i
\(613\) 26385.4 1382.80i 1.73849 0.0911106i 0.843483 0.537155i \(-0.180501\pi\)
0.895011 + 0.446045i \(0.147168\pi\)
\(614\) 1042.31 + 1157.60i 0.0685084 + 0.0760863i
\(615\) 2027.24 + 2202.91i 0.132921 + 0.144439i
\(616\) −7251.07 + 756.847i −0.474276 + 0.0495036i
\(617\) 3337.73 21073.6i 0.217783 1.37503i −0.600230 0.799827i \(-0.704924\pi\)
0.818013 0.575200i \(-0.195076\pi\)
\(618\) 282.742 75.7605i 0.0184038 0.00493129i
\(619\) 19029.2 + 8472.35i 1.23562 + 0.550133i 0.917431 0.397894i \(-0.130259\pi\)
0.318188 + 0.948028i \(0.396926\pi\)
\(620\) 397.494 406.219i 0.0257480 0.0263132i
\(621\) 4762.76 + 10697.3i 0.307766 + 0.691254i
\(622\) 892.562 + 5635.41i 0.0575377 + 0.363279i
\(623\) 7696.80 + 7707.88i 0.494969 + 0.495681i
\(624\) 9064.82i 0.581544i
\(625\) 8392.54 + 13179.8i 0.537123 + 0.843504i
\(626\) −2014.59 + 1163.12i −0.128625 + 0.0742616i
\(627\) −1049.52 + 1616.11i −0.0668479 + 0.102937i
\(628\) −3128.80 + 8150.81i −0.198810 + 0.517918i
\(629\) 36401.5 + 26447.3i 2.30751 + 1.67650i
\(630\) 1154.37 2323.50i 0.0730018 0.146937i
\(631\) −4108.09 + 2984.70i −0.259177 + 0.188303i −0.709784 0.704419i \(-0.751207\pi\)
0.450607 + 0.892722i \(0.351207\pi\)
\(632\) −285.458 1065.34i −0.0179666 0.0670523i
\(633\) 10817.5 4152.46i 0.679239 0.260735i
\(634\) 646.373 + 581.997i 0.0404902 + 0.0364575i
\(635\) −1266.53 5655.92i −0.0791506 0.353462i
\(636\) 2324.20 + 755.180i 0.144907 + 0.0470831i
\(637\) 22896.9 + 8827.08i 1.42419 + 0.549045i
\(638\) −9.02303 + 17.7087i −0.000559914 + 0.00109889i
\(639\) 2173.73 1957.23i 0.134572 0.121169i
\(640\) −9605.07 6820.42i −0.593240 0.421251i
\(641\) 12281.4 13639.9i 0.756764 0.840472i −0.234534 0.972108i \(-0.575356\pi\)
0.991298 + 0.131636i \(0.0420231\pi\)
\(642\) 62.3547 77.0016i 0.00383325 0.00473366i
\(643\) 7930.26 7930.26i 0.486375 0.486375i −0.420785 0.907160i \(-0.638245\pi\)
0.907160 + 0.420785i \(0.138245\pi\)
\(644\) 1589.68 15020.9i 0.0972707 0.919111i
\(645\) 234.919 632.420i 0.0143409 0.0386070i
\(646\) −1255.10 + 558.808i −0.0764418 + 0.0340341i
\(647\) 15709.1 12721.0i 0.954544 0.772974i −0.0193889 0.999812i \(-0.506172\pi\)
0.973933 + 0.226838i \(0.0728387\pi\)
\(648\) −2583.92 1678.02i −0.156645 0.101727i
\(649\) −16401.6 + 28408.4i −0.992018 + 1.71823i
\(650\) −2650.25 4368.50i −0.159925 0.263611i
\(651\) 262.792 85.1774i 0.0158212 0.00512806i
\(652\) −5709.60 11205.7i −0.342953 0.673083i
\(653\) −15591.3 5984.95i −0.934357 0.358666i −0.156909 0.987613i \(-0.550153\pi\)
−0.777448 + 0.628947i \(0.783486\pi\)
\(654\) 234.048 2226.81i 0.0139939 0.133143i
\(655\) 640.025 + 94.2596i 0.0381799 + 0.00562294i
\(656\) −6655.33 + 699.503i −0.396108 + 0.0416326i
\(657\) 6979.77 + 6979.77i 0.414470 + 0.414470i
\(658\) −5561.98 2139.63i −0.329526 0.126765i
\(659\) 23145.6 7520.47i 1.36817 0.444546i 0.469409 0.882981i \(-0.344467\pi\)
0.898763 + 0.438435i \(0.144467\pi\)
\(660\) −4325.35 7307.36i −0.255097 0.430967i
\(661\) 4124.70 + 19405.2i 0.242711 + 1.14187i 0.915590 + 0.402114i \(0.131725\pi\)
−0.672878 + 0.739753i \(0.734942\pi\)
\(662\) −216.445 4130.02i −0.0127075 0.242474i
\(663\) −16686.2 + 10836.2i −0.977435 + 0.634754i
\(664\) −417.852 + 1286.01i −0.0244214 + 0.0751612i
\(665\) −380.727 + 4013.31i −0.0222014 + 0.234029i
\(666\) 1410.56 + 4341.24i 0.0820690 + 0.252582i
\(667\) −65.3641 52.9308i −0.00379446 0.00307269i
\(668\) 12729.7 + 3410.92i 0.737317 + 0.197564i
\(669\) −2744.00 + 6163.11i −0.158578 + 0.356173i
\(670\) −2658.68 + 168.295i −0.153304 + 0.00970418i
\(671\) 14968.3 20602.1i 0.861171 1.18530i
\(672\) −1962.19 3857.87i −0.112639 0.221459i
\(673\) −24507.1 + 12487.0i −1.40368 + 0.715213i −0.981529 0.191311i \(-0.938726\pi\)
−0.422155 + 0.906524i \(0.638726\pi\)
\(674\) 5448.39 + 3145.63i 0.311371 + 0.179770i
\(675\) 13765.1 + 422.006i 0.784918 + 0.0240638i
\(676\) −11209.0 19414.6i −0.637747 1.10461i
\(677\) −1454.28 + 27749.4i −0.0825592 + 1.57532i 0.572601 + 0.819834i \(0.305934\pi\)
−0.655160 + 0.755490i \(0.727399\pi\)
\(678\) 1031.25 163.334i 0.0584145 0.00925195i
\(679\) −5427.67 25625.8i −0.306767 1.44835i
\(680\) 513.086 12355.2i 0.0289352 0.696768i
\(681\) 406.621 + 3868.74i 0.0228807 + 0.217695i
\(682\) 43.0623 160.711i 0.00241780 0.00902335i
\(683\) −6970.84 18159.7i −0.390530 1.01737i −0.978090 0.208184i \(-0.933245\pi\)
0.587560 0.809181i \(-0.300089\pi\)
\(684\) 3204.71 + 681.183i 0.179145 + 0.0380785i
\(685\) 3709.75 18434.8i 0.206923 1.02826i
\(686\) −3610.41 + 371.596i −0.200942 + 0.0206816i
\(687\) 4528.58 + 2307.43i 0.251494 + 0.128142i
\(688\) 821.338 + 1264.75i 0.0455134 + 0.0700845i
\(689\) −9898.03 + 2103.89i −0.547293 + 0.116331i
\(690\) −1448.68 + 488.155i −0.0799281 + 0.0269329i
\(691\) −3223.56 + 15165.7i −0.177468 + 0.834919i 0.795857 + 0.605485i \(0.207021\pi\)
−0.973324 + 0.229434i \(0.926312\pi\)
\(692\) −7637.58 1209.67i −0.419562 0.0664521i
\(693\) 921.564 + 17829.8i 0.0505156 + 0.977342i
\(694\) 826.855 + 1138.07i 0.0452262 + 0.0622486i
\(695\) −15686.9 + 24739.5i −0.856168 + 1.35025i
\(696\) −15.8689 1.66789i −0.000864239 9.08352e-5i
\(697\) −9243.46 11414.7i −0.502326 0.620320i
\(698\) −1333.26 69.8730i −0.0722987 0.00378901i
\(699\) −2248.51 −0.121669
\(700\) −15098.4 9360.39i −0.815237 0.505413i
\(701\) 13444.1 0.724363 0.362181 0.932108i \(-0.382032\pi\)
0.362181 + 0.932108i \(0.382032\pi\)
\(702\) −4497.30 235.694i −0.241794 0.0126719i
\(703\) −4463.55 5512.03i −0.239468 0.295719i
\(704\) 17087.9 + 1796.01i 0.914806 + 0.0961500i
\(705\) −895.643 14149.2i −0.0478466 0.755870i
\(706\) −1725.67 2375.19i −0.0919924 0.126617i
\(707\) −16171.6 + 10485.5i −0.860250 + 0.557774i
\(708\) −12734.8 2017.00i −0.675995 0.107067i
\(709\) 1250.74 5884.25i 0.0662515 0.311689i −0.932527 0.361100i \(-0.882401\pi\)
0.998779 + 0.0494113i \(0.0157345\pi\)
\(710\) 508.257 + 683.819i 0.0268655 + 0.0361455i
\(711\) −2641.92 + 561.558i −0.139353 + 0.0296204i
\(712\) 2868.60 + 4417.26i 0.150991 + 0.232505i
\(713\) 627.354 + 319.653i 0.0329517 + 0.0167897i
\(714\) 1473.19 2547.40i 0.0772165 0.133521i
\(715\) 30639.4 + 17248.9i 1.60259 + 0.902201i
\(716\) 31067.7 + 6603.63i 1.62158 + 0.344678i
\(717\) −4146.47 10801.9i −0.215973 0.562629i
\(718\) −219.450 + 818.999i −0.0114064 + 0.0425693i
\(719\) 1453.17 + 13826.0i 0.0753743 + 0.717139i 0.965320 + 0.261071i \(0.0840758\pi\)
−0.889945 + 0.456067i \(0.849258\pi\)
\(720\) −8565.90 + 10816.0i −0.443378 + 0.559846i
\(721\) −1305.07 + 4006.80i −0.0674113 + 0.206964i
\(722\) −3656.75 + 579.172i −0.188491 + 0.0298540i
\(723\) 27.7833 530.138i 0.00142915 0.0272698i
\(724\) 2561.39 + 4436.45i 0.131482 + 0.227734i
\(725\) −89.4712 + 42.1859i −0.00458328 + 0.00216103i
\(726\) −669.917 386.777i −0.0342465 0.0197722i
\(727\) −18070.1 + 9207.15i −0.921845 + 0.469703i −0.849448 0.527672i \(-0.823065\pi\)
−0.0723970 + 0.997376i \(0.523065\pi\)
\(728\) 9946.65 + 6469.60i 0.506384 + 0.329367i
\(729\) −497.942 + 685.358i −0.0252981 + 0.0348198i
\(730\) −2214.70 + 1833.59i −0.112287 + 0.0929647i
\(731\) −1346.28 + 3023.78i −0.0681174 + 0.152994i
\(732\) 9668.42 + 2590.64i 0.488190 + 0.130810i
\(733\) −13166.3 10661.9i −0.663450 0.537252i 0.237383 0.971416i \(-0.423710\pi\)
−0.900834 + 0.434164i \(0.857044\pi\)
\(734\) −1191.88 3668.24i −0.0599362 0.184465i
\(735\) −4387.57 7436.86i −0.220188 0.373215i
\(736\) 3408.93 10491.6i 0.170726 0.525442i
\(737\) 15374.6 9984.40i 0.768429 0.499023i
\(738\) −77.9846 1488.04i −0.00388977 0.0742213i
\(739\) 710.120 + 3340.85i 0.0353480 + 0.166299i 0.992281 0.124009i \(-0.0395753\pi\)
−0.956933 + 0.290309i \(0.906242\pi\)
\(740\) 30499.3 6829.70i 1.51510 0.339276i
\(741\) 2982.77 969.161i 0.147874 0.0480473i
\(742\) 1163.80 941.046i 0.0575803 0.0465591i
\(743\) −23840.0 23840.0i −1.17713 1.17713i −0.980473 0.196654i \(-0.936992\pi\)
−0.196654 0.980473i \(-0.563008\pi\)
\(744\) 132.844 13.9625i 0.00654611 0.000688024i
\(745\) −6095.79 5964.86i −0.299775 0.293336i
\(746\) −452.443 + 4304.71i −0.0222053 + 0.211269i
\(747\) 3091.45 + 1186.70i 0.151419 + 0.0581244i
\(748\) 18913.8 + 37120.5i 0.924544 + 1.81452i
\(749\) 439.809 + 1356.91i 0.0214556 + 0.0661955i
\(750\) −223.282 + 1783.98i −0.0108708 + 0.0868558i
\(751\) −8816.67 + 15270.9i −0.428396 + 0.742003i −0.996731 0.0807943i \(-0.974254\pi\)
0.568335 + 0.822797i \(0.307588\pi\)
\(752\) 26578.5 + 17260.3i 1.28885 + 0.836991i
\(753\) 5025.05 4069.21i 0.243191 0.196933i
\(754\) 29.5508 13.1569i 0.00142729 0.000635470i
\(755\) −3092.02 11058.0i −0.149047 0.533035i
\(756\) −14308.3 + 6358.12i −0.688342 + 0.305876i
\(757\) 22778.4 22778.4i 1.09365 1.09365i 0.0985195 0.995135i \(-0.468589\pi\)
0.995135 0.0985195i \(-0.0314107\pi\)
\(758\) 1759.74 2173.09i 0.0843226 0.104130i
\(759\) 7039.09 7817.70i 0.336631 0.373866i
\(760\) −582.198 + 1860.30i −0.0277875 + 0.0887896i
\(761\) 14583.4 13131.0i 0.694678 0.625490i −0.244207 0.969723i \(-0.578528\pi\)
0.938884 + 0.344233i \(0.111861\pi\)
\(762\) 302.775 594.229i 0.0143942 0.0282502i
\(763\) 25036.0 + 20303.6i 1.18790 + 0.963355i
\(764\) −21769.7 7073.41i −1.03089 0.334957i
\(765\) −30149.5 2838.29i