Properties

Label 175.4.x.a.103.26
Level $175$
Weight $4$
Character 175.103
Analytic conductor $10.325$
Analytic rank $0$
Dimension $928$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(928\)
Relative dimension: \(58\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 103.26
Character \(\chi\) \(=\) 175.103
Dual form 175.4.x.a.17.26

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.757961 - 0.0397231i) q^{2} +(-6.12747 - 7.56679i) q^{3} +(-7.38325 - 0.776011i) q^{4} +(10.8983 + 2.49552i) q^{5} +(4.34381 + 5.97873i) q^{6} +(2.54741 + 18.3442i) q^{7} +(11.5626 + 1.83134i) q^{8} +(-14.0969 + 66.3205i) q^{9} +O(q^{10})\) \(q+(-0.757961 - 0.0397231i) q^{2} +(-6.12747 - 7.56679i) q^{3} +(-7.38325 - 0.776011i) q^{4} +(10.8983 + 2.49552i) q^{5} +(4.34381 + 5.97873i) q^{6} +(2.54741 + 18.3442i) q^{7} +(11.5626 + 1.83134i) q^{8} +(-14.0969 + 66.3205i) q^{9} +(-8.16134 - 2.32442i) q^{10} +(32.3675 - 6.87992i) q^{11} +(39.3687 + 60.6225i) q^{12} +(-26.8007 - 13.6556i) q^{13} +(-1.20215 - 14.0054i) q^{14} +(-47.8957 - 97.7562i) q^{15} +(49.4022 + 10.5008i) q^{16} +(-20.5510 - 53.5371i) q^{17} +(13.3193 - 49.7084i) q^{18} +(7.59237 + 72.2366i) q^{19} +(-78.5281 - 26.8822i) q^{20} +(123.198 - 131.679i) q^{21} +(-24.8066 + 3.92898i) q^{22} +(2.68398 - 51.2135i) q^{23} +(-56.9923 - 98.7136i) q^{24} +(112.545 + 54.3937i) q^{25} +(19.7715 + 11.4151i) q^{26} +(353.975 - 180.359i) q^{27} +(-4.57285 - 137.417i) q^{28} +(132.793 - 182.775i) q^{29} +(32.4199 + 75.9979i) q^{30} +(-109.713 + 246.419i) q^{31} +(-127.491 - 34.1611i) q^{32} +(-250.390 - 202.762i) q^{33} +(13.4502 + 41.3954i) q^{34} +(-18.0160 + 206.278i) q^{35} +(155.546 - 478.721i) q^{36} +(233.258 - 151.480i) q^{37} +(-2.88526 - 55.0541i) q^{38} +(60.8911 + 286.470i) q^{39} +(121.443 + 48.8133i) q^{40} +(-145.309 + 47.2138i) q^{41} +(-98.6098 + 94.9140i) q^{42} +(234.929 + 234.929i) q^{43} +(-244.316 + 25.6787i) q^{44} +(-319.136 + 687.600i) q^{45} +(-4.06871 + 38.7112i) q^{46} +(276.801 + 106.254i) q^{47} +(-223.253 - 438.159i) q^{48} +(-330.021 + 93.4606i) q^{49} +(-83.1439 - 45.6990i) q^{50} +(-279.179 + 483.552i) q^{51} +(187.279 + 121.621i) q^{52} +(407.159 - 329.711i) q^{53} +(-275.464 + 122.644i) q^{54} +(369.919 + 5.79445i) q^{55} +(-4.13976 + 216.773i) q^{56} +(500.077 - 500.077i) q^{57} +(-107.913 + 133.261i) q^{58} +(371.186 - 412.244i) q^{59} +(277.766 + 758.926i) q^{60} +(79.3325 - 71.4313i) q^{61} +(92.9464 - 182.418i) q^{62} +(-1252.51 - 89.6504i) q^{63} +(-288.995 - 93.9003i) q^{64} +(-258.004 - 215.705i) q^{65} +(181.731 + 163.632i) q^{66} +(-69.2096 + 26.5671i) q^{67} +(110.188 + 411.226i) q^{68} +(-403.968 + 293.500i) q^{69} +(21.8494 - 155.635i) q^{70} +(646.549 + 469.746i) q^{71} +(-284.452 + 741.024i) q^{72} +(382.526 - 589.039i) q^{73} +(-182.818 + 105.550i) q^{74} +(-278.028 - 1184.90i) q^{75} -539.232i q^{76} +(208.660 + 576.231i) q^{77} +(-34.7736 - 219.552i) q^{78} +(194.697 + 437.297i) q^{79} +(512.194 + 237.724i) q^{80} +(-1861.32 - 828.714i) q^{81} +(112.014 - 30.0141i) q^{82} +(67.8602 - 428.453i) q^{83} +(-1011.78 + 876.618i) q^{84} +(-90.3672 - 634.748i) q^{85} +(-168.735 - 187.399i) q^{86} +(-2196.70 + 115.124i) q^{87} +(386.853 - 20.2741i) q^{88} +(85.3692 + 94.8122i) q^{89} +(269.206 - 508.497i) q^{90} +(182.230 - 526.425i) q^{91} +(-59.5587 + 376.039i) q^{92} +(2536.86 - 679.749i) q^{93} +(-205.583 - 91.5316i) q^{94} +(-97.5241 + 806.201i) q^{95} +(522.706 + 1174.02i) q^{96} +(-35.2334 - 222.455i) q^{97} +(253.856 - 57.7300i) q^{98} +2243.61i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 928 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 24 q^{7} + 84 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 928 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 24 q^{7} + 84 q^{8} - 10 q^{9} - 96 q^{10} - 6 q^{11} - 72 q^{12} - 20 q^{14} - 368 q^{15} - 1670 q^{16} + 120 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} - 880 q^{22} + 296 q^{23} + 32 q^{25} - 48 q^{26} + 226 q^{28} - 200 q^{29} - 38 q^{30} - 18 q^{31} - 964 q^{32} - 1092 q^{33} + 288 q^{35} + 7400 q^{36} - 392 q^{37} + 5424 q^{38} + 2430 q^{39} + 2172 q^{40} - 2098 q^{42} + 1560 q^{43} - 10 q^{44} - 4224 q^{45} - 6 q^{46} + 96 q^{47} + 6232 q^{50} - 16 q^{51} - 8928 q^{52} - 2384 q^{53} - 30 q^{54} + 244 q^{56} + 1556 q^{57} + 640 q^{58} + 4890 q^{59} + 3676 q^{60} - 18 q^{61} + 224 q^{63} - 9700 q^{64} - 1116 q^{65} - 2610 q^{66} - 2404 q^{67} - 13614 q^{68} - 1700 q^{70} - 24 q^{71} - 518 q^{72} - 4200 q^{73} - 16104 q^{75} - 722 q^{77} - 356 q^{78} - 10 q^{79} + 6414 q^{80} - 6810 q^{81} + 1692 q^{82} + 20620 q^{84} + 2712 q^{85} - 6 q^{86} + 9102 q^{87} + 1650 q^{88} + 20370 q^{89} - 12 q^{91} + 1612 q^{92} - 4604 q^{93} - 30 q^{94} + 1652 q^{95} - 2610 q^{96} - 19478 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.757961 0.0397231i −0.267980 0.0140442i −0.0821272 0.996622i \(-0.526171\pi\)
−0.185853 + 0.982578i \(0.559505\pi\)
\(3\) −6.12747 7.56679i −1.17923 1.45623i −0.861286 0.508120i \(-0.830341\pi\)
−0.317945 0.948109i \(-0.602993\pi\)
\(4\) −7.38325 0.776011i −0.922906 0.0970013i
\(5\) 10.8983 + 2.49552i 0.974771 + 0.223206i
\(6\) 4.34381 + 5.97873i 0.295558 + 0.406801i
\(7\) 2.54741 + 18.3442i 0.137547 + 0.990495i
\(8\) 11.5626 + 1.83134i 0.511002 + 0.0809347i
\(9\) −14.0969 + 66.3205i −0.522106 + 2.45631i
\(10\) −8.16134 2.32442i −0.258084 0.0735046i
\(11\) 32.3675 6.87992i 0.887197 0.188580i 0.258297 0.966066i \(-0.416839\pi\)
0.628900 + 0.777486i \(0.283505\pi\)
\(12\) 39.3687 + 60.6225i 0.947063 + 1.45835i
\(13\) −26.8007 13.6556i −0.571783 0.291338i 0.144094 0.989564i \(-0.453973\pi\)
−0.715878 + 0.698226i \(0.753973\pi\)
\(14\) −1.20215 14.0054i −0.0229492 0.267364i
\(15\) −47.8957 97.7562i −0.824441 1.68270i
\(16\) 49.4022 + 10.5008i 0.771909 + 0.164074i
\(17\) −20.5510 53.5371i −0.293197 0.763804i −0.998492 0.0548904i \(-0.982519\pi\)
0.705296 0.708913i \(-0.250814\pi\)
\(18\) 13.3193 49.7084i 0.174411 0.650910i
\(19\) 7.59237 + 72.2366i 0.0916742 + 0.872221i 0.939639 + 0.342168i \(0.111161\pi\)
−0.847965 + 0.530053i \(0.822172\pi\)
\(20\) −78.5281 26.8822i −0.877971 0.300552i
\(21\) 123.198 131.679i 1.28019 1.36832i
\(22\) −24.8066 + 3.92898i −0.240399 + 0.0380755i
\(23\) 2.68398 51.2135i 0.0243326 0.464293i −0.959105 0.283049i \(-0.908654\pi\)
0.983438 0.181245i \(-0.0580125\pi\)
\(24\) −56.9923 98.7136i −0.484730 0.839576i
\(25\) 112.545 + 54.3937i 0.900358 + 0.435150i
\(26\) 19.7715 + 11.4151i 0.149135 + 0.0861030i
\(27\) 353.975 180.359i 2.52306 1.28556i
\(28\) −4.57285 137.417i −0.0308639 0.927476i
\(29\) 132.793 182.775i 0.850315 1.17036i −0.133478 0.991052i \(-0.542615\pi\)
0.983793 0.179306i \(-0.0573853\pi\)
\(30\) 32.4199 + 75.9979i 0.197301 + 0.462509i
\(31\) −109.713 + 246.419i −0.635644 + 1.42768i 0.252263 + 0.967659i \(0.418825\pi\)
−0.887908 + 0.460022i \(0.847842\pi\)
\(32\) −127.491 34.1611i −0.704294 0.188715i
\(33\) −250.390 202.762i −1.32083 1.06958i
\(34\) 13.4502 + 41.3954i 0.0678438 + 0.208802i
\(35\) −18.0160 + 206.278i −0.0870074 + 0.996208i
\(36\) 155.546 478.721i 0.720120 2.21630i
\(37\) 233.258 151.480i 1.03642 0.673057i 0.0899789 0.995944i \(-0.471320\pi\)
0.946438 + 0.322887i \(0.104653\pi\)
\(38\) −2.88526 55.0541i −0.0123171 0.235025i
\(39\) 60.8911 + 286.470i 0.250010 + 1.17620i
\(40\) 121.443 + 48.8133i 0.480045 + 0.192951i
\(41\) −145.309 + 47.2138i −0.553499 + 0.179843i −0.572394 0.819979i \(-0.693985\pi\)
0.0188948 + 0.999821i \(0.493985\pi\)
\(42\) −98.6098 + 94.9140i −0.362282 + 0.348704i
\(43\) 234.929 + 234.929i 0.833172 + 0.833172i 0.987949 0.154778i \(-0.0494661\pi\)
−0.154778 + 0.987949i \(0.549466\pi\)
\(44\) −244.316 + 25.6787i −0.837092 + 0.0879819i
\(45\) −319.136 + 687.600i −1.05720 + 2.27781i
\(46\) −4.06871 + 38.7112i −0.0130413 + 0.124080i
\(47\) 276.801 + 106.254i 0.859053 + 0.329760i 0.747713 0.664023i \(-0.231152\pi\)
0.111341 + 0.993782i \(0.464485\pi\)
\(48\) −223.253 438.159i −0.671330 1.31756i
\(49\) −330.021 + 93.4606i −0.962161 + 0.272480i
\(50\) −83.1439 45.6990i −0.235166 0.129256i
\(51\) −279.179 + 483.552i −0.766527 + 1.32766i
\(52\) 187.279 + 121.621i 0.499442 + 0.324341i
\(53\) 407.159 329.711i 1.05524 0.854515i 0.0655633 0.997848i \(-0.479116\pi\)
0.989674 + 0.143334i \(0.0457823\pi\)
\(54\) −275.464 + 122.644i −0.694183 + 0.309070i
\(55\) 369.919 + 5.79445i 0.906906 + 0.0142059i
\(56\) −4.13976 + 216.773i −0.00987855 + 0.517277i
\(57\) 500.077 500.077i 1.16205 1.16205i
\(58\) −107.913 + 133.261i −0.244304 + 0.301690i
\(59\) 371.186 412.244i 0.819055 0.909653i −0.178177 0.983998i \(-0.557020\pi\)
0.997233 + 0.0743452i \(0.0236867\pi\)
\(60\) 277.766 + 758.926i 0.597658 + 1.63295i
\(61\) 79.3325 71.4313i 0.166516 0.149932i −0.581660 0.813432i \(-0.697597\pi\)
0.748176 + 0.663500i \(0.230930\pi\)
\(62\) 92.9464 182.418i 0.190390 0.373662i
\(63\) −1252.51 89.6504i −2.50478 0.179284i
\(64\) −288.995 93.9003i −0.564444 0.183399i
\(65\) −258.004 215.705i −0.492329 0.411614i
\(66\) 181.731 + 163.632i 0.338933 + 0.305177i
\(67\) −69.2096 + 26.5671i −0.126198 + 0.0484431i −0.420648 0.907224i \(-0.638197\pi\)
0.294449 + 0.955667i \(0.404864\pi\)
\(68\) 110.188 + 411.226i 0.196503 + 0.733360i
\(69\) −403.968 + 293.500i −0.704811 + 0.512075i
\(70\) 21.8494 155.635i 0.0373072 0.265742i
\(71\) 646.549 + 469.746i 1.08072 + 0.785191i 0.977809 0.209499i \(-0.0671835\pi\)
0.102914 + 0.994690i \(0.467183\pi\)
\(72\) −284.452 + 741.024i −0.465598 + 1.21292i
\(73\) 382.526 589.039i 0.613306 0.944408i −0.386450 0.922310i \(-0.626299\pi\)
0.999756 0.0220979i \(-0.00703455\pi\)
\(74\) −182.818 + 105.550i −0.287191 + 0.165810i
\(75\) −278.028 1184.90i −0.428052 1.82427i
\(76\) 539.232i 0.813871i
\(77\) 208.660 + 576.231i 0.308819 + 0.852826i
\(78\) −34.7736 219.552i −0.0504787 0.318710i
\(79\) 194.697 + 437.297i 0.277280 + 0.622781i 0.997477 0.0709883i \(-0.0226153\pi\)
−0.720197 + 0.693770i \(0.755949\pi\)
\(80\) 512.194 + 237.724i 0.715813 + 0.332230i
\(81\) −1861.32 828.714i −2.55325 1.13678i
\(82\) 112.014 30.0141i 0.150852 0.0404208i
\(83\) 67.8602 428.453i 0.0897425 0.566612i −0.901314 0.433167i \(-0.857396\pi\)
0.991056 0.133445i \(-0.0426040\pi\)
\(84\) −1011.78 + 876.618i −1.31422 + 1.13865i
\(85\) −90.3672 634.748i −0.115314 0.809977i
\(86\) −168.735 187.399i −0.211572 0.234974i
\(87\) −2196.70 + 115.124i −2.70703 + 0.141869i
\(88\) 386.853 20.2741i 0.468622 0.0245594i
\(89\) 85.3692 + 94.8122i 0.101676 + 0.112922i 0.791835 0.610736i \(-0.209126\pi\)
−0.690159 + 0.723658i \(0.742459\pi\)
\(90\) 269.206 508.497i 0.315298 0.595559i
\(91\) 182.230 526.425i 0.209922 0.606421i
\(92\) −59.5587 + 376.039i −0.0674938 + 0.426139i
\(93\) 2536.86 679.749i 2.82860 0.757921i
\(94\) −205.583 91.5316i −0.225578 0.100434i
\(95\) −97.5241 + 806.201i −0.105324 + 0.870679i
\(96\) 522.706 + 1174.02i 0.555713 + 1.24815i
\(97\) −35.2334 222.455i −0.0368806 0.232855i 0.962362 0.271771i \(-0.0876094\pi\)
−0.999242 + 0.0389165i \(0.987609\pi\)
\(98\) 253.856 57.7300i 0.261667 0.0595063i
\(99\) 2243.61i 2.27769i
\(100\) −788.736 488.938i −0.788736 0.488938i
\(101\) −165.100 + 95.3206i −0.162654 + 0.0939085i −0.579118 0.815244i \(-0.696603\pi\)
0.416463 + 0.909153i \(0.363269\pi\)
\(102\) 230.815 355.424i 0.224060 0.345022i
\(103\) −337.721 + 879.792i −0.323074 + 0.841636i 0.671821 + 0.740714i \(0.265513\pi\)
−0.994894 + 0.100922i \(0.967821\pi\)
\(104\) −284.879 206.977i −0.268603 0.195151i
\(105\) 1671.25 1127.64i 1.55331 1.04806i
\(106\) −321.708 + 233.734i −0.294783 + 0.214173i
\(107\) 2.09282 + 7.81049i 0.00189084 + 0.00705672i 0.966865 0.255289i \(-0.0821706\pi\)
−0.964974 + 0.262346i \(0.915504\pi\)
\(108\) −2753.45 + 1056.95i −2.45325 + 0.941713i
\(109\) 1622.36 + 1460.78i 1.42564 + 1.28365i 0.902021 + 0.431692i \(0.142083\pi\)
0.523614 + 0.851955i \(0.324583\pi\)
\(110\) −280.154 19.0863i −0.242833 0.0165437i
\(111\) −2575.50 836.829i −2.20230 0.715570i
\(112\) −66.7806 + 932.995i −0.0563409 + 0.787141i
\(113\) 79.6542 156.330i 0.0663118 0.130144i −0.855471 0.517850i \(-0.826732\pi\)
0.921783 + 0.387706i \(0.126732\pi\)
\(114\) −398.904 + 359.174i −0.327726 + 0.295086i
\(115\) 157.055 551.441i 0.127352 0.447149i
\(116\) −1122.28 + 1246.42i −0.898287 + 0.997649i
\(117\) 1283.46 1584.94i 1.01415 1.25237i
\(118\) −297.720 + 297.720i −0.232266 + 0.232266i
\(119\) 929.746 513.373i 0.716216 0.395469i
\(120\) −374.776 1218.03i −0.285102 0.926589i
\(121\) −215.608 + 95.9948i −0.161989 + 0.0721223i
\(122\) −62.9685 + 50.9909i −0.0467287 + 0.0378401i
\(123\) 1247.63 + 810.223i 0.914596 + 0.593946i
\(124\) 1001.26 1734.23i 0.725127 1.25596i
\(125\) 1090.80 + 873.655i 0.780515 + 0.625137i
\(126\) 945.792 + 117.705i 0.668713 + 0.0832222i
\(127\) 276.611 + 542.881i 0.193270 + 0.379314i 0.967223 0.253930i \(-0.0817232\pi\)
−0.773953 + 0.633243i \(0.781723\pi\)
\(128\) 1201.09 + 461.055i 0.829394 + 0.318374i
\(129\) 338.139 3217.18i 0.230787 2.19579i
\(130\) 186.988 + 173.745i 0.126154 + 0.117218i
\(131\) −1438.62 + 151.205i −0.959484 + 0.100846i −0.571305 0.820738i \(-0.693563\pi\)
−0.388179 + 0.921584i \(0.626896\pi\)
\(132\) 1691.34 + 1691.34i 1.11525 + 1.11525i
\(133\) −1305.78 + 323.292i −0.851322 + 0.210774i
\(134\) 53.5135 17.3876i 0.0344990 0.0112094i
\(135\) 4307.81 1082.25i 2.74635 0.689967i
\(136\) −139.579 656.667i −0.0880058 0.414035i
\(137\) 65.3597 + 1247.14i 0.0407595 + 0.777738i 0.940185 + 0.340664i \(0.110652\pi\)
−0.899426 + 0.437074i \(0.856015\pi\)
\(138\) 317.851 206.415i 0.196067 0.127327i
\(139\) 343.028 1055.73i 0.209318 0.644216i −0.790190 0.612862i \(-0.790018\pi\)
0.999508 0.0313538i \(-0.00998185\pi\)
\(140\) 293.090 1509.02i 0.176933 0.910966i
\(141\) −892.086 2745.56i −0.532817 1.63984i
\(142\) −471.400 381.732i −0.278584 0.225593i
\(143\) −961.422 257.612i −0.562225 0.150648i
\(144\) −1392.83 + 3128.35i −0.806037 + 1.81039i
\(145\) 1903.34 1660.54i 1.09009 0.951036i
\(146\) −313.339 + 431.274i −0.177617 + 0.244469i
\(147\) 2729.39 + 1924.53i 1.53140 + 1.07981i
\(148\) −1839.75 + 937.401i −1.02180 + 0.520634i
\(149\) 2033.09 + 1173.80i 1.11783 + 0.645381i 0.940847 0.338832i \(-0.110032\pi\)
0.176986 + 0.984213i \(0.443365\pi\)
\(150\) 163.667 + 909.151i 0.0890889 + 0.494879i
\(151\) −418.122 724.208i −0.225339 0.390299i 0.731082 0.682290i \(-0.239016\pi\)
−0.956421 + 0.291991i \(0.905682\pi\)
\(152\) −44.5021 + 849.150i −0.0237473 + 0.453126i
\(153\) 3840.31 608.246i 2.02922 0.321397i
\(154\) −135.267 445.049i −0.0707799 0.232877i
\(155\) −1810.62 + 2411.75i −0.938275 + 1.24978i
\(156\) −227.270 2162.33i −0.116642 1.10978i
\(157\) 40.8011 152.272i 0.0207406 0.0774051i −0.954780 0.297314i \(-0.903909\pi\)
0.975520 + 0.219909i \(0.0705759\pi\)
\(158\) −130.202 339.188i −0.0655590 0.170787i
\(159\) −4989.71 1060.59i −2.48874 0.528998i
\(160\) −1304.18 690.453i −0.644403 0.341157i
\(161\) 946.309 81.2262i 0.463227 0.0397610i
\(162\) 1377.89 + 702.071i 0.668255 + 0.340493i
\(163\) −2237.00 3444.68i −1.07494 1.65526i −0.673091 0.739560i \(-0.735034\pi\)
−0.401851 0.915705i \(-0.631633\pi\)
\(164\) 1109.49 235.830i 0.528273 0.112288i
\(165\) −2222.82 2834.60i −1.04877 1.33742i
\(166\) −68.4549 + 322.055i −0.0320068 + 0.150580i
\(167\) 3020.72 + 478.435i 1.39970 + 0.221691i 0.810237 0.586102i \(-0.199338\pi\)
0.589466 + 0.807793i \(0.299338\pi\)
\(168\) 1665.64 1296.94i 0.764923 0.595604i
\(169\) −759.562 1045.45i −0.345727 0.475853i
\(170\) 43.2807 + 484.704i 0.0195264 + 0.218677i
\(171\) −4897.79 514.779i −2.19031 0.230211i
\(172\) −1552.23 1916.85i −0.688120 0.849758i
\(173\) 139.202 + 7.29526i 0.0611752 + 0.00320606i 0.0828990 0.996558i \(-0.473582\pi\)
−0.0217238 + 0.999764i \(0.506915\pi\)
\(174\) 1669.59 0.727421
\(175\) −711.113 + 2203.11i −0.307172 + 0.951654i
\(176\) 1671.27 0.715777
\(177\) −5393.79 282.676i −2.29052 0.120041i
\(178\) −60.9404 75.2551i −0.0256611 0.0316888i
\(179\) 528.037 + 55.4989i 0.220488 + 0.0231742i 0.214128 0.976806i \(-0.431309\pi\)
0.00635961 + 0.999980i \(0.497976\pi\)
\(180\) 2889.84 4829.07i 1.19664 1.99965i
\(181\) 1005.93 + 1384.54i 0.413093 + 0.568574i 0.963970 0.266013i \(-0.0857063\pi\)
−0.550876 + 0.834587i \(0.685706\pi\)
\(182\) −159.034 + 391.771i −0.0647715 + 0.159560i
\(183\) −1026.61 162.600i −0.414696 0.0656815i
\(184\) 124.823 587.248i 0.0500114 0.235285i
\(185\) 2920.13 1068.77i 1.16050 0.424742i
\(186\) −1949.84 + 414.452i −0.768652 + 0.163382i
\(187\) −1033.52 1591.47i −0.404161 0.622353i
\(188\) −1961.23 999.298i −0.760838 0.387667i
\(189\) 4210.27 + 6033.95i 1.62038 + 2.32225i
\(190\) 105.944 607.195i 0.0404527 0.231845i
\(191\) 2626.41 + 558.262i 0.994977 + 0.211489i 0.676501 0.736442i \(-0.263495\pi\)
0.318477 + 0.947931i \(0.396829\pi\)
\(192\) 1060.29 + 2762.14i 0.398539 + 1.03823i
\(193\) 435.257 1624.40i 0.162334 0.605839i −0.836031 0.548682i \(-0.815130\pi\)
0.998365 0.0571572i \(-0.0182036\pi\)
\(194\) 17.8690 + 170.012i 0.00661298 + 0.0629183i
\(195\) −51.2840 + 3273.98i −0.0188335 + 1.20233i
\(196\) 2509.16 433.943i 0.914415 0.158142i
\(197\) −3900.69 + 617.809i −1.41073 + 0.223437i −0.814865 0.579651i \(-0.803189\pi\)
−0.595860 + 0.803088i \(0.703189\pi\)
\(198\) 89.1232 1700.57i 0.0319884 0.610376i
\(199\) 1370.04 + 2372.97i 0.488037 + 0.845304i 0.999905 0.0137594i \(-0.00437988\pi\)
−0.511869 + 0.859064i \(0.671047\pi\)
\(200\) 1201.70 + 835.043i 0.424866 + 0.295232i
\(201\) 625.107 + 360.906i 0.219361 + 0.126648i
\(202\) 128.926 65.6911i 0.0449069 0.0228812i
\(203\) 3691.14 + 1970.39i 1.27619 + 0.681253i
\(204\) 2436.49 3353.54i 0.836217 1.15095i
\(205\) −1701.44 + 151.927i −0.579677 + 0.0517612i
\(206\) 290.927 653.433i 0.0983974 0.221004i
\(207\) 3358.67 + 899.952i 1.12775 + 0.302179i
\(208\) −1180.62 956.047i −0.393564 0.318702i
\(209\) 742.728 + 2285.88i 0.245816 + 0.756544i
\(210\) −1311.54 + 788.317i −0.430974 + 0.259043i
\(211\) −1551.01 + 4773.53i −0.506048 + 1.55746i 0.292954 + 0.956127i \(0.405362\pi\)
−0.799002 + 0.601329i \(0.794638\pi\)
\(212\) −3262.02 + 2118.38i −1.05677 + 0.686277i
\(213\) −407.243 7770.65i −0.131004 2.49970i
\(214\) −1.27602 6.00318i −0.000407601 0.00191761i
\(215\) 1974.05 + 3146.59i 0.626183 + 0.998121i
\(216\) 4423.19 1437.18i 1.39333 0.452721i
\(217\) −4799.84 1384.86i −1.50154 0.433229i
\(218\) −1171.66 1171.66i −0.364014 0.364014i
\(219\) −6801.05 + 714.819i −2.09850 + 0.220562i
\(220\) −2726.71 329.843i −0.835611 0.101082i
\(221\) −180.303 + 1715.47i −0.0548801 + 0.522150i
\(222\) 1918.88 + 736.591i 0.580122 + 0.222688i
\(223\) 46.3331 + 90.9338i 0.0139134 + 0.0273066i 0.897859 0.440284i \(-0.145122\pi\)
−0.883945 + 0.467591i \(0.845122\pi\)
\(224\) 301.887 2425.74i 0.0900476 0.723557i
\(225\) −5193.95 + 6697.24i −1.53895 + 1.98437i
\(226\) −66.5847 + 115.328i −0.0195980 + 0.0339447i
\(227\) 3503.20 + 2275.01i 1.02430 + 0.665187i 0.943442 0.331538i \(-0.107568\pi\)
0.0808570 + 0.996726i \(0.474234\pi\)
\(228\) −4080.26 + 3304.13i −1.18518 + 0.959742i
\(229\) −1988.06 + 885.143i −0.573690 + 0.255423i −0.673011 0.739632i \(-0.734999\pi\)
0.0993214 + 0.995055i \(0.468333\pi\)
\(230\) −140.947 + 411.732i −0.0404076 + 0.118038i
\(231\) 3081.66 5109.72i 0.877741 1.45539i
\(232\) 1870.17 1870.17i 0.529235 0.529235i
\(233\) 1853.04 2288.32i 0.521016 0.643402i −0.446927 0.894571i \(-0.647482\pi\)
0.967943 + 0.251169i \(0.0808149\pi\)
\(234\) −1035.77 + 1150.34i −0.289360 + 0.321367i
\(235\) 2751.49 + 1848.74i 0.763776 + 0.513186i
\(236\) −3060.46 + 2755.65i −0.844149 + 0.760075i
\(237\) 2115.93 4152.75i 0.579935 1.13819i
\(238\) −725.104 + 352.185i −0.197485 + 0.0959190i
\(239\) −864.320 280.835i −0.233926 0.0760070i 0.189708 0.981840i \(-0.439246\pi\)
−0.423634 + 0.905833i \(0.639246\pi\)
\(240\) −1339.64 5332.31i −0.360306 1.43416i
\(241\) −3959.80 3565.42i −1.05839 0.952982i −0.0594186 0.998233i \(-0.518925\pi\)
−0.998976 + 0.0452507i \(0.985591\pi\)
\(242\) 167.236 64.1957i 0.0444228 0.0170523i
\(243\) 2358.28 + 8801.20i 0.622566 + 2.32345i
\(244\) −641.163 + 465.832i −0.168222 + 0.122221i
\(245\) −3829.90 + 194.984i −0.998707 + 0.0508452i
\(246\) −913.473 663.677i −0.236752 0.172010i
\(247\) 782.956 2039.67i 0.201694 0.525430i
\(248\) −1719.85 + 2648.33i −0.440364 + 0.678101i
\(249\) −3657.82 + 2111.85i −0.930944 + 0.537481i
\(250\) −792.082 705.527i −0.200383 0.178486i
\(251\) 112.858i 0.0283806i −0.999899 0.0141903i \(-0.995483\pi\)
0.999899 0.0141903i \(-0.00451706\pi\)
\(252\) 9178.01 + 1633.87i 2.29429 + 0.408429i
\(253\) −265.471 1676.12i −0.0659684 0.416508i
\(254\) −188.096 422.470i −0.0464653 0.104363i
\(255\) −4249.28 + 4573.19i −1.04353 + 1.12307i
\(256\) 1328.71 + 591.580i 0.324392 + 0.144429i
\(257\) −6633.08 + 1777.33i −1.60996 + 0.431388i −0.948031 0.318177i \(-0.896929\pi\)
−0.661930 + 0.749565i \(0.730263\pi\)
\(258\) −384.093 + 2425.07i −0.0926844 + 0.585186i
\(259\) 3372.98 + 3893.06i 0.809216 + 0.933988i
\(260\) 1737.52 + 1792.82i 0.414447 + 0.427637i
\(261\) 10249.7 + 11383.5i 2.43081 + 2.69969i
\(262\) 1096.42 57.4610i 0.258539 0.0135494i
\(263\) −2342.54 + 122.768i −0.549230 + 0.0287839i −0.324933 0.945737i \(-0.605342\pi\)
−0.224297 + 0.974521i \(0.572008\pi\)
\(264\) −2523.84 2803.01i −0.588377 0.653459i
\(265\) 5260.13 2577.21i 1.21935 0.597421i
\(266\) 1002.58 193.173i 0.231097 0.0445271i
\(267\) 194.326 1226.93i 0.0445415 0.281224i
\(268\) 531.608 142.444i 0.121168 0.0324670i
\(269\) −2774.22 1235.16i −0.628800 0.279960i 0.0674906 0.997720i \(-0.478501\pi\)
−0.696290 + 0.717760i \(0.745167\pi\)
\(270\) −3308.14 + 649.187i −0.745656 + 0.146327i
\(271\) −545.495 1225.20i −0.122275 0.274634i 0.842029 0.539432i \(-0.181361\pi\)
−0.964304 + 0.264799i \(0.914694\pi\)
\(272\) −453.083 2860.65i −0.101001 0.637693i
\(273\) −5099.95 + 1846.76i −1.13063 + 0.409417i
\(274\) 947.878i 0.208991i
\(275\) 4017.02 + 986.289i 0.880855 + 0.216274i
\(276\) 3210.35 1853.50i 0.700147 0.404230i
\(277\) 1105.47 1702.28i 0.239789 0.369242i −0.698203 0.715900i \(-0.746017\pi\)
0.937992 + 0.346657i \(0.112683\pi\)
\(278\) −301.939 + 786.578i −0.0651406 + 0.169697i
\(279\) −14796.0 10749.9i −3.17496 2.30674i
\(280\) −586.078 + 2352.12i −0.125089 + 0.502022i
\(281\) −908.221 + 659.861i −0.192811 + 0.140086i −0.680003 0.733210i \(-0.738021\pi\)
0.487191 + 0.873295i \(0.338021\pi\)
\(282\) 567.105 + 2116.46i 0.119754 + 0.446927i
\(283\) −7513.79 + 2884.28i −1.57826 + 0.605839i −0.980619 0.195922i \(-0.937230\pi\)
−0.597645 + 0.801761i \(0.703897\pi\)
\(284\) −4409.11 3969.98i −0.921241 0.829489i
\(285\) 6697.93 4202.02i 1.39211 0.873356i
\(286\) 718.487 + 233.451i 0.148549 + 0.0482665i
\(287\) −1236.26 2545.31i −0.254266 0.523501i
\(288\) 4062.80 7973.69i 0.831259 1.63144i
\(289\) 1207.19 1086.96i 0.245713 0.221241i
\(290\) −1508.62 + 1183.02i −0.305480 + 0.239549i
\(291\) −1467.38 + 1629.69i −0.295599 + 0.328296i
\(292\) −3281.39 + 4052.18i −0.657633 + 0.812109i
\(293\) 1883.35 1883.35i 0.375516 0.375516i −0.493965 0.869482i \(-0.664453\pi\)
0.869482 + 0.493965i \(0.164453\pi\)
\(294\) −1992.32 1567.14i −0.395220 0.310875i
\(295\) 5074.05 3566.44i 1.00143 0.703886i
\(296\) 2974.49 1324.33i 0.584084 0.260051i
\(297\) 10216.4 8273.10i 1.99602 1.61634i
\(298\) −1494.38 970.459i −0.290493 0.188648i
\(299\) −771.286 + 1335.91i −0.149179 + 0.258386i
\(300\) 1133.26 + 8964.15i 0.218096 + 1.72515i
\(301\) −3711.13 + 4908.06i −0.710652 + 0.939853i
\(302\) 288.152 + 565.531i 0.0549050 + 0.107757i
\(303\) 1732.92 + 665.204i 0.328559 + 0.126122i
\(304\) −383.459 + 3648.37i −0.0723451 + 0.688317i
\(305\) 1042.85 580.502i 0.195781 0.108982i
\(306\) −2934.97 + 308.478i −0.548304 + 0.0576291i
\(307\) 339.385 + 339.385i 0.0630936 + 0.0630936i 0.737950 0.674856i \(-0.235794\pi\)
−0.674856 + 0.737950i \(0.735794\pi\)
\(308\) −1093.43 4416.38i −0.202285 0.817034i
\(309\) 8726.57 2835.44i 1.60659 0.522014i
\(310\) 1468.18 1756.09i 0.268991 0.321739i
\(311\) −1695.66 7977.46i −0.309171 1.45453i −0.808692 0.588233i \(-0.799824\pi\)
0.499521 0.866302i \(-0.333509\pi\)
\(312\) 179.437 + 3423.86i 0.0325597 + 0.621276i
\(313\) −3612.40 + 2345.92i −0.652348 + 0.423640i −0.827935 0.560824i \(-0.810484\pi\)
0.175587 + 0.984464i \(0.443818\pi\)
\(314\) −36.9743 + 113.795i −0.00664517 + 0.0204517i
\(315\) −13426.5 4102.69i −2.40157 0.733843i
\(316\) −1098.15 3379.76i −0.195493 0.601665i
\(317\) −7083.27 5735.92i −1.25500 1.01628i −0.998766 0.0496688i \(-0.984183\pi\)
−0.256238 0.966614i \(-0.582483\pi\)
\(318\) 3739.87 + 1002.10i 0.659502 + 0.176713i
\(319\) 3040.72 6829.56i 0.533691 1.19869i
\(320\) −2915.22 1744.55i −0.509268 0.304759i
\(321\) 46.2767 63.6944i 0.00804646 0.0110750i
\(322\) −720.492 + 23.9760i −0.124694 + 0.00414947i
\(323\) 3711.31 1891.01i 0.639327 0.325754i
\(324\) 13099.5 + 7563.01i 2.24614 + 1.29681i
\(325\) −2273.50 2994.66i −0.388034 0.511120i
\(326\) 1558.73 + 2699.79i 0.264816 + 0.458674i
\(327\) 1112.46 21227.0i 0.188132 3.58977i
\(328\) −1766.62 + 279.805i −0.297395 + 0.0471027i
\(329\) −1244.02 + 5348.36i −0.208465 + 0.896246i
\(330\) 1572.21 + 2236.82i 0.262265 + 0.373129i
\(331\) 793.484 + 7549.50i 0.131764 + 1.25365i 0.837999 + 0.545672i \(0.183726\pi\)
−0.706235 + 0.707977i \(0.749608\pi\)
\(332\) −833.513 + 3110.71i −0.137786 + 0.514224i
\(333\) 6758.00 + 17605.2i 1.11212 + 2.89717i
\(334\) −2270.58 482.628i −0.371979 0.0790665i
\(335\) −820.564 + 116.821i −0.133827 + 0.0190526i
\(336\) 7468.97 5211.58i 1.21270 0.846175i
\(337\) 6561.45 + 3343.23i 1.06061 + 0.540407i 0.895130 0.445806i \(-0.147083\pi\)
0.165479 + 0.986213i \(0.447083\pi\)
\(338\) 534.190 + 822.581i 0.0859649 + 0.132374i
\(339\) −1671.00 + 355.181i −0.267717 + 0.0569050i
\(340\) 174.633 + 4756.63i 0.0278552 + 0.758719i
\(341\) −1855.78 + 8730.77i −0.294710 + 1.38650i
\(342\) 3691.89 + 584.738i 0.583727 + 0.0924532i
\(343\) −2555.16 5815.91i −0.402233 0.915537i
\(344\) 2286.17 + 3146.64i 0.358319 + 0.493184i
\(345\) −5134.98 + 2190.53i −0.801328 + 0.341838i
\(346\) −105.220 11.0590i −0.0163487 0.00171832i
\(347\) 3559.06 + 4395.07i 0.550606 + 0.679941i 0.974142 0.225938i \(-0.0725447\pi\)
−0.423536 + 0.905879i \(0.639211\pi\)
\(348\) 16308.1 + 854.674i 2.51209 + 0.131653i
\(349\) 9481.19 1.45420 0.727101 0.686530i \(-0.240867\pi\)
0.727101 + 0.686530i \(0.240867\pi\)
\(350\) 626.510 1641.62i 0.0956811 0.250710i
\(351\) −11949.7 −1.81717
\(352\) −4361.58 228.581i −0.660435 0.0346119i
\(353\) 3008.66 + 3715.39i 0.453640 + 0.560199i 0.951734 0.306924i \(-0.0992998\pi\)
−0.498094 + 0.867123i \(0.665966\pi\)
\(354\) 4077.05 + 428.516i 0.612127 + 0.0643371i
\(355\) 5874.01 + 6732.89i 0.878198 + 1.00661i
\(356\) −556.727 766.269i −0.0828834 0.114079i
\(357\) −9581.57 3889.51i −1.42048 0.576624i
\(358\) −398.027 63.0412i −0.0587608 0.00930679i
\(359\) −2156.65 + 10146.2i −0.317057 + 1.49164i 0.474343 + 0.880340i \(0.342686\pi\)
−0.791401 + 0.611298i \(0.790648\pi\)
\(360\) −4949.28 + 7366.03i −0.724583 + 1.07840i
\(361\) 1548.64 329.173i 0.225782 0.0479914i
\(362\) −707.455 1089.39i −0.102716 0.158168i
\(363\) 2047.50 + 1043.25i 0.296049 + 0.150845i
\(364\) −1753.96 + 3745.31i −0.252562 + 0.539307i
\(365\) 5638.84 5464.91i 0.808631 0.783688i
\(366\) 771.674 + 164.024i 0.110208 + 0.0234254i
\(367\) 281.499 + 733.329i 0.0400384 + 0.104304i 0.952142 0.305657i \(-0.0988759\pi\)
−0.912103 + 0.409960i \(0.865543\pi\)
\(368\) 670.375 2501.87i 0.0949612 0.354400i
\(369\) −1082.84 10302.5i −0.152765 1.45347i
\(370\) −2255.80 + 694.087i −0.316956 + 0.0975239i
\(371\) 7085.49 + 6629.11i 0.991538 + 0.927672i
\(372\) −19257.7 + 3050.13i −2.68405 + 0.425112i
\(373\) 152.911 2917.72i 0.0212264 0.405024i −0.967267 0.253761i \(-0.918332\pi\)
0.988493 0.151263i \(-0.0483342\pi\)
\(374\) 720.146 + 1247.33i 0.0995665 + 0.172454i
\(375\) −73.0905 13607.2i −0.0100650 1.87379i
\(376\) 3005.96 + 1735.49i 0.412289 + 0.238035i
\(377\) −6054.87 + 3085.11i −0.827166 + 0.421462i
\(378\) −2951.54 4740.75i −0.401616 0.645073i
\(379\) 6069.38 8353.79i 0.822594 1.13220i −0.166662 0.986014i \(-0.553299\pi\)
0.989257 0.146190i \(-0.0467011\pi\)
\(380\) 1345.66 5876.70i 0.181661 0.793338i
\(381\) 2412.94 5419.54i 0.324458 0.728744i
\(382\) −1968.54 527.470i −0.263664 0.0706485i
\(383\) −1293.05 1047.09i −0.172511 0.139697i 0.539177 0.842193i \(-0.318735\pi\)
−0.711688 + 0.702496i \(0.752069\pi\)
\(384\) −3870.93 11913.5i −0.514421 1.58322i
\(385\) 836.041 + 6800.64i 0.110672 + 0.900240i
\(386\) −394.434 + 1213.94i −0.0520108 + 0.160073i
\(387\) −18892.4 + 12268.9i −2.48154 + 1.61153i
\(388\) 87.5096 + 1669.78i 0.0114501 + 0.218480i
\(389\) −555.132 2611.69i −0.0723556 0.340406i 0.927048 0.374943i \(-0.122338\pi\)
−0.999403 + 0.0345368i \(0.989004\pi\)
\(390\) 168.924 2479.51i 0.0219328 0.321936i
\(391\) −2796.98 + 908.795i −0.361763 + 0.117544i
\(392\) −3987.08 + 476.269i −0.513719 + 0.0613654i
\(393\) 9959.20 + 9959.20i 1.27831 + 1.27831i
\(394\) 2981.12 313.328i 0.381184 0.0400640i
\(395\) 1030.58 + 5251.65i 0.131276 + 0.668960i
\(396\) 1741.07 16565.2i 0.220939 2.10210i
\(397\) 1363.46 + 523.384i 0.172368 + 0.0661660i 0.443022 0.896511i \(-0.353906\pi\)
−0.270654 + 0.962677i \(0.587240\pi\)
\(398\) −944.173 1853.04i −0.118912 0.233379i
\(399\) 10447.4 + 7899.62i 1.31084 + 0.991167i
\(400\) 4988.78 + 3868.98i 0.623598 + 0.483622i
\(401\) 1405.44 2434.29i 0.175023 0.303149i −0.765146 0.643857i \(-0.777333\pi\)
0.940169 + 0.340708i \(0.110667\pi\)
\(402\) −459.470 298.384i −0.0570057 0.0370200i
\(403\) 6305.38 5106.00i 0.779388 0.631136i
\(404\) 1292.95 575.656i 0.159224 0.0708910i
\(405\) −18217.1 13676.5i −2.23510 1.67800i
\(406\) −2719.47 1640.10i −0.332426 0.200485i
\(407\) 6507.81 6507.81i 0.792581 0.792581i
\(408\) −4113.60 + 5079.87i −0.499150 + 0.616399i
\(409\) 6123.27 6800.58i 0.740284 0.822169i −0.248949 0.968517i \(-0.580085\pi\)
0.989233 + 0.146348i \(0.0467519\pi\)
\(410\) 1295.66 47.5683i 0.156069 0.00572983i
\(411\) 9036.33 8136.35i 1.08450 0.976488i
\(412\) 3176.20 6233.65i 0.379807 0.745412i
\(413\) 8507.85 + 5758.96i 1.01367 + 0.686150i
\(414\) −2509.99 815.545i −0.297969 0.0968161i
\(415\) 1808.77 4500.05i 0.213950 0.532286i
\(416\) 2950.35 + 2656.51i 0.347724 + 0.313092i
\(417\) −10090.4 + 3873.34i −1.18496 + 0.454864i
\(418\) −472.157 1762.11i −0.0552487 0.206191i
\(419\) 6860.13 4984.18i 0.799855 0.581129i −0.111017 0.993819i \(-0.535411\pi\)
0.910872 + 0.412690i \(0.135411\pi\)
\(420\) −13214.3 + 7028.70i −1.53522 + 0.816584i
\(421\) 11332.0 + 8233.16i 1.31184 + 0.953111i 0.999996 + 0.00297904i \(0.000948258\pi\)
0.311849 + 0.950132i \(0.399052\pi\)
\(422\) 1365.23 3556.54i 0.157484 0.410259i
\(423\) −10948.8 + 16859.7i −1.25851 + 1.93794i
\(424\) 5311.65 3066.68i 0.608388 0.351253i
\(425\) 599.179 7143.17i 0.0683870 0.815281i
\(426\) 5906.03i 0.671709i
\(427\) 1512.45 + 1273.33i 0.171411 + 0.144311i
\(428\) −9.39075 59.2909i −0.00106056 0.00669610i
\(429\) 3941.78 + 8853.39i 0.443615 + 0.996377i
\(430\) −1371.26 2463.41i −0.153786 0.276270i
\(431\) 10705.3 + 4766.33i 1.19642 + 0.532682i 0.905616 0.424100i \(-0.139409\pi\)
0.290808 + 0.956782i \(0.406076\pi\)
\(432\) 19381.1 5193.14i 2.15850 0.578368i
\(433\) −1131.82 + 7146.06i −0.125617 + 0.793113i 0.841775 + 0.539828i \(0.181511\pi\)
−0.967392 + 0.253284i \(0.918489\pi\)
\(434\) 3583.08 + 1240.34i 0.396298 + 0.137185i
\(435\) −24227.6 4227.26i −2.67040 0.465935i
\(436\) −10844.7 12044.3i −1.19121 1.32297i
\(437\) 3719.86 194.950i 0.407197 0.0213403i
\(438\) 5183.33 271.647i 0.565454 0.0296342i
\(439\) −6229.67 6918.75i −0.677280 0.752196i 0.302308 0.953210i \(-0.402243\pi\)
−0.979588 + 0.201014i \(0.935576\pi\)
\(440\) 4266.63 + 744.447i 0.462281 + 0.0806594i
\(441\) −1546.09 23204.7i −0.166946 2.50563i
\(442\) 204.807 1293.10i 0.0220400 0.139155i
\(443\) −5377.64 + 1440.94i −0.576748 + 0.154539i −0.535390 0.844605i \(-0.679835\pi\)
−0.0413586 + 0.999144i \(0.513169\pi\)
\(444\) 18366.1 + 8177.13i 1.96310 + 0.874030i
\(445\) 693.772 + 1246.33i 0.0739055 + 0.132768i
\(446\) −31.5065 70.7648i −0.00334501 0.00751303i
\(447\) −3575.75 22576.4i −0.378361 2.38887i
\(448\) 986.338 5540.60i 0.104018 0.584305i
\(449\) 11421.2i 1.20044i −0.799834 0.600222i \(-0.795079\pi\)
0.799834 0.600222i \(-0.204921\pi\)
\(450\) 4202.84 4869.93i 0.440276 0.510157i
\(451\) −4378.46 + 2527.91i −0.457148 + 0.263935i
\(452\) −709.420 + 1092.41i −0.0738237 + 0.113679i
\(453\) −2917.90 + 7601.40i −0.302638 + 0.788399i
\(454\) −2564.92 1863.53i −0.265149 0.192642i
\(455\) 3299.70 5282.37i 0.339983 0.544266i
\(456\) 6698.02 4866.40i 0.687859 0.499759i
\(457\) 779.714 + 2909.93i 0.0798107 + 0.297857i 0.994281 0.106795i \(-0.0340590\pi\)
−0.914470 + 0.404653i \(0.867392\pi\)
\(458\) 1542.04 591.932i 0.157325 0.0603912i
\(459\) −16930.5 15244.3i −1.72167 1.55020i
\(460\) −1587.50 + 3949.55i −0.160908 + 0.400323i
\(461\) −13045.9 4238.86i −1.31802 0.428251i −0.436206 0.899847i \(-0.643678\pi\)
−0.881815 + 0.471596i \(0.843678\pi\)
\(462\) −2538.75 + 3750.56i −0.255657 + 0.377688i
\(463\) −6104.68 + 11981.1i −0.612762 + 1.20261i 0.351132 + 0.936326i \(0.385797\pi\)
−0.963894 + 0.266287i \(0.914203\pi\)
\(464\) 8479.56 7635.03i 0.848392 0.763895i
\(465\) 29343.7 1077.31i 2.92641 0.107439i
\(466\) −1495.43 + 1660.85i −0.148658 + 0.165101i
\(467\) −11611.3 + 14338.8i −1.15055 + 1.42082i −0.260196 + 0.965556i \(0.583787\pi\)
−0.890358 + 0.455261i \(0.849546\pi\)
\(468\) −10706.0 + 10706.0i −1.05745 + 1.05745i
\(469\) −663.658 1201.92i −0.0653409 0.118336i
\(470\) −2012.08 1510.57i −0.197469 0.148250i
\(471\) −1402.22 + 624.306i −0.137178 + 0.0610754i
\(472\) 5046.85 4086.86i 0.492161 0.398544i
\(473\) 9220.37 + 5987.78i 0.896306 + 0.582068i
\(474\) −1768.75 + 3063.57i −0.171396 + 0.296866i
\(475\) −3074.73 + 8542.82i −0.297007 + 0.825203i
\(476\) −7262.93 + 3068.87i −0.699361 + 0.295507i
\(477\) 16126.9 + 31650.9i 1.54801 + 3.03814i
\(478\) 643.966 + 247.195i 0.0616199 + 0.0236537i
\(479\) 1053.20 10020.5i 0.100463 0.955841i −0.821930 0.569588i \(-0.807103\pi\)
0.922393 0.386253i \(-0.126231\pi\)
\(480\) 2766.81 + 14099.2i 0.263098 + 1.34070i
\(481\) −8320.04 + 874.471i −0.788693 + 0.0828949i
\(482\) 2859.74 + 2859.74i 0.270244 + 0.270244i
\(483\) −6413.10 6662.81i −0.604153 0.627678i
\(484\) 1666.38 541.439i 0.156497 0.0508489i
\(485\) 171.158 2512.30i 0.0160245 0.235212i
\(486\) −1437.87 6764.65i −0.134204 0.631380i
\(487\) 165.325 + 3154.59i 0.0153831 + 0.293528i 0.995478 + 0.0949962i \(0.0302839\pi\)
−0.980094 + 0.198532i \(0.936383\pi\)
\(488\) 1048.11 680.650i 0.0972248 0.0631385i
\(489\) −12358.0 + 38034.1i −1.14284 + 3.51730i
\(490\) 2910.66 + 4.34484i 0.268347 + 0.000400572i
\(491\) −1224.40 3768.31i −0.112538 0.346357i 0.878887 0.477029i \(-0.158287\pi\)
−0.991426 + 0.130672i \(0.958287\pi\)
\(492\) −8582.84 6950.25i −0.786473 0.636873i
\(493\) −12514.3 3353.19i −1.14323 0.306329i
\(494\) −674.472 + 1514.89i −0.0614290 + 0.137972i
\(495\) −5598.98 + 24451.5i −0.508395 + 2.22023i
\(496\) −8007.63 + 11021.6i −0.724906 + 0.997747i
\(497\) −6970.09 + 13057.1i −0.629077 + 1.17845i
\(498\) 2856.38 1455.40i 0.257023 0.130960i
\(499\) −14393.6 8310.15i −1.29127 0.745518i −0.312394 0.949953i \(-0.601131\pi\)
−0.978880 + 0.204435i \(0.934464\pi\)
\(500\) −7375.70 7296.89i −0.659703 0.652654i
\(501\) −14889.1 25788.7i −1.32774 2.29971i
\(502\) −4.48306 + 85.5419i −0.000398583 + 0.00760542i
\(503\) −7172.93 + 1136.08i −0.635836 + 0.100706i −0.466027 0.884771i \(-0.654315\pi\)
−0.169809 + 0.985477i \(0.554315\pi\)
\(504\) −14318.1 3330.37i −1.26544 0.294338i
\(505\) −2037.18 + 626.819i −0.179512 + 0.0552339i
\(506\) 134.636 + 1280.98i 0.0118287 + 0.112542i
\(507\) −3256.49 + 12153.4i −0.285258 + 1.06460i
\(508\) −1621.01 4222.87i −0.141576 0.368818i
\(509\) 4342.11 + 922.944i 0.378115 + 0.0803709i 0.393049 0.919518i \(-0.371420\pi\)
−0.0149336 + 0.999888i \(0.504754\pi\)
\(510\) 3402.45 3297.50i 0.295418 0.286306i
\(511\) 11779.9 + 5516.63i 1.01979 + 0.477576i
\(512\) −10154.1 5173.80i −0.876473 0.446585i
\(513\) 15716.0 + 24200.6i 1.35259 + 2.08281i
\(514\) 5098.22 1083.66i 0.437496 0.0929926i
\(515\) −5876.11 + 8745.43i −0.502781 + 0.748291i
\(516\) −4993.13 + 23490.8i −0.425989 + 2.00412i
\(517\) 9690.36 + 1534.80i 0.824335 + 0.130562i
\(518\) −2401.95 3084.77i −0.203736 0.261655i
\(519\) −797.752 1098.01i −0.0674710 0.0928659i
\(520\) −2588.18 2966.61i −0.218267 0.250182i
\(521\) −610.844 64.2023i −0.0513658 0.00539876i 0.0788107 0.996890i \(-0.474888\pi\)
−0.130176 + 0.991491i \(0.541554\pi\)
\(522\) −7316.71 9035.38i −0.613494 0.757602i
\(523\) −2488.84 130.434i −0.208086 0.0109053i −0.0519921 0.998647i \(-0.516557\pi\)
−0.156094 + 0.987742i \(0.549890\pi\)
\(524\) 10739.0 0.895296
\(525\) 21027.8 8118.64i 1.74805 0.674907i
\(526\) 1780.43 0.147587
\(527\) 15447.3 + 809.556i 1.27684 + 0.0669162i
\(528\) −10240.6 12646.1i −0.844066 1.04233i
\(529\) 9484.73 + 996.885i 0.779546 + 0.0819335i
\(530\) −4089.35 + 1744.47i −0.335151 + 0.142972i
\(531\) 22107.6 + 30428.6i 1.80676 + 2.48679i
\(532\) 9891.80 1373.65i 0.806135 0.111946i
\(533\) 4539.12 + 718.927i 0.368877 + 0.0584243i
\(534\) −196.029 + 922.246i −0.0158858 + 0.0747368i
\(535\) 3.31683 + 90.3436i 0.000268036 + 0.00730073i
\(536\) −848.899 + 180.439i −0.0684083 + 0.0145406i
\(537\) −2815.58 4335.61i −0.226259 0.348408i
\(538\) 2053.69 + 1046.41i 0.164574 + 0.0838545i
\(539\) −10039.0 + 5295.61i −0.802243 + 0.423187i
\(540\) −32645.5 + 4647.64i −2.60155 + 0.370375i
\(541\) 289.493 + 61.5336i 0.0230061 + 0.00489009i 0.219400 0.975635i \(-0.429590\pi\)
−0.196394 + 0.980525i \(0.562923\pi\)
\(542\) 364.795 + 950.325i 0.0289102 + 0.0753135i
\(543\) 4312.74 16095.3i 0.340842 1.27204i
\(544\) 791.176 + 7527.54i 0.0623555 + 0.593273i
\(545\) 14035.5 + 19968.7i 1.10315 + 1.56947i
\(546\) 3938.93 1197.18i 0.308737 0.0938365i
\(547\) 3615.72 572.674i 0.282627 0.0447637i −0.0135115 0.999909i \(-0.504301\pi\)
0.296139 + 0.955145i \(0.404301\pi\)
\(548\) 485.225 9258.64i 0.0378244 0.721733i
\(549\) 3619.02 + 6268.33i 0.281341 + 0.487297i
\(550\) −3005.56 907.137i −0.233014 0.0703281i
\(551\) 14211.2 + 8204.85i 1.09876 + 0.634371i
\(552\) −5208.43 + 2653.83i −0.401604 + 0.204628i
\(553\) −7525.90 + 4685.54i −0.578723 + 0.360306i
\(554\) −905.527 + 1246.35i −0.0694443 + 0.0955819i
\(555\) −25980.1 15547.2i −1.98702 1.18908i
\(556\) −3351.92 + 7528.53i −0.255671 + 0.574246i
\(557\) −23756.6 6365.56i −1.80718 0.484232i −0.812118 0.583493i \(-0.801686\pi\)
−0.995062 + 0.0992601i \(0.968352\pi\)
\(558\) 10787.8 + 8735.77i 0.818428 + 0.662750i
\(559\) −3088.16 9504.39i −0.233659 0.719128i
\(560\) −3056.10 + 10001.4i −0.230614 + 0.754706i
\(561\) −5709.52 + 17572.1i −0.429690 + 1.32245i
\(562\) 714.608 464.072i 0.0536369 0.0348322i
\(563\) −372.921 7115.75i −0.0279161 0.532670i −0.976417 0.215895i \(-0.930733\pi\)
0.948501 0.316775i \(-0.102600\pi\)
\(564\) 4455.91 + 20963.4i 0.332673 + 1.56510i
\(565\) 1258.22 1504.95i 0.0936878 0.112060i
\(566\) 5809.74 1887.70i 0.431451 0.140187i
\(567\) 10460.6 36255.6i 0.774784 2.68535i
\(568\) 6615.56 + 6615.56i 0.488702 + 0.488702i
\(569\) 2941.01 309.112i 0.216684 0.0227744i 0.00443581 0.999990i \(-0.498588\pi\)
0.212249 + 0.977216i \(0.431921\pi\)
\(570\) −5243.69 + 2918.91i −0.385323 + 0.214491i
\(571\) 277.970 2644.70i 0.0203725 0.193831i −0.979602 0.200946i \(-0.935598\pi\)
0.999975 + 0.00711550i \(0.00226495\pi\)
\(572\) 6898.51 + 2648.09i 0.504268 + 0.193570i
\(573\) −11869.0 23294.3i −0.865332 1.69831i
\(574\) 835.932 + 1978.35i 0.0607859 + 0.143859i
\(575\) 3087.76 5617.82i 0.223945 0.407442i
\(576\) 10301.4 17842.6i 0.745185 1.29070i
\(577\) −5394.05 3502.94i −0.389181 0.252737i 0.335186 0.942152i \(-0.391201\pi\)
−0.724366 + 0.689415i \(0.757868\pi\)
\(578\) −958.179 + 775.918i −0.0689533 + 0.0558372i
\(579\) −14958.5 + 6659.97i −1.07367 + 0.478029i
\(580\) −15341.4 + 10783.2i −1.09831 + 0.771976i
\(581\) 8032.50 + 153.398i 0.573570 + 0.0109536i
\(582\) 1176.95 1176.95i 0.0838252 0.0838252i
\(583\) 10910.3 13473.1i 0.775060 0.957119i
\(584\) 5501.75 6110.31i 0.389836 0.432956i
\(585\) 17942.7 14070.2i 1.26810 0.994410i
\(586\) −1502.32 + 1352.69i −0.105905 + 0.0953570i
\(587\) −999.538 + 1961.70i −0.0702817 + 0.137936i −0.923474 0.383661i \(-0.874663\pi\)
0.853192 + 0.521596i \(0.174663\pi\)
\(588\) −18658.3 16327.3i −1.30860 1.14511i
\(589\) −18633.4 6054.36i −1.30353 0.423541i
\(590\) −3987.60 + 2501.67i −0.278249 + 0.174563i
\(591\) 28576.2 + 25730.1i 1.98895 + 1.79086i
\(592\) 13114.1 5034.04i 0.910451 0.349489i
\(593\) 684.405 + 2554.23i 0.0473949 + 0.176880i 0.985566 0.169292i \(-0.0541481\pi\)
−0.938171 + 0.346172i \(0.887481\pi\)
\(594\) −8072.29 + 5864.86i −0.557593 + 0.405115i
\(595\) 11413.8 3274.68i 0.786418 0.225628i
\(596\) −14099.9 10244.2i −0.969052 0.704057i
\(597\) 9560.93 24907.1i 0.655449 1.70750i
\(598\) 637.671 981.928i 0.0436059 0.0671472i
\(599\) 15701.3 9065.16i 1.07102 0.618352i 0.142557 0.989787i \(-0.454467\pi\)
0.928459 + 0.371435i \(0.121134\pi\)
\(600\) −1044.79 14209.7i −0.0710887 0.966849i
\(601\) 23451.0i 1.59166i −0.605523 0.795828i \(-0.707036\pi\)
0.605523 0.795828i \(-0.292964\pi\)
\(602\) 3007.86 3572.70i 0.203640 0.241881i
\(603\) −786.304 4964.53i −0.0531024 0.335276i
\(604\) 2525.10 + 5671.47i 0.170108 + 0.382068i
\(605\) −2589.31 + 508.124i −0.174001 + 0.0341457i
\(606\) −1287.06 573.036i −0.0862759 0.0384125i
\(607\) −15355.4 + 4114.47i −1.02678 + 0.275125i −0.732626 0.680632i \(-0.761705\pi\)
−0.294157 + 0.955757i \(0.595039\pi\)
\(608\) 1499.72 9468.86i 0.100036 0.631601i
\(609\) −7707.78 40003.6i −0.512865 2.66178i
\(610\) −813.496 + 398.573i −0.0539959 + 0.0264553i
\(611\) −5967.49 6627.57i −0.395121 0.438826i
\(612\) −28826.0 + 1510.71i −1.90396 + 0.0997822i
\(613\) −4855.74 + 254.479i −0.319937 + 0.0167672i −0.211629 0.977350i \(-0.567877\pi\)
−0.108308 + 0.994117i \(0.534543\pi\)
\(614\) −243.759 270.722i −0.0160217 0.0177939i
\(615\) 11575.1 + 11943.5i 0.758950 + 0.783105i
\(616\) 1357.39 + 7044.88i 0.0887836 + 0.460789i
\(617\) −205.043 + 1294.59i −0.0133788 + 0.0844703i −0.993474 0.114056i \(-0.963616\pi\)
0.980096 + 0.198527i \(0.0636156\pi\)
\(618\) −6727.04 + 1802.50i −0.437866 + 0.117326i
\(619\) −3098.72 1379.64i −0.201208 0.0895837i 0.303659 0.952781i \(-0.401792\pi\)
−0.504867 + 0.863197i \(0.668458\pi\)
\(620\) 15239.8 16401.5i 0.987170 1.06242i
\(621\) −8286.76 18612.4i −0.535485 1.20272i
\(622\) 968.356 + 6113.96i 0.0624237 + 0.394128i
\(623\) −1521.79 + 1807.56i −0.0978636 + 0.116241i
\(624\) 14791.6i 0.948942i
\(625\) 9707.65 + 12243.5i 0.621289 + 0.783581i
\(626\) 2831.25 1634.62i 0.180766 0.104365i
\(627\) 12745.7 19626.7i 0.811828 1.25011i
\(628\) −419.409 + 1092.60i −0.0266501 + 0.0694258i
\(629\) −12903.5 9374.92i −0.817957 0.594281i
\(630\) 10013.8 + 3643.02i 0.633266 + 0.230383i
\(631\) −9383.63 + 6817.60i −0.592007 + 0.430118i −0.843033 0.537862i \(-0.819232\pi\)
0.251026 + 0.967980i \(0.419232\pi\)
\(632\) 1450.37 + 5412.86i 0.0912859 + 0.340684i
\(633\) 45624.0 17513.4i 2.86476 1.09968i
\(634\) 5141.00 + 4628.98i 0.322043 + 0.289969i
\(635\) 1659.82 + 6606.75i 0.103729 + 0.412883i
\(636\) 36017.2 + 11702.7i 2.24556 + 0.729626i
\(637\) 10121.1 + 2001.85i 0.629532 + 0.124515i
\(638\) −2576.04 + 5055.76i −0.159853 + 0.313729i
\(639\) −40268.1 + 36257.5i −2.49293 + 2.24464i
\(640\) 11939.2 + 8022.05i 0.737406 + 0.495468i
\(641\) −11663.1 + 12953.2i −0.718666 + 0.798160i −0.986230 0.165380i \(-0.947115\pi\)
0.267564 + 0.963540i \(0.413781\pi\)
\(642\) −37.6061 + 46.4396i −0.00231183 + 0.00285487i
\(643\) 13969.1 13969.1i 0.856746 0.856746i −0.134207 0.990953i \(-0.542849\pi\)
0.990953 + 0.134207i \(0.0428487\pi\)
\(644\) −7049.87 134.633i −0.431372 0.00823801i
\(645\) 11713.7 34217.9i 0.715078 2.08888i
\(646\) −2888.14 + 1285.88i −0.175902 + 0.0783165i
\(647\) 10238.7 8291.12i 0.622139 0.503799i −0.265637 0.964073i \(-0.585582\pi\)
0.887777 + 0.460274i \(0.152249\pi\)
\(648\) −20004.1 12990.8i −1.21271 0.787544i
\(649\) 9178.15 15897.0i 0.555122 0.961499i
\(650\) 1604.27 + 2360.15i 0.0968070 + 0.142419i
\(651\) 18931.9 + 44805.1i 1.13978 + 2.69747i
\(652\) 13843.2 + 27168.9i 0.831507 + 1.63192i
\(653\) −19952.4 7659.01i −1.19571 0.458990i −0.322610 0.946532i \(-0.604560\pi\)
−0.873100 + 0.487542i \(0.837894\pi\)
\(654\) −1686.40 + 16045.0i −0.100831 + 0.959343i
\(655\) −16055.8 1942.22i −0.957787 0.115861i
\(656\) −7674.37 + 806.609i −0.456759 + 0.0480073i
\(657\) 33672.9 + 33672.9i 1.99955 + 1.99955i
\(658\) 1155.37 4004.44i 0.0684515 0.237248i
\(659\) −7017.47 + 2280.12i −0.414813 + 0.134781i −0.508986 0.860775i \(-0.669979\pi\)
0.0941726 + 0.995556i \(0.469979\pi\)
\(660\) 14211.9 + 22653.5i 0.838180 + 1.33604i
\(661\) 3416.42 + 16073.0i 0.201034 + 0.945789i 0.956755 + 0.290895i \(0.0939532\pi\)
−0.755721 + 0.654893i \(0.772713\pi\)
\(662\) −301.541 5753.75i −0.0177035 0.337803i
\(663\) 14085.4 9147.17i 0.825086 0.535817i
\(664\) 1569.29 4829.77i 0.0917171 0.282276i
\(665\) −15037.6 + 264.721i −0.876890 + 0.0154368i
\(666\) −4422.97 13612.5i −0.257337 0.792002i
\(667\) −9004.11 7291.38i −0.522699 0.423273i
\(668\) −21931.5 5876.52i −1.27029 0.340373i
\(669\) 404.173 907.786i 0.0233576 0.0524620i
\(670\) 626.596 55.9507i 0.0361306 0.00322622i
\(671\) 2076.35 2857.86i 0.119459 0.164421i
\(672\) −20204.9 + 12579.3i −1.15985 + 0.722111i
\(673\) 1851.35 943.310i 0.106039 0.0540296i −0.400167 0.916442i \(-0.631048\pi\)
0.506206 + 0.862413i \(0.331048\pi\)
\(674\) −4840.52 2794.68i −0.276632 0.159714i
\(675\) 49648.5 1044.47i 2.83107 0.0595581i
\(676\) 4796.76 + 8308.23i 0.272915 + 0.472703i
\(677\) 1000.02 19081.6i 0.0567711 1.08326i −0.810602 0.585598i \(-0.800860\pi\)
0.867373 0.497659i \(-0.165807\pi\)
\(678\) 1280.66 202.836i 0.0725419 0.0114895i
\(679\) 3991.01 1213.02i 0.225569 0.0685585i
\(680\) 117.557 7504.86i 0.00662956 0.423233i
\(681\) −4251.26 40448.0i −0.239220 2.27602i
\(682\) 1753.42 6543.87i 0.0984488 0.367416i
\(683\) 1854.48 + 4831.09i 0.103894 + 0.270654i 0.975667 0.219256i \(-0.0703630\pi\)
−0.871773 + 0.489910i \(0.837030\pi\)
\(684\) 35762.1 + 7601.48i 1.99912 + 0.424927i
\(685\) −2399.95 + 13754.7i −0.133865 + 0.767214i
\(686\) 1705.69 + 4509.73i 0.0949322 + 0.250995i
\(687\) 18879.5 + 9619.58i 1.04847 + 0.534221i
\(688\) 9139.09 + 14073.0i 0.506431 + 0.779835i
\(689\) −15414.6 + 3276.47i −0.852320 + 0.181166i
\(690\) 3979.13 1456.36i 0.219541 0.0803517i
\(691\) 5232.49 24616.9i 0.288065 1.35524i −0.561377 0.827560i \(-0.689728\pi\)
0.849442 0.527681i \(-0.176938\pi\)
\(692\) −1022.10 161.885i −0.0561480 0.00889297i
\(693\) −41157.4 + 5715.41i −2.25604 + 0.313290i
\(694\) −2523.04 3472.67i −0.138002 0.189943i
\(695\) 6373.01 10649.6i 0.347830 0.581242i
\(696\) −25610.5 2691.78i −1.39478 0.146597i
\(697\) 5513.94 + 6809.14i 0.299649 + 0.370036i
\(698\) −7186.38 376.622i −0.389697 0.0204231i
\(699\) −28669.7 −1.55134
\(700\) 6959.96 15714.3i 0.375803 0.848491i
\(701\) −18557.3 −0.999858 −0.499929 0.866066i \(-0.666641\pi\)
−0.499929 + 0.866066i \(0.666641\pi\)
\(702\) 9057.42 + 474.679i 0.486966 + 0.0255208i
\(703\) 12713.4 + 15699.7i 0.682067 + 0.842283i
\(704\) −10000.1 1051.05i −0.535358 0.0562684i
\(705\) −2870.60 32148.1i −0.153352 1.71740i
\(706\) −2132.86 2935.63i −0.113699 0.156493i
\(707\) −2169.16 2785.81i −0.115389 0.148191i
\(708\) 39604.3 + 6272.71i 2.10229 + 0.332970i
\(709\) 4505.01 21194.4i 0.238631 1.12267i −0.681731 0.731603i \(-0.738773\pi\)
0.920362 0.391067i \(-0.127894\pi\)
\(710\) −4184.82 5336.61i −0.221202 0.282083i
\(711\) −31746.3 + 6747.89i −1.67452 + 0.355929i
\(712\) 813.461 + 1252.62i 0.0428170 + 0.0659325i
\(713\) 12325.5 + 6280.15i 0.647396 + 0.329865i
\(714\) 7107.96 + 3328.71i 0.372561 + 0.174473i
\(715\) −9834.96 5206.78i −0.514415 0.272339i
\(716\) −3855.56 819.524i −0.201242 0.0427752i
\(717\) 3171.07 + 8260.93i 0.165169 + 0.430279i
\(718\) 2037.70 7604.79i 0.105914 0.395276i
\(719\) 3621.46 + 34455.9i 0.187841 + 1.78719i 0.530457 + 0.847712i \(0.322020\pi\)
−0.342616 + 0.939475i \(0.611313\pi\)
\(720\) −22986.3 + 30617.8i −1.18979 + 1.58480i
\(721\) −16999.4 3954.03i −0.878074 0.204238i
\(722\) −1186.88 + 187.984i −0.0611789 + 0.00968979i
\(723\) −2715.24 + 51809.9i −0.139669 + 2.66505i
\(724\) −6352.59 11003.0i −0.326094 0.564811i
\(725\) 24887.0 13347.2i 1.27487 0.683727i
\(726\) −1510.49 872.079i −0.0772168 0.0445811i
\(727\) 127.254 64.8391i 0.00649187 0.00330777i −0.450742 0.892654i \(-0.648840\pi\)
0.457233 + 0.889347i \(0.348840\pi\)
\(728\) 3071.12 5753.14i 0.156351 0.292892i
\(729\) 19811.5 27268.2i 1.00653 1.38537i
\(730\) −4491.10 + 3918.20i −0.227703 + 0.198656i
\(731\) 7749.41 17405.5i 0.392096 0.880663i
\(732\) 7453.56 + 1997.18i 0.376355 + 0.100844i
\(733\) −20738.2 16793.5i −1.04500 0.846224i −0.0566452 0.998394i \(-0.518040\pi\)
−0.988354 + 0.152170i \(0.951374\pi\)
\(734\) −184.235 567.017i −0.00926463 0.0285136i
\(735\) 24943.0 + 27785.3i 1.25175 + 1.39439i
\(736\) −2091.69 + 6437.56i −0.104756 + 0.322407i
\(737\) −2057.36 + 1336.07i −0.102828 + 0.0667770i
\(738\) 411.503 + 7851.94i 0.0205252 + 0.391645i
\(739\) 3513.28 + 16528.7i 0.174882 + 0.822757i 0.974876 + 0.222749i \(0.0715029\pi\)
−0.799993 + 0.600009i \(0.795164\pi\)
\(740\) −22389.4 + 5624.91i −1.11223 + 0.279427i
\(741\) −20231.3 + 6573.55i −1.00299 + 0.325891i
\(742\) −5107.20 5306.07i −0.252684 0.262523i
\(743\) −12768.6 12768.6i −0.630464 0.630464i 0.317721 0.948184i \(-0.397083\pi\)
−0.948184 + 0.317721i \(0.897083\pi\)
\(744\) 30577.6 3213.84i 1.50676 0.158367i
\(745\) 19227.9 + 17866.1i 0.945579 + 0.878606i
\(746\) −231.802 + 2205.45i −0.0113765 + 0.108240i
\(747\) 27458.6 + 10540.4i 1.34492 + 0.516267i
\(748\) 6395.70 + 12552.3i 0.312634 + 0.613578i
\(749\) −137.946 + 58.2876i −0.00672957 + 0.00284350i
\(750\) −485.119 + 10316.6i −0.0236187 + 0.502279i
\(751\) 7212.31 12492.1i 0.350441 0.606981i −0.635886 0.771783i \(-0.719365\pi\)
0.986327 + 0.164802i \(0.0526985\pi\)
\(752\) 12558.8 + 8155.79i 0.609006 + 0.395493i
\(753\) −853.972 + 691.533i −0.0413286 + 0.0334673i
\(754\) 4711.90 2097.87i 0.227583 0.101326i
\(755\) −2749.53 8936.05i −0.132537 0.430750i
\(756\) −26403.1 47817.4i −1.27020 2.30040i
\(757\) 9550.09 9550.09i 0.458526 0.458526i −0.439646 0.898171i \(-0.644896\pi\)
0.898171 + 0.439646i \(0.144896\pi\)
\(758\) −4932.20 + 6090.75i −0.236340 + 0.291855i
\(759\) −11056.2 + 12279.1i −0.528740 + 0.587225i
\(760\) −2604.07 + 9143.21i −0.124289 + 0.436394i
\(761\) −3516.16 + 3165.96i −0.167491 + 0.150809i −0.748614 0.663006i \(-0.769280\pi\)
0.581123 + 0.813816i \(0.302614\pi\)
\(762\) −2044.19 + 4011.95i −0.0971828 + 0.190732i
\(763\) −22664.1 + 33482.2i −1.07535 + 1.58865i
\(764\) −18958.3 6159.91i −0.897756 0.291699i
\(765\) 43370.7 + 2954.75i 2.04977 + 0.139646i